亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于雙饋風(fēng)電機組控制參數(shù)優(yōu)化的電網(wǎng)功角振蕩控制

        2023-03-11 09:40:30李生虎張亞海葉劍橋李憶愷陶帝文
        電工技術(shù)學(xué)報 2023年5期
        關(guān)鍵詞:功角控制參數(shù)阻尼

        李生虎 張亞海 葉劍橋 李憶愷 陶帝文

        基于雙饋風(fēng)電機組控制參數(shù)優(yōu)化的電網(wǎng)功角振蕩控制

        李生虎 張亞海 葉劍橋 李憶愷 陶帝文

        (合肥工業(yè)大學(xué)電氣與自動化工程學(xué)院 合肥 230009)

        隨著大量風(fēng)電并網(wǎng),雙饋感應(yīng)發(fā)電機(DFIG)與同步發(fā)電機(SG)間的動態(tài)交互,將加劇SG功角振蕩?;谔卣髦捣治龅目刂茀?shù)優(yōu)化,未考慮非線性元件和大擾動場景。該文從抑制功角振蕩出發(fā),以SG轉(zhuǎn)速為DFIG電力系統(tǒng)穩(wěn)定器(PSS)輸入信號,建立風(fēng)電并網(wǎng)電力系統(tǒng)動態(tài)模型。在微分方程中引入中間變量,以解耦狀態(tài)變量軌跡靈敏度。區(qū)分狀態(tài)變量與代數(shù)變量對應(yīng)的雅可比矩陣,推導(dǎo)DFIG并網(wǎng)電力系統(tǒng)軌跡靈敏度的解析表達。設(shè)定目標(biāo)函數(shù)為SG功角偏差相對值二次方對時間積分,按時間順序累加功角對控制參數(shù)的軌跡靈敏度,得到目標(biāo)函數(shù)對控制參數(shù)的梯度信息??紤]DFIG-PSS可能弱化轉(zhuǎn)子側(cè)變流器(RSC)控制效果,提出基于軌跡靈敏度的RSC和DFIG-PSS參數(shù)協(xié)調(diào)優(yōu)化方法。給出4機2區(qū)域系統(tǒng)仿真結(jié)果,驗證了所提方法對DFIG并網(wǎng)系統(tǒng)功角振蕩的阻尼效果。

        功角振蕩 參數(shù)優(yōu)化 軌跡靈敏度 雙饋感應(yīng)發(fā)電機 電力系統(tǒng)穩(wěn)定器

        0 引言

        近年來風(fēng)電機組如雙饋感應(yīng)發(fā)電機(Doubly-Fed Induction Generator, DFIG)大量并網(wǎng),改變了同步發(fā)電機(Synchronous Generator, SG)的出力和電網(wǎng)慣性[1-4]。DFIG與SG間的動態(tài)交互[5-6],導(dǎo)致SG轉(zhuǎn)速變化更加明顯,降低了系統(tǒng)阻尼振蕩能力[7-8]。

        為抑制振蕩、提高系統(tǒng)穩(wěn)定性,改善阻尼是常見措施[9-10]。文獻[11]考慮時滯影響,優(yōu)化自抗擾控制器與廣域電力系統(tǒng)穩(wěn)定器(Power System Stabilizer, PSS)參數(shù),得到系統(tǒng)最佳阻尼。文獻[12]在并入PSS前提下,為使系統(tǒng)能夠承受柔性交流輸電設(shè)備嚴重故障,增加靜態(tài)同步補償器和靜態(tài)無功補償器。通過分析對電力系統(tǒng)穩(wěn)定性影響及其與PSS相互作用,協(xié)調(diào)優(yōu)化控制器參數(shù),增強系統(tǒng)阻尼。文獻[13]分析DFIG阻抗特性,選擇在轉(zhuǎn)子側(cè)變流器(Rotor Side Converter, RSC)或網(wǎng)側(cè)變流器(Gird Side Converter, GSC)引入高頻共振阻尼器,另一變換器改善電能質(zhì)量。文獻[14]引入功率振蕩阻尼器(Power Oscillation Damper, POD)以降低DFIG并網(wǎng)后的低頻振蕩。對DFIG和系統(tǒng)其他部分建立開環(huán)子系統(tǒng),采用平衡截斷法簡化傳遞函數(shù)以量化POD對DFIG振蕩的影響,將其設(shè)為約束以優(yōu)化控制器參數(shù)。文獻[15-16]研究了DFIG變流器PI參數(shù)對系統(tǒng)穩(wěn)定影響,發(fā)現(xiàn)PI參數(shù)與系統(tǒng)強耦合,修改PI參數(shù)可增強系統(tǒng)阻尼[17-18]。位于SG或DFIG的PSS結(jié)構(gòu)簡單,常用于增加阻尼[19]。為研究DFIG對系統(tǒng)阻尼影響,文獻[20-21]基于阻尼轉(zhuǎn)矩,分析DFIG對SG軸系影響,認為前者可能放大系統(tǒng)振蕩甚至導(dǎo)致失穩(wěn)?;谔卣髦捣治?,文獻[22]提出在RSC電流控制中引入次同步諧振阻尼控制器。文獻[23]提出了PSS阻尼控制的序列二次規(guī)劃優(yōu)化方法,解決了由于特征值函數(shù)非光滑性而無法同時保證最優(yōu)性和收斂性的問題。文獻[24]推導(dǎo)DFIG-PSS傳遞函數(shù)靈敏度,基于特征值靈敏度優(yōu)化控制器參數(shù)。

        上述方法都是基于特定斷面線性化,忽略了元件的非線性,不能研究大擾動后控制效果[25]。小擾動分析只能判斷振蕩衰減特性,不能量化一段時間內(nèi)參數(shù)偏差,而功角振蕩/失穩(wěn)是基于參數(shù)偏差定義。

        軌跡靈敏度可定量描述運行參數(shù)或結(jié)構(gòu)發(fā)生變化后系統(tǒng)軌跡變化和動態(tài)性能[26-27]?;谲壽E靈敏度,文獻[28-30]對系統(tǒng)關(guān)鍵參數(shù)、模型參數(shù)、誤差主導(dǎo)參數(shù)進行辨識;文獻[31]分析功角對故障切除時間靈敏度與系統(tǒng)穩(wěn)定性的關(guān)系,建立穩(wěn)定評價指標(biāo);文獻[32]基于軌跡靈敏度優(yōu)化暫態(tài)過電壓和恢復(fù)階段電壓,將非線性控制模型轉(zhuǎn)換為以控制量增量為控制變量的二次規(guī)劃模型。但是上述軌跡靈敏度均采用攝動法,需要反復(fù)修改擾動量、計算軌跡,過程繁瑣且計算量大。文獻[33]基于軌跡靈敏度,優(yōu)化DFIG附加頻率控制中低通濾波器參數(shù),為風(fēng)電并網(wǎng)系統(tǒng)功角振蕩分析與抑制提供了新思路。

        為降低DFIG并網(wǎng)對系統(tǒng)功角振蕩影響,本文引入DFIG-PSS并借助軌跡靈敏度優(yōu)化其控制參數(shù)以增強系統(tǒng)阻尼,其中難點在于:

        (1)DFIG與SG的動態(tài)交互,不但改變系統(tǒng)阻尼,還增強系統(tǒng)參數(shù)耦合,需要對DFIG進行建模并與SG聯(lián)立分析。

        (2)微分方程中多狀態(tài)變量的軌跡靈敏度相互耦合,且不能區(qū)分狀態(tài)變量與代數(shù)變量的雅可比矩陣,無法借助其建立軌跡靈敏度的解析表達。

        (3)在轉(zhuǎn)子側(cè)變流器有功外環(huán)引入DFIG-PSS,RSC原有控制參數(shù)控制效果可能被削弱。

        針對上述問題,本文考慮SG與DFIG動態(tài)交互,選擇SG轉(zhuǎn)速為DFIG-PSS輸入信號,建立DFIG并網(wǎng)系統(tǒng)動態(tài)模型。引入中間變量修改微分方程,將狀態(tài)變量軌跡靈敏度解耦,建立DFIG并網(wǎng)系統(tǒng)軌跡靈敏度的解析表達。設(shè)定目標(biāo)函數(shù)為SG功角偏差相對值對時間積分,按仿真步長累加功角對控制參數(shù)的軌跡靈敏度,得到目標(biāo)函數(shù)對控制參數(shù)的梯度信息??紤]DFIG-PSS通過RSC有功外環(huán)引入,且積分系數(shù)過大會削弱比例系數(shù)的控制效果,選擇RSC比例控制參數(shù)為待優(yōu)化變量。最后提出基于軌跡靈敏度優(yōu)化RSC和DFIG-PSS參數(shù),以提高系統(tǒng)阻尼振蕩能力。給出4機2區(qū)域系統(tǒng)仿真結(jié)果,以驗證所提參數(shù)優(yōu)化方法的振蕩抑制效果。

        1 DFIG-PSS設(shè)計思路

        1.1 風(fēng)力機建模與轉(zhuǎn)子側(cè)變流器控制

        風(fēng)力機建模與轉(zhuǎn)子側(cè)變流器控制風(fēng)電并網(wǎng)電力系統(tǒng)控制策略如圖1所示[34]。SG采用模型包括兩階轉(zhuǎn)子運動方程與三階轉(zhuǎn)子電磁暫態(tài)方程。DFIG風(fēng)力機捕獲風(fēng)能,驅(qū)動感應(yīng)電機發(fā)電。傳動軸采用兩質(zhì)量塊模型。變流環(huán)節(jié)由RSC、GSC和直流電容組成。RSC和GSC的功率外環(huán)與電流內(nèi)環(huán)實現(xiàn)有功/無功解耦控制。運行參數(shù)包括電壓、電流、功率等,控制參數(shù)包括DFIG出力參考值、時間常數(shù)、PI參數(shù)等。

        圖1 并網(wǎng)DFIG控制策略

        風(fēng)力機捕獲功率為

        式中,為空氣密度;t為風(fēng)機半徑;w為風(fēng)速;p為風(fēng)能捕捉系數(shù),p通常由風(fēng)機制造商給出,由葉尖速比和槳距角決定;1~9為擬合系數(shù);i為中間變量;t和tB分別為風(fēng)力機轉(zhuǎn)速及其基準值。

        將風(fēng)力機與低速軸作為一質(zhì)量塊,齒輪箱與高速軸作為另一質(zhì)量塊,軸系方程為

        以下基于DFIG簡化模型推導(dǎo)定子出力與RSC間的關(guān)系,從而得到DFIG-PSS設(shè)計思路。第2節(jié)中DFIG并網(wǎng)系統(tǒng)軌跡靈敏度解析表達和控制參數(shù)優(yōu)化,均采用詳細DFIG模型。DFIG出力包括定子出力和GSC出力。取定子電壓定向d軸,不計定子磁鏈暫態(tài)和定子電阻。聯(lián)立定子磁鏈,定子出力為

        式中,為有功功率;為無功功率;為電壓;為電流;為轉(zhuǎn)速;下標(biāo)d和q分別表示d軸和q軸;下標(biāo)s、r分別表示定子和轉(zhuǎn)子參數(shù);s為定子電感,s=sσ+m;sσ為定子漏感;m為勵磁電感。

        文獻[35]表明,在RSC有功/無功控制環(huán)并入PSS,均可改善系統(tǒng)阻尼。但是無功調(diào)制可能惡化DFIG定子暫態(tài),有功調(diào)制更為有效。轉(zhuǎn)子電流影響DFIG定子出力,可調(diào)節(jié)轉(zhuǎn)子電壓以控制轉(zhuǎn)子電流。直流電壓較為穩(wěn)定,對DFIG出力影響較小。變流器控制參數(shù)不同程度地影響系統(tǒng)阻尼振蕩能力,增大GSC電流內(nèi)環(huán)比例參數(shù)和RSC有功功率外環(huán)積分參數(shù)時系統(tǒng)更容易失穩(wěn)[36]。

        1.2 DFIG-PSS設(shè)計思路

        DFIG與SG動態(tài)交互邏輯如圖2所示。在大擾動后,SG機械轉(zhuǎn)矩與電磁轉(zhuǎn)矩不平衡,轉(zhuǎn)速變化,吸收或釋放動能以維持穩(wěn)定性。而DFIG沒有功角穩(wěn)定概念;采用變流器控制,導(dǎo)致DFIG與系統(tǒng)解耦,不能主動響應(yīng)外部擾動。因此大規(guī)模風(fēng)電接入可能導(dǎo)致系統(tǒng)阻尼降低。為此在RSC有功外環(huán)引入DFIG-PSS,增加有功調(diào)制信號wpss以吸收或釋放DFIG轉(zhuǎn)子動能[37],提高系統(tǒng)抑制功角振蕩的能力。

        圖2 DFIG與SG間動態(tài)交互邏輯

        參考SG-PSS,DFIG-PSS包括:增益環(huán)節(jié),增加阻尼;隔直環(huán)節(jié),維持信號恒定四個部分[38];兩個超前滯后環(huán)節(jié),用于相位補償??紤]SG轉(zhuǎn)速變化是功角振蕩主要原因,取前者為DFIG-PSS輸入,通過調(diào)節(jié)DFIG轉(zhuǎn)子電流,改變有功輸出以阻尼功角振蕩。

        2 DFIG并網(wǎng)系統(tǒng)軌跡靈敏度解析表達

        含DFIG電力系統(tǒng)動態(tài)特性描述為

        式中,、、、分別為系統(tǒng)微分方程、代數(shù)方程、狀態(tài)變量和代數(shù)變量;w為RSC控制參數(shù);wpss為DFIG-PSS控制參數(shù);為時間;下標(biāo)0表示初值。區(qū)分狀態(tài)變量和代數(shù)變量,以控制參數(shù)描述系統(tǒng)參數(shù)軌跡為

        式中,=[wwpss]。在=0處泰勒展開并忽略高階項,得到

        式中,x()和y()分別為()和()對的軌跡靈敏度。當(dāng)D足夠小時,式(7)近似為式(8),該軌跡靈敏度求解方法稱為攝動法,其缺點是在計算多個軌跡靈敏度時,過程繁瑣,計算量較大。

        為此推導(dǎo)軌跡靈敏度的解析表達。對式(5)微分方程進行積分,并對求偏導(dǎo)得

        本文控制參數(shù)w和wpss均不影響穩(wěn)態(tài)初值,因此軌跡靈敏度初值為零。系統(tǒng)狀態(tài)變量為和的連續(xù)函數(shù),對參數(shù)與時間求導(dǎo)可交換順序,可得

        類似對代數(shù)方程進行積分、求導(dǎo),最后得DFIG并網(wǎng)系統(tǒng)的軌跡靈敏度解析表達為

        式(11)第一行左端含有多個狀態(tài)變量且為非線性方程,各變量軌跡靈敏度耦合,不易直接計算。為此引入中間變量,使?fàn)顟B(tài)變量和狀態(tài)方程解耦,以便后續(xù)建立軌跡靈敏度的解析表達。針對本文研究對象(DFIG-PSS與RSC控制參數(shù)),以下給出解耦過程。定義中間變量1、2、3、4、1、2、3為

        根據(jù)式(12),聯(lián)立RSC功率外環(huán)和電流內(nèi)環(huán)控制方程,轉(zhuǎn)換微分方程中狀態(tài)變量,可得

        式中,s*和s*分別為定子有功功率和無功功率參考值。

        根據(jù)式(13),聯(lián)立DFIG-PSS方程并轉(zhuǎn)換為

        式(16)~式(18)左端僅有一個狀態(tài)變量,系統(tǒng)所有狀態(tài)變量(包括新增中間變量)在左端行成一個對角矩陣,狀態(tài)變量軌跡靈敏度解耦。狀態(tài)變量與代數(shù)變量的雅可比矩陣分別在矩陣上層與下層。

        本文待優(yōu)化控制參數(shù)僅出現(xiàn)在式(12)和式(13),因此f=0,ga=0。對轉(zhuǎn)換后式(11)進行差分,得到對軌跡靈敏度為

        式中,D為時域仿真步長;為單位矩陣;和+1分別表示前后時刻。

        3 基于軌跡靈敏度的參數(shù)優(yōu)化

        3.1 目標(biāo)函數(shù)、約束條件及檢驗指標(biāo)的設(shè)計

        為抑制SG功角振蕩,以暫態(tài)過程中SG功角差與其穩(wěn)態(tài)值比值二次方的積分,作為性能指標(biāo)。為消除功角初值大小影響,取功角偏差相對值,建立目標(biāo)函數(shù)為

        式中,δ()為第臺SG在時刻的功角值;f為時域仿真結(jié)束時刻;SG為SG數(shù)量。

        按仿真步長劃分暫態(tài)過程時間段,累加各時段功角對的軌跡靈敏度,得對的梯度信息為

        式中,為時域仿真步長數(shù);δ,a(t)為第個SG功角對控制參數(shù)在t時刻的軌跡靈敏度。

        由圖2得DFIG-PSS傳遞函數(shù)式為

        將DFIG-PSS輸入比較點和d軸轉(zhuǎn)子電流比較點后移,得到RSC等效有功控制如圖3所示。

        忽略定子有功擾動,得DFIG-PSS參數(shù)與RSC有功控制間關(guān)系式為

        式中,2和3為PI環(huán)節(jié)傳遞函數(shù)。由此可見DFIG-PSS影響RSC控制參數(shù),需要協(xié)調(diào)優(yōu)化兩者參數(shù)。

        DFIG-PSS參數(shù)中,s、2、4慣性較強,對控制效果影響不大,依據(jù)經(jīng)驗取s=5s,2=4= 0.2s[9,25]。wpss、1、3對控制效果影響較大。DFIG-PSS輸出是RSC功率外環(huán)的輸入,可能降低后者控制效果,且RSC積分系數(shù)較小,否則將削弱比例系數(shù)控制效果和系統(tǒng)穩(wěn)定性[16,36]。因此建立約束條件式為

        式中,上標(biāo)min與max分別表示下限和上限。

        考慮SG與DFIG動態(tài)交互,借助軌跡靈敏度解析表達,統(tǒng)一優(yōu)化DFIG-PSS和RSC參數(shù),增強系統(tǒng)阻尼,改善系統(tǒng)功角穩(wěn)定,抑制DFIG振蕩?;谲壽E靈敏度的DFIG-PSS和RSC參數(shù)優(yōu)化流程如圖4所示,其中加粗字體為重點和創(chuàng)新點。相比文獻[35]只對風(fēng)力機控制參數(shù)優(yōu)化,本文關(guān)注問題不同,且協(xié)調(diào)范圍更大一些??紤]目標(biāo)函數(shù)非線性,采用內(nèi)點法求解,后者需要目標(biāo)函數(shù)和約束條件的一階和二階梯度。為減小計算量,采用BFGS算法得到海森矩陣。

        圖4 基于軌跡靈敏度的DFIG-PSS和RSC參數(shù)優(yōu)化

        定義功角差振幅最大優(yōu)化比例wa,即最大優(yōu)化量Dmax與優(yōu)化前的最大振蕩幅值max的比值,以檢驗參數(shù)優(yōu)化效果。以功角差初值±5%為基準,定義功角差最大收斂提前比例cr,為優(yōu)化后收斂時間craf與優(yōu)化前收斂時間cr的比值。定義DFIG功率振蕩幅值最大優(yōu)化比例po,為最大功率優(yōu)化量Dmax與優(yōu)化前的最大功率max的比值。wa、cr、po表達式為

        3.2 算法適用性討論

        風(fēng)力機捕捉風(fēng)能與風(fēng)速大小有關(guān)。當(dāng)風(fēng)速低于額定風(fēng)速時,槳距角不啟動,風(fēng)機運行于最大功率點跟蹤方式,風(fēng)機轉(zhuǎn)速隨風(fēng)速變化,得到最佳葉尖速比和最大捕獲功率。當(dāng)風(fēng)速繼續(xù)增加,風(fēng)力機將處于恒轉(zhuǎn)速方式(轉(zhuǎn)速上限)。當(dāng)風(fēng)速繼續(xù)增加,風(fēng)力機通過增加槳距角或者降低轉(zhuǎn)速,處于恒功率方式(額定功率)。當(dāng)風(fēng)速稍高于切入風(fēng)速時,風(fēng)力機處于恒轉(zhuǎn)速方式(轉(zhuǎn)速下限),可類似建模。上述風(fēng)速和風(fēng)力機運行方式變化,影響轉(zhuǎn)速和槳距角取值,但是不影響本文控制參數(shù)優(yōu)化算法。

        實際風(fēng)電場內(nèi)各DFIG風(fēng)速、集電線路阻抗不同,對于電網(wǎng)影響和貢獻也存在一定差異。將風(fēng)電場等效為一臺DFIG[39-40],可以減小計算規(guī)模、改善收斂性,適合電場內(nèi)風(fēng)速變化不大、集電阻抗很小的場景。一般來說,如果研究對象只是風(fēng)電場,應(yīng)對每臺DFIG進行建模;如果是電力系統(tǒng),可以適當(dāng)?shù)戎碉L(fēng)電場。本文研究對象是風(fēng)電并網(wǎng)后電力系統(tǒng)功角穩(wěn)定性,風(fēng)電場等值處理對系統(tǒng)穩(wěn)定影響較為有限,因此可以等值風(fēng)電場。如果需要考慮風(fēng)速差異,可以將同一饋線上一串DFIG等值為一臺,從而用有限幾臺DFIG來等效風(fēng)電場。風(fēng)電場或DFIG數(shù)量,不影響本文算法適用性。

        本文所提基于軌跡靈敏度的風(fēng)電并網(wǎng)系統(tǒng)控制優(yōu)化算法,適用于不同運行場景、故障模式、電網(wǎng)安全問題、待優(yōu)化參數(shù)。從實際運行角度考慮,控制參數(shù)設(shè)置應(yīng)相對穩(wěn)定。因此所設(shè)定控制參數(shù)應(yīng)該對其他運行方式和故障模式具有一定適應(yīng)能力。一般來說,控制優(yōu)化很難界定適用范圍,但是通過設(shè)置不同擾動/故障模式,可以檢驗算法應(yīng)用效果。

        4 仿真驗證

        針對所提算法編寫Matlab程序。計算機配置:Intel(R) Core(TM)i5-3470 CPU,3.20 GHz,4GB內(nèi)存。完成一次時域仿真時間約為12.64s。計算軌跡靈敏度時間21.05s。優(yōu)化DFIG-PSS時間218.29s,優(yōu)化RSC時間263.64s,統(tǒng)一優(yōu)化時間為396.59s。

        選擇4機2區(qū)域系統(tǒng)進行驗證,四機兩區(qū)域測試系統(tǒng)如圖5所示。SG參數(shù)見文獻[33],取SG1為平衡機組,負荷采用恒阻抗模型。在節(jié)點7連接一個風(fēng)電場,其由2串組成,各有25臺DFIG,風(fēng)速分別為9m/s和11m/s。DFIG單機參數(shù)見附表1和附表2[14]??紤]風(fēng)速間的差異,將每串等值為一臺,共有兩臺DFIG。

        圖5 四機兩區(qū)域測試系統(tǒng)

        4.1 DFIG并網(wǎng)系統(tǒng)

        設(shè)9號節(jié)點0.5s時三相短路,0.1s后故障清除。有無DFIG時的SG有功功率如圖6所示,DFIG并網(wǎng)影響系統(tǒng)潮流,改變節(jié)點電壓和相位、SG出力,SG振蕩振幅及持續(xù)時間增加。有無DFIG-PSS時的DFIG1轉(zhuǎn)子電流如圖7所示,其振蕩幅值與持續(xù)時間明顯增加。引入DFIG-PSS后,增加有功調(diào)制信號,在增加電網(wǎng)阻尼能力的同時,削弱了RSC控制效果。

        圖6 有無DFIG時的SG有功功率

        圖7 有無DFIG-PSS時的DFIG1轉(zhuǎn)子電流

        取攝動值10–5(pu),采用攝動法計算軌跡靈敏度,檢驗本文解析表達精度。兩種方式下,SG1和SG3功角對DFIG1參數(shù)1和p4的軌跡靈敏度基本重合,如圖8所示。軌跡靈敏度解析表達的誤差見表1,最大誤差0.783 69 %,驗證了所提解析表達的正確性。

        圖8 SG功角對控制參數(shù)的軌跡靈敏度

        Fig.8 Trajectory sensitivity of power angle of SG to control parameter

        表1 軌跡靈敏度解析表達的誤差

        Tab.1 Error of analytical expression of trajectory sensitivity

        (續(xù))

        保持RSC比例參數(shù)不變,增加積分參數(shù),見表2,設(shè)計a、b、c三個方案,兩臺SG間功角差仿真結(jié)果如圖9所示。隨i增加,SG功角振蕩峰值增加。當(dāng)i3和i4取10-1數(shù)量級,系統(tǒng)功角失穩(wěn)。

        表2 RSC積分控制參數(shù)的取值

        Tab.2 Values of the RSC integral control parameters

        圖9 RSC不同ki下SG功角差

        4.2 優(yōu)化DFIG-PSS控制參數(shù)

        保持RSC控制參數(shù)不變,DFIG-PSS1和DFIG-PSS2的控制參數(shù)wpss、1、3均分別為-1.85、0.65s、0.65s。可調(diào)范圍均分別為[–2.5, 15]、[0.527s,0.85s]、[0.527s,0.85s]。取收斂精度為10–6,優(yōu)化上述參數(shù),20次迭代后收斂。最優(yōu)值wpss1=14.95,wpss2=14.75,11=31=0.75s,12=32=0.723s。優(yōu)化前后SG功角差如圖10所示。優(yōu)化前,系統(tǒng)對振蕩阻尼能力較弱,23和23振幅較大且長時間不能平穩(wěn)。優(yōu)化后,系統(tǒng)阻尼能力增強,功角振幅降低,持續(xù)時間減小,收斂時間提前。優(yōu)化后SG功角差的最大優(yōu)化比例wa和最大收斂提前比例cr見表3。23的wa最大為47.88%。cr最大為83.23%(32.518s),23在6.551s時開始收斂。以上結(jié)果證明了所提DFIG-PSS參數(shù)優(yōu)化方法對提高系統(tǒng)抑制功角振蕩的能力具有積極作用。

        圖10 優(yōu)化DFIG-PSS參數(shù)前后SG功角差

        表3 優(yōu)化DFIG-PSS后SGs功角差的wa和cr

        Tab.3 Mwa and Mcr of power angle difference between SGs after optimization to DFIG-PSS

        4.3 優(yōu)化RSC控制參數(shù)

        DFIG1和DFIG2控制參數(shù)p1~p4初值分別為0.57、0.65、0.02、0.047 5,可調(diào)范圍[0.52,0.75]、[0.51,0.67 5]、[0.018 5,0.068 5]、[0.01,0.057]。經(jīng)14次迭代后優(yōu)化收斂,DFIG1最優(yōu)值為0.725、0.52、0.065、0.012 5,DFIG2最優(yōu)值為0.717、0.54、0.063 2、0.013 6。DFIG出力和SG功角差如圖11所示。優(yōu)化前,SG功角振幅大,持續(xù)時間長。優(yōu)化后,SG功角振幅和持續(xù)時間減小,阻尼振蕩能力加強。

        優(yōu)化RSC參數(shù)后DFIG出力的po和cr及SGs 功角差的wa和cr見表4。功率振幅最大優(yōu)化比例po達9.19 %,提前2.797s(24.28 %)收斂。SG功角差wa最大達6.67 %,14最大提前5.127s(13.15 %)收斂。

        表4 優(yōu)化RSC參數(shù)后DFIG出力的po和cr及SGs功角差的wa和cr

        Tab.4 Mpo and Mcr of the DFIG output and Mwa and Mcr of power angle difference betweensGs after optimization to RSC parameters

        4.4 優(yōu)化DFIG-PSS和RSC控制參數(shù)

        保持DFIG-PSS和RSC參數(shù)初值和取值范圍、優(yōu)化收斂精度不變。同時優(yōu)化兩者,經(jīng)過25次迭代后收斂。僅優(yōu)化DFIG-PSS和同時優(yōu)化兩者參數(shù)的SG功角差如圖12所示,其振蕩幅值及持續(xù)時間均明顯減小。

        圖12 優(yōu)化DFIG-PSS和RSC參數(shù)后SGs功角差

        優(yōu)化兩參數(shù)后功角差的wa和cr見表5,振蕩幅值最大優(yōu)化比例為20.45%,最大提前2.761s(39.19 %)收斂。同時優(yōu)化兩者,進一步增強了系統(tǒng)阻尼振蕩的能力,證明了本文所提DFIG-PSS和RSC參數(shù)優(yōu)化方法對于提高系統(tǒng)抑制DFIG并網(wǎng)振蕩的能力起積極作用。

        表5 優(yōu)化DFIG-PSS和RSC參數(shù)后功角差的wa和cr

        Tab.5 Mwa and Mcr of power angle difference between SGs after optimization DFIG-PSS and RSC parameters

        為檢驗所提算法適應(yīng)性,新增以下仿真場景:

        場景一:將三相短路地點由節(jié)點9改為節(jié)點5,0.5s時故障發(fā)生,0.1s后故障切除。

        場景二:兩臺DFIG風(fēng)速分別由9m/s和11m/s改為11m/s和13m/s,0.5s時節(jié)點9三相短路,0.1s后故障切除。

        場景三:0.5s時,節(jié)點4突增100MW負荷。

        附圖1、附圖2和附圖3分別給出三個場景的仿真結(jié)果。相比優(yōu)化前,優(yōu)化后功角振蕩幅值和持續(xù)時間明顯降低。由于增益系數(shù)較大,有功負荷突増后功角振蕩幅值較大,但是收斂時間顯著減少,控制參數(shù)優(yōu)化依然有效。

        5 結(jié)論

        本文以SG轉(zhuǎn)速為DFIG-PSS輸入信號,得到DFIG并網(wǎng)電力系統(tǒng)擾動后軌跡靈敏度的解析表達。為抑制SG功角振蕩,取目標(biāo)函數(shù)為SG功角差相對值二次方的積分,基于軌跡靈敏度提供的梯度信息,優(yōu)化DFIG控制參數(shù)??紤]DFIG-PSS可能弱化RSC控制效果,協(xié)調(diào)優(yōu)化兩者控制參數(shù)。仿真結(jié)果表明:

        1)所建立軌跡靈敏度解析表達誤差較小,可準確量化控制參數(shù)對系統(tǒng)功角振蕩的影響。

        2)相比于僅優(yōu)化DFIG-PSS參數(shù),同時優(yōu)化DFIG-PSS參數(shù)與RSC比例系數(shù),在減緩DFIG振蕩的同時,可增強系統(tǒng)阻尼,減小SG間功角差振幅。

        3)RSC功率外環(huán)比例系數(shù)增大,電流內(nèi)環(huán)比例系數(shù)減小,可有效調(diào)節(jié)DFIG輸出功率,降低系統(tǒng)振蕩風(fēng)險。

        實際電網(wǎng)運行中穩(wěn)定控制的設(shè)備很多。從實際應(yīng)用考慮,下一步可以研究SG與DFIG控制參數(shù)的協(xié)調(diào)優(yōu)化。

        附表1 2 MW雙饋風(fēng)電機組結(jié)構(gòu)參數(shù)

        App.Tab.1 Configurational parameters of 2MW DFIG

        參數(shù)數(shù)值參數(shù)數(shù)值 額定電壓/V690直流電容/F0.02 額定功率/MW2直流電壓/V1 200 葉片半徑Rt/m34c10.73 定子電阻(pu)0.032 88c2151 轉(zhuǎn)子電阻(pu)0.044 9c30.58 勵磁電感Lm(pu)6.552 7c40.002 定子漏感Lsσ(pu)0.442 41c52.14 轉(zhuǎn)子漏感(pu)0.449 55c613.2 轉(zhuǎn)子轉(zhuǎn)動慣量Hr/s0.7c718.4 風(fēng)機轉(zhuǎn)動慣量Ht/s3c8-0.02 阻尼系數(shù)D(pu)2.4c9-0.003

        附表2 DFIG PI控制參數(shù)

        App.Tab.2 PI control parameters of the DFIG

        控制器位置控制參數(shù) kpki 槳距角62.546 4×10-4 RSC功率環(huán)外環(huán)0.570.042 0 內(nèi)環(huán)0.520.055 4 電流環(huán)外環(huán)0.047 52.100 9×10-4 內(nèi)環(huán)0.047 52.100 9×10-4 GSC功率環(huán)外環(huán)1.649.549 3×10-4 內(nèi)環(huán)1.649.549 3×10-4 電流環(huán)外環(huán)0.46.047 9×10-4 內(nèi)環(huán)0.46.047 9×10-4

        附圖1 節(jié)點5三相短路后參數(shù)優(yōu)化效果

        App.Fig.1Effect of parameter optimization after 3-phase fault at bus 5

        附圖2 風(fēng)速突變后參數(shù)優(yōu)化效果

        App.Fig.2Effect of parameter optimization after sudden change of wind speed

        附圖3 負荷突增后參數(shù)優(yōu)化效果

        App.Fig.3Effect of parameter optimization after sudden change of load

        [1] Ma Jing, Shen Yaqi, Phadke A G. DFIG active damping control strategy based on remodeling of multiple energy branches[J]. IEEE Transactions on Power Electronics, 2020, 36(4): 4169-4186.

        [2] Rosado L, Samanes J, Gubía E, et al. Robust active damping strategy for DFIG wind turbines[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 14525-14538.

        [3] Gao Chao, Liu Hui, Jiang Hao, et al. Research on the sub-synchronous oscillation in wind power connected to series compensated power system and its influencing factors[J]. CES Transactions on Electrical Machines and Systems, 2017, 1(3): 334-340.

        [4] 孫軍, 蔣天龍, 王仰銘, 等. 不平衡電網(wǎng)下雙饋感應(yīng)發(fā)電機的虛擬同步機控制優(yōu)化策略[J]. 電力系統(tǒng)自動化, 2020, 44(10): 135-144. Sun Jun, Jiang Tianlong, Wang Yangming, et al. Optimization strategy of virtual synchronous generator control for doubly-fed induction generator in unbalanced power grid[J]. Automation of Electric Power Systems, 2020, 44(10): 135-144.

        [5] 劉俊磊, 曹娜, 錢峰, 等. 考慮雙饋風(fēng)電機組變流器控制參數(shù)的風(fēng)電場內(nèi)機組振蕩分析[J]. 電力系統(tǒng)自動化, 2021, 45(10): 42-49. Liu Junlei, Cao Na, Qian Feng, et al. Analysis of unit oscillation in wind farm considering control parameters of converter for DFIG-based wind turbine[J]. Automation of Electric Power Systems, 2021, 45(10): 42-49.

        [6] Du Wenjuan, Chen Xiao, Wang Haifeng. Impact of dynamic interactions introduced by the DFIGs on power system electromechanical oscillation modes[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4954-4967.

        [7] 薛安成, 王清, 畢天姝. 雙饋風(fēng)機與同步機小擾動功角互作用機理分析[J]. 中國電機工程學(xué)報, 2016, 36(2): 417-425. Xue Anchen, Wang Qing, Bi Tianshu. Study on the mechanism of small signal dynamic interaction between doubly-fed induction generator and synchronous generator[J]. Proceedings of the CSEE, 2016, 36(2): 417-425.

        [8] Morshed M J, Fekih A. A probabilistic robust coordinated approach to stabilize power oscillations in DFIG-based power systems[J]. IEEE Transactions on Industrial Informatics, 2019, 15(10): 5599-5612.

        [9] Zhang Chen, Ke Deping, Sun Yuanzhang, et al. Coordinated supplementary damping control of DFIG and PSS tosuppress inter-area oscillations with optimally controlled plant dynamics[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 780-791.

        [10] 蘇田宇, 杜文娟, 王海風(fēng). 多直驅(qū)永磁同步發(fā)電機并聯(lián)風(fēng)電場次同步阻尼控制器降階設(shè)計方法[J].電工技術(shù)學(xué)報, 2019, 34(1): 116-127. Su Tianyu, Du Wenjuan, Wang Haifeng. A reduced order design method for subsynchronous damping controller of multi-PMSGs parallel wind farm[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 116-127.

        [11] 馬燕峰, 霍亞欣, 李鑫, 等. 考慮時滯影響的雙饋風(fēng)電場廣域附加阻尼控制器設(shè)計[J].電工技術(shù)學(xué)報, 2020, 35(1): 158-166. Ma Yanfeng, Huo Yaxin, Li Xin, et al. Design of wide area additional damping controller for doubly fed wind farms considering time delays[J]. Transactions of China Electrotechnical Society, 2020, 35(1): 158-166.

        [12] Bhukya J, Mahajan V. Optimization of controllers parameters for damping local area oscillation to enhance the stability of an interconnected system with wind farm[J]. International Journal of Electrical Power and Energy Systems, 2020, 119: 1-23.

        [13] Pang Bo, Nian Heng. Collaborative control and allocation method of RSC and GSC for DFIG system to suppress high-frequency resonance and harmonics[J]. IEEE Transactions on Industrial Electronics, 2020, 67(12): 10509-10519.

        [14] Li Shenghu, Zhang Hao, Yan Yunsong, et al. Parameter optimization to power oscillation damper(POD) considering its impact on the DFIG[J]. IEEE Transactions on Power Systems, DOI: 10.1109/ TPWRS.2021.3104816.

        [15] Chen Aikang, Xie Da, Zhang Daming, et al. PI parameter tuning of converters for sub-synchronous interactions existing in grid-connected DFIG wind turbines[J]. IEEE Transactions on Power Electronics, 2019, 34(7): 6345-6355.

        [16] 秦超, 曾沅, 蘇寅生, 等. 基于安全域的大規(guī)模風(fēng)電并網(wǎng)系統(tǒng)低頻振蕩穩(wěn)定分析[J]. 電力自動化設(shè)備, 2017, 37(5): 100-106. Qin Chao, Zeng Yuan,su Yinsheng, et al. Low- frequency oscillatory stability analysis based on security region for power system with large-scale wind power[J]. Electric Power Automation Equipment, 2017, 37(5): 100-106.

        [17] Bhukya J, Mahajan V. Optimization of damping controller for PSS and SSSC to improve stability of interconnected system with DFIG based wind farm[J]. International Journal of Electrical Power and Energy Systems, 2019, 108: 314-335.

        [18] Tian Xinshou, Chi Yongning, Li Yan, et al. Coordinated damping optimization control of sub-synchronous oscillation for DFIG and SVG[J]. CSEE Journal of Power and Energy Systems, 2021, 7(1): 140-149.

        [19] Prakash T, Singh V P, Mohantys R. A synchrophasor measurement based wide-area power system stabilizer design for inter-area oscillation damping considering variable time-delays[J]. International Journal of Electrical Power and Energy Systems, 2019, 105: 131-141.

        [20] 王一珺, 杜文娟, 陳晨, 等. 基于改進復(fù)轉(zhuǎn)矩系數(shù)法的風(fēng)電場并網(wǎng)引發(fā)電力系統(tǒng)次同步振蕩研究[J]. 電工技術(shù)學(xué)報, 2020, 35(15): 3258-3269. Wang Yijun, Du Wenjuan, Chen Chen, et al. Study on sub-synchronous oscillations of power systems caused by grid-connected wind farms based on the improved complex torque coefficients method[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3258-3269.

        [21] 王一珺, 杜文娟, 王海風(fēng). 基于改進復(fù)轉(zhuǎn)矩系數(shù)法的多風(fēng)電場接入引發(fā)多機電力系統(tǒng)次同步振蕩機理分析[J]. 中國電機工程學(xué)報, 2021, 41(7): 2383-2394. Wang Yijun, Du Wenjuan, Wang Haifeng. Analysis of subsynchronous oscillation in multi-machine power system caused by the integration of multiple wind farms based on improved complex torque coefficient method[J]. Proceedings of the CSEE, 2021, 41(7): 2383-2394.

        [22] Yao Jun, Wang Xuewei, Li Jiawei, et al. Sub-synchronous resonance damping control for series-compensated DFIG-based wind farm with improved particle swarm optimization algorithm[J]. IEEE Transactions on Energy Conversion, 2019, 34(2): 849-859.

        [23] 李佩杰, 黃淑晨, 李濱, 等. 基于梯度采樣序列二次規(guī)劃方法的PSS參數(shù)協(xié)調(diào)優(yōu)化[J]. 中國電機工程學(xué)報, 2021, 41(8): 2734-2743. Li Peijie, Huang Shuchen, Li Bin, et al. Simultaneous coordination and optimization for the parameters of PSS based on sequential quadratic programming with gradient sampling[J]. Proceedings of the CSEE, 2021, 41(8): 2734-2743.

        [24] 李生虎, 張浩. 風(fēng)電系統(tǒng)振蕩模式對DFIG-PSS傳遞函數(shù)的靈敏度分析[J]. 電力系統(tǒng)保護與控制, 2020, 48(16): 11-17. Lishenghu, Zhang Hao. Sensitivity analysis of the oscillation modes to the transfer function of DFIG- PSS in a wind power system[J]. Power System Protection and Control, 2020, 48(16): 11-17.

        [25] 張國洲, 易建波, 滕予非, 等. 多運行方式下多機 PSS 的協(xié)調(diào)優(yōu)化方法[J]. 電網(wǎng)技術(shù), 2018, 42(9): 2797-2805. Zhang Guozhou, Yi Jianbo, Teng Yufei, et al. Coordinated optimization of multi-machine power system stabilizers under multiple operating conditions[J]. Power System Technology, 2018, 42(9): 2797-2805.

        [26] Yuan Heling, Xu Yan. Preventive-corrective coordinated transient stability dispatch of power systems with uncertain wind power[J]. IEEE Transactions on Power Systems, 2020, 35(5): 3616-3626.

        [27] Wieler P L C, Kuiava R, Souza W. Transient stability constrained optimal power flow based on trajectory sensitivity for power dispatch of distributed synchronous generators[J]. IEEE Latin America Transactions, 2020, 18(7): 1247-1254.

        [28] Wang Tong, Gao Mingyang, Mi Dengkai, et al. Dynamic equivalent method of PMSG-based wind farm for power system stability analysis[J]. IET Generation, Transmission & Distribution, 2020, 14(17): 3488-3497.

        [29] 張劍, 何怡剛. 基于軌跡靈敏度分析的永磁直驅(qū)風(fēng)電場等值模型參數(shù)辨識[J]. 電工技術(shù)學(xué)報, 2020, 35(15): 3304-3313. Zhang Jian, He Yigang. Parameters identification of equivalent model of permanent magnet synchronous generator wind farm based on analysis of trajectory sensitivity[J]. Transactions of China Electrotechnical Society, 2020, 35(15): 3304-3313.

        [30] 劉征帆, 安軍, 蔣振國, 等. 基于軌跡靈敏度頻域特征提取的電力系統(tǒng)仿真誤差主導(dǎo)參數(shù)識別[J]. 電力自動化設(shè)備, 2021, 41(3): 144-150. Liu Zhengfan, An Jun, Jiang Zhenguo, et al. Dominant parameter identification of power system simulation error based on frequency domain characteristic extraction of trajectory sensitivity[J]. Electric Power Automation Equipment, 2021, 41(3): 144-150.

        [31] 鄒建林, 安軍, 穆鋼, 等. 基于軌跡靈敏度的電力系統(tǒng)暫態(tài)穩(wěn)定性定量評估[J]. 電網(wǎng)技術(shù), 2013, 38(3): 694-699. Zou Jianlin, An Jun, Mu Gang, et al. Quantitative assessment of the transient stability of power system based on trajectory sensitivity[J]. Power System Technology, 2013, 38(3): 694-699.

        [32] 王長江, 姜濤, 劉福鎖, 等. 基于軌跡靈敏度的暫態(tài)過電壓兩階段優(yōu)化控制[J]. 電工技術(shù)學(xué)報, 2021, 36(9): 1888-1913. Wang Changjiang, Jiang Tao, Liu Fusuo, et al. Two-stage optimization control of transient overvoltage based on trajectory sensitivity[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1888-1913.

        [33] 李生虎, 李卓鵬, 張浩, 等. 基于風(fēng)電并網(wǎng)電力系統(tǒng)拓展軌跡靈敏度的DFIG控制參數(shù)優(yōu)化[J]. 太陽能學(xué)報, 2021, 42(6): 369-376. Li Shenghu, Li Zhuopeng, Zhang Hao, et al. Control parameter optimization to DFIG-integrated power system based on extended trajectory sensitivity[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 369-376.

        [34] Karunanayake C, Ravishankar J, Dong Zhaoyang. Nonlinears SR damping controller for DFIG based wind generators interfaced to series compensated transmission systems[J]. IEEE Transactions on Power Systems, 2020, 35(2): 1156-1165.

        [35] Edrah M, Zhao Xiaowei, Hung W, et al. Effects of POD control on a DFIG wind turbine structural system[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 765-774.

        [36] 陳良雙, 吳思奇, 喻文倩, 等. 基于轉(zhuǎn)子側(cè)附加阻尼控制的雙饋風(fēng)機并網(wǎng)次/超同步振蕩抑制方法[J]. 電力系統(tǒng)保護與控制, 2021, 49(15): 47-58. Chen Liangshuang, Wu Siqi, Yu Wenqian, et al. A sub/super-synchronous oscillation suppression method for a DFIG-connected grid based on additional damping control on the roto rside converter[J]. Power System Protection and Control, 2021, 49(15): 47-58.

        [37] 戚軍, 吳仟, 陳康, 等. 考慮時變時滯影響的大型雙饋風(fēng)力發(fā)電系統(tǒng)附加阻尼控制[J]. 電網(wǎng)技術(shù), 2019, 43(12): 4440-4450. Qi Jun, Wu Qian, Chen Kang, et al. Additional damping control of largescale DFIG-based wind power generation system considering time-varying delays[J]. Power System Technology, 2019, 43(12): 4440-4450.

        [38] Gurung N, Bhattarai R, Kamalasadan S. Optimal oscillation damping controller design for large-scale wind integrated power grid[J]. IEEE Transactions on Industry Applications, 2020, 56(4): 4225-4235.

        [39] 姚駿, 孫鵬, 劉瑞闊, 等. 弱電網(wǎng)不對稱故障期間雙饋風(fēng)電系統(tǒng)動態(tài)穩(wěn)定性分析[J]. 中國電機工程學(xué)報, 2021, 41(21): 7225-7236.Yao Jun, Sun Peng, Liu Ruikuo, et al. Dynamic stability analysis of DFIG-based wind power system during asymmetric faults of weak grid[J]. Proceedings of the CSEE, 2021, 41(21): 7225-7236.

        [40] 章艷, 張萌, 高晗. 基于阻耗系數(shù)的雙饋風(fēng)機系統(tǒng)阻尼控制研究[J]. 電網(wǎng)技術(shù), 2021, 45(7): 2781-2790. Zhang Yan, Zhang Meng, Gao Han. Damping control for grid connected DFIG system based on dissipated energy coefficient[J]. Power System Technology, 2021, 45(7): 2781-2790.

        Power Angle Oscillation Control of Power Grid Based on Control Parameter Optimization of Doubly-Fed Wind Turbine Generator

        Li Shenghu Zhang Yahai Ye Jianqiao Li Yikai Tao Diwen

        (School of Electrical Engineering and Automation Hefei University of Technology Hefei 230009 China)

        With the increasing wind turbine generators integrated partially or completely through the converters, the damping capability of the power system is decreased, which will intensify the dynamic interaction among the doubly-fed induction generators (DFIGs) and the synchronous generators (SGs), and yield the power angle oscillation among the SGs. The angular oscillation is usually suppressed by the power system stabilizer (PSS) installed at the SGs. It may also be suppressed by the PSS at the DFIGs, i.e. DFIG-PSS, or by adjusting the control parameters of the DFIGs. The DFIG-PSS is often installed at the outer loop of the rotor-side converter (RSC). The control effect of the RSC may be weakened by the DFIG-PSS. Hence the control parameters of the DFIG-PSS and the RSC are to be optimized together. The parameter optimization based on the eigenvalue analysis is for small disturbances. It does not consider the system nonlinearity and large disturbance, hence is incompetent to suppress the oscillation which is usually quantified by a period of dynamic process.

        In this paper, a coordinated optimization model to the parameters of the DFIG-PSS and the RSC based on the trajectory sensitivity is newly proposed. The DFIG-PSS is designed to suppress the power angle oscillation by controlling the DFIGs to absorb or release the energy. The dynamic model of power system with the control strategy of the DFIG including the DFIG-PSS is derived. The intermediate variables are introduced to the differential equations to decouple the trajectory sensitivities. The Jacobian matrices of the state variables and the algebraic variables are distinguished to derive the analytical expression of the trajectory sensitivities, which is computationally efficient than deriving the trajectory sensitivities from the parameter perturbation method. Then the gradient information of the objective function with respect to the control parameters is obtained. Based on the location of the DFIG-PSS and the relation of the PI parameters, the control parameters to be optimized are decided. With the gradients, the interior-point method is applied to optimize the parameters of both the DFIG-PSS and the RSC.

        Based on above algorithm, the Matlab program for the dynamic control and the angular oscillation of the power system with the DFIGs is written by the authors. The simulation results on the 4-SG 2-area test system are given to verify the control effect. It is shown that the relation between the control parameters and the power angle oscillation is quantified by the gradient derived from the analytical expression of the trajectory sensitivity with desirable accuracy. After the optimization, the gain of the outer active power loop of the RSC increases, and the gain of the inner current loop decreases, which help to regulate the output of the DFIG and reduce the risk of the angular oscillation. It is also found that the parameter optimization to both the DFIG-PSS and the RSC has better effect on reducing the amplitude of the power angle difference and accelerating the convergence than optimizing the DFIG-PSS only.

        The proposed algorithm is beneficial to the wind turbine generators, e.g. the DFIGs, functioning similarly as the SGs and participating into the system stability control. With more and more SGs displaced by the wind turbine generators, the proposed algorithm may be applied to improve the angular and oscillational stability of the power systems.

        Power angle oscillation, parameter optimization, trajectory sensitivity, doubly-fed induction generator, power system stabilizer

        國家自然科學(xué)基金資助項目(51877061)。

        2021-10-21

        2022-01-21

        10.19595/j.cnki.1000-6753.tces.211662

        TM712; TM614

        李生虎 男,1974年生,教授,博士生導(dǎo)師,研究方向風(fēng)電并網(wǎng)電力系統(tǒng)分析與控制、電力系統(tǒng)可靠性與概率仿真、高壓直流和柔性交流輸電技術(shù)。E-mail:shenghuli@hfut.edu.cn(通信作者)

        張亞海 男,1994年生,碩士研究生,研究方向風(fēng)電并網(wǎng)電力系統(tǒng)分析與控制。E-mail:2019110363@mail.hfut.edu.cn

        (編輯 赫蕾)

        猜你喜歡
        功角控制參數(shù)阻尼
        虛擬調(diào)速器對VSG暫態(tài)功角穩(wěn)定影響機理分析
        高超聲速飛行器滑??刂茀?shù)整定方法設(shè)計*
        飛控與探測(2022年6期)2022-03-20 02:16:14
        N維不可壓無阻尼Oldroyd-B模型的最優(yōu)衰減
        關(guān)于具有阻尼項的擴散方程
        具有非線性阻尼的Navier-Stokes-Voigt方程的拉回吸引子
        Birkhoff系統(tǒng)穩(wěn)定性的動力學(xué)控制1)
        基于改進 shapelet 挖掘的風(fēng)電并網(wǎng)系統(tǒng)暫態(tài)功角穩(wěn)定評估
        能源工程(2019年6期)2019-12-02 01:58:20
        基于功角測量和等面積法則的發(fā)電機暫態(tài)穩(wěn)定在線判別研究
        電子測試(2017年12期)2017-12-18 06:35:33
        基于PI與準PR調(diào)節(jié)的并網(wǎng)逆變器控制參數(shù)設(shè)計
        黑龍江電力(2017年1期)2017-05-17 04:25:08
        具阻尼項的Boussinesq型方程的長時間行為
        亚洲一区av无码少妇电影 | 色婷婷久久综合中文蜜桃| 亚洲日韩精品一区二区三区无码| 无遮挡又黄又刺激又爽的视频| 国产精品丝袜在线不卡| 国产亚洲精品视频在线| 国产精品自线一区二区三区| 日韩人妻无码精品久久| 国产亚洲欧美在线| av成人资源在线播放| 国产99一区二区三区四区| 曰韩无码二三区中文字幕| 亚洲产在线精品亚洲第一站一| 蜜桃在线观看视频在线观看| 人妻少妇中文字幕在线| 国产精品沙发午睡系列990531| 久久精品国产6699国产精| 国成成人av一区二区三区| 日韩精品无码一区二区三区四区| 欧美巨大巨粗黑人性aaaaaa| 女人的天堂av免费看| 国产专区亚洲专区久久| 久久亚洲欧美国产精品| 国产精品视频一区国模私拍| 日本午夜理伦三级好看| 亚洲av不卡免费在线| 亚洲色欲色欲综合网站| 成人国产永久福利看片| 国产精品髙潮呻吟久久av| 久久婷婷五月国产色综合| 久久精品国产9久久综合| 成年女人18毛片毛片免费| 国产一区二区三区久久悠悠色av| 人妻少妇精品视频无码专区| 国产国语对白一区二区三区| 国产色视频在线观看了| 国产国产裸模裸模私拍视频| 国产亚洲欧美成人久久片| 一区二区三区观看在线视频| 国产无遮挡aaa片爽爽| 亚洲精品国偷拍自产在线观看蜜臀 |