姚婷婷, 李濤, 呂紅艷, 楊旸, 姜楓, 衣雪潔△
運(yùn)動通過上調(diào)肥胖小鼠肝臟miR-363-3p影響AKT/mTOR通路而減輕肝臟胰島素抵抗*
姚婷婷1,2, 李濤2, 呂紅艷1, 楊旸3, 姜楓2, 衣雪潔2△
(1遼寧師范大學(xué)體育學(xué)院,遼寧 大連 116029;2沈陽體育學(xué)院運(yùn)動人體科學(xué)學(xué)院/實驗室管理中心,遼寧 沈陽 110102;3上海體育學(xué)院運(yùn)動科學(xué)學(xué)院,上海 200434)
探討微小RNA-363-3p (miR-363-3p)在小鼠長期肥胖/運(yùn)動干預(yù)下發(fā)生/減輕胰島素抵抗(IR)中的作用及可能機(jī)制。離體實驗:用棕櫚酸、miR-363-3p模擬物和miR-363-3p抑制劑處理小鼠AML12肝實質(zhì)細(xì)胞,并收集處理后的培養(yǎng)液和細(xì)胞。在體實驗:將4周齡雄性C57BL/6小鼠隨機(jī)分為正常對照(NC)組(=6)和高脂飲食(HFD)組(=12)。HFD喂養(yǎng)10周后,將HFD小鼠隨機(jī)分為HFD組(=6)和HFD+運(yùn)動(EXE)組(=6)。HFD+EXE組小鼠進(jìn)行8周跑臺運(yùn)動,每周6 d, 90 min/d, 24 m/min。取材前檢測空腹血糖,取材后檢測小鼠體重和腹腔脂肪含量,并收集小鼠血漿和肝組織。采用real-time PCR檢測肝組織和細(xì)胞miR-363-3p表達(dá);Western blot檢測肝組織和細(xì)胞中蛋白激酶B(PKB/AKT)、p-AKT、哺乳動物雷帕霉素靶蛋白(mTOR)和p-mTOR的蛋白水平;ELISA法檢測空腹血清胰島素含量;用葡萄糖氧化酶法檢測培養(yǎng)液葡萄糖含量。在AML12細(xì)胞中,過表達(dá)miR-363-3p可顯著降低棕櫚酸誘導(dǎo)的培養(yǎng)液葡萄糖含量增加(<0.05)。過表達(dá)miR-363-3p可以使AKT的磷酸化水平顯著升高,mTOR的磷酸化水平顯著降低,而敲減--則結(jié)果相反(<0.05);18周的HFD喂養(yǎng)使小鼠出現(xiàn)顯著的肥胖和IR癥狀,同時肝臟miR-363-3p表達(dá)水平顯著下降,AKT的磷酸化水平顯著下降,mTOR的磷酸化水平顯著升高(<0.01);8周的跑臺運(yùn)動可減輕HFD引起的小鼠肥胖和IR,肝臟miR-363-3p表達(dá)顯著回升(<0.01),并逆轉(zhuǎn)了AKT/mTOR通路障礙(<0.01)。小鼠肝臟miR-363-3p表達(dá)與空腹血糖、血清胰島素和IR指數(shù)呈顯著負(fù)相關(guān)(分別為-0.610、-0.830和-0.855,均<0.01),與AKT磷酸化水平呈顯著正相關(guān)(=0.751,<0.01),與mTOR磷酸化水平呈顯著負(fù)相關(guān)(=-0.865,<0.01)。miR-363-3p可調(diào)控小鼠肝臟IR;肝臟miR-363-3p/AKT/mTOR途徑可能在肥胖小鼠IR的發(fā)生發(fā)展以及運(yùn)動減輕IR中起到調(diào)控作用。
運(yùn)動;微小RNA-363-3p;肥胖;胰島素抵抗;AKT/mTOR信號通路
肥胖已成為重大的公共健康問題[1]。肥胖可以通過胰島素抵抗(insulin resistance, IR)導(dǎo)致2型糖尿病、心血管疾病和非酒精性脂肪肝等一系列代謝綜合征[2]。IR是這些代謝綜合征發(fā)展的關(guān)鍵因素[3]。在IR狀態(tài)下,胰島素會促進(jìn)游離脂肪酸向肝臟轉(zhuǎn)運(yùn),并減少游離脂肪酸在肝細(xì)胞線粒體內(nèi)的β-氧化,增加甘油三酯的合成。肝臟IR可以導(dǎo)致其脂質(zhì)堆積,誘發(fā)炎癥反應(yīng)和氧化應(yīng)激,進(jìn)而引起單純性脂肪肝、脂肪肝炎、肝硬化甚至是肝癌的發(fā)生[4]。因此,了解肥胖誘導(dǎo)肝臟IR發(fā)生發(fā)展的機(jī)制對于防治肝臟代謝性疾病至關(guān)重要。
微小RNA(microRNA, miRNA, miR)是一組在20世紀(jì)90年代初被發(fā)現(xiàn)的成熟非編碼RNA分子家族(包含21~25個核苷酸)。可以通過靶向切割mRNA或與之結(jié)合的方式抑制靶基因的表達(dá),進(jìn)而引起轉(zhuǎn)錄后基因沉默,最終抑制蛋白合成[5]。miRNA作為基因調(diào)節(jié)因子,早期的研究主要集中在miRNA如何通過癌基因或抑癌基因影響腫瘤的進(jìn)程。但越來越多的研究顯示miRNA可以影響多種細(xì)胞途徑和功能[6-8]。作為miR-92a家族(即miR-25、miR-92a-1、miR-92a-2和miR-363-3p)的一員,miR-363-3p在肝臟中高表達(dá)并參與調(diào)控蛋白激酶B(protein kinase B, PKB;又稱AKT)信號通路[9-10]。在腫瘤相關(guān)研究中,miR-363-3p被多次報道通過調(diào)節(jié)AKT/哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)通路來干預(yù)細(xì)胞增殖、凋亡、遷移、囊泡轉(zhuǎn)運(yùn)和細(xì)胞惡性增殖等許多生理、病理過程[10-12]。AKT / mTOR通路不僅在腫瘤的發(fā)生發(fā)展中扮演重要角色,在代謝綜合征和IR中同樣發(fā)揮著至關(guān)重要的作用[13]。PI3K/AKT/mTOR通路介導(dǎo)的胰島素信號轉(zhuǎn)導(dǎo)被認(rèn)為是IR的關(guān)鍵途徑[14-15]。長期的高脂飲食(high-fat diet, HFD)會降低小鼠肝臟AKT蛋白磷酸化水平,抑制AKT/mTOR通路,從而使胰島素敏感性降低[16-17]。研究顯示,HFD小鼠肝臟miR-363-3p表達(dá)下降[9],并且伴隨著肝臟IR。因此,miR-363-3p極可能在肥胖導(dǎo)致IR的過程中發(fā)揮重要的作用。
運(yùn)動(exercise, EXE)被廣泛用于預(yù)防和治療肥胖癥、2型糖尿病、非酒精性脂肪性肝病和IR,因為它不僅能夠減少各器官的脂質(zhì)沉積,減輕炎癥反應(yīng),提高胰島素敏感性[18-20],并且沒有藥物治療導(dǎo)致的副作用。因此在肥胖引起的各種代謝性疾病的治療過程中,運(yùn)動療法往往作為一線治療方案。然而,相關(guān)的潛在機(jī)制及其與疾病進(jìn)展的關(guān)系尚未被完全了解,且尚無運(yùn)動與miR-363-3p關(guān)系的報道。因此,本研究通過離體細(xì)胞實驗和小鼠長期HFD及運(yùn)動干預(yù),評估了小鼠肝臟miR-363-3p在IR發(fā)生發(fā)展和運(yùn)動干預(yù)下的變化及其調(diào)控IR的可能機(jī)制。
4周齡SPF級雄性C57BL/6小鼠24只[起始體重為(20.14±0.57) g],由北京維通利華實驗動物科技有限公司提供,許可證號為SCXK(京)2016-0008。小鼠肝AML12細(xì)胞系購自中國科學(xué)院細(xì)胞庫。
DMEM/F12培養(yǎng)液(EallBio,03.2001C);Opti-MEM培養(yǎng)液(Gibco,31985070);胎牛血清(Scitecher, S-FBS-500);ITS液體培養(yǎng)液補(bǔ)充劑(I3146)和棕櫚酸(palmitic acid, PA; P0500)均購自Sigma;地塞米松(Solarbio);Lipofectamine 2000 (Invitrogen);mmu-miR-363-3p mimic、mmu-miR-363-3p inhibitor及其陰性對照均由銳博生物技術(shù)有限公司(中國廣州)合成;戊巴比妥鈉(國藥集團(tuán)化學(xué)試劑有限公司);葡萄糖氧化酶法測定試劑盒(Applygen,E1010-1);BCA蛋白定量試劑盒(北京鼎國昌盛生物技術(shù)有限責(zé)任公司);血糖和血清胰島素酶聯(lián)免疫試劑盒(上海酶聯(lián)生物技術(shù)有限公司);miRcute miRNA提取分離試劑盒(DP501)、miRcute增強(qiáng)型miRNAcDNA第一鏈合成試劑盒(KR221)、miRcute增強(qiáng)型miRNA熒光定量檢測試劑盒(SYBR Green,F(xiàn)P411)均購自天根生化科技有限公司;mmu-miR-363-3p和U6的加尾法引物均由天根生化科技有限公司設(shè)計并合成;兔抗AKT單克隆抗體(4691)、兔抗p-AKT(Ser473)單克隆抗體(4060)、兔抗mTOR單克隆抗體(2983)、兔抗p-mTOR(Ser2448)單克隆抗體(5536)和Anti-rabbit IgG, HRP-linked Antibody(7074)均購自Cell Signaling Technology。酶標(biāo)儀(Thermo Fisher Scientific);96孔熱循環(huán)儀和實時擴(kuò)增PCR儀(Bio-Rad);化學(xué)發(fā)光凝膠成像系統(tǒng)(Tanon-5200Multi)。
3.1實驗動物和干預(yù)動物飼養(yǎng)環(huán)境為:室溫(22±5) ℃,相對濕度(50±10)%,明暗周期12 h/12 h,小鼠自由攝取飲食飲水。雄性C57BL/6小鼠在標(biāo)準(zhǔn)的實驗動物房適應(yīng)性飼養(yǎng)1周后,6只小鼠進(jìn)食標(biāo)準(zhǔn)飼料,12只小鼠進(jìn)食HFD。飼料由沈陽前民飼料有限公司提供。經(jīng)過10周喂養(yǎng)后,HFD組小鼠的體重均超過了標(biāo)準(zhǔn)飼料組小鼠體重均值的120%,肥胖小鼠建模成功[21]。在肥胖造模成功后,HFD組小鼠再被隨機(jī)分成2組:HFD組(=6)和HFD+EXE組(=6)組,兩組小鼠的體重沒有顯著差異(>0.05)。
3.1.1運(yùn)動干預(yù)方案HFD+EXE組進(jìn)行為期8周的跑臺運(yùn)動,運(yùn)動方案參照文獻(xiàn)[22],每周運(yùn)動6 d,休息1 d,坡度0%,起始負(fù)荷為跑速10 m/min持續(xù)時間20 min,此后逐漸增加跑速和持續(xù)時間,3周末負(fù)荷達(dá)到24 m/min,90 min/d,每周訓(xùn)練6 d,維持該負(fù)荷再連續(xù)訓(xùn)練5周。
3.1.2樣品采集為觀察長期運(yùn)動的適應(yīng)性反應(yīng),HFD+EXE組取材的時間選在末次運(yùn)動后36~40 h,以排除末次運(yùn)動的應(yīng)激反應(yīng)對各項指標(biāo)的影響。為排除飲食對各指標(biāo)的影響,所有小鼠取材前禁食12 h。小鼠稱重后,使用腹腔注射戊巴比妥鈉(50 mg/kg)對其麻醉,小鼠眼眶靜脈叢取血,血液離心20 min(4?℃、900×)后將血清-80 ℃超低溫冰箱進(jìn)行保存,待測血清指標(biāo)。所有的小鼠采血后分離肝組織,并迅速進(jìn)行液氮冷凍,然后轉(zhuǎn)入-80 ℃超低溫冰箱進(jìn)行保存,以用于后續(xù)實驗。分離小鼠腹腔脂肪組織(包括:睪丸周圍、腎臟周圍以及腸系膜周圍脂肪組織,用電子天平稱量小鼠腹腔內(nèi)脂肪含量)。
3.2細(xì)胞培養(yǎng)和處理AML12細(xì)胞在37 ℃和5% CO2下用DMEM/F12培養(yǎng)液添加10%胎牛血清、1% ITS液體培養(yǎng)液補(bǔ)充劑和40 μg/L地塞米松培養(yǎng)。
3.2.1IR細(xì)胞模型構(gòu)建將0.25 mmol/L PA加入到培養(yǎng)液中[23],然后使用葡萄糖氧化酶法測定試劑盒在0、8、16和24 h測定培養(yǎng)液中的濃度,以評估IR模型的建立。
3.2.2轉(zhuǎn)染將AML12細(xì)胞接種到6孔板中,當(dāng)細(xì)胞生長密度達(dá)30%~50%時,饑餓處理12 h,之后將50 nmol/L miR-363-3p mimi和100 nmol/L miR-363-3p inhibitor按照說明書的方案使用Lipofectamine 2000進(jìn)行6 h的瞬時轉(zhuǎn)染。然后將這些細(xì)胞在opti-MEM培養(yǎng)液中孵育18 h后,使用real-time PCR分析miR-363-3p的表達(dá)水平。再孵育24 h后分析AKT和mTOR磷酸化蛋白水平。
3.3血糖和血清胰島素的檢測遵照試劑盒說明書,采用酶聯(lián)免疫法在酶標(biāo)儀上進(jìn)行測定。
3.4miR-363-3p表達(dá)的檢測按照試劑說明書,利用miRcute miRNA提取分離試劑盒提取小鼠肝組織/細(xì)胞的miRNA;使用miRcute增強(qiáng)型miRNA cDNA第一鏈合成試劑盒在96孔熱循環(huán)儀上將其逆轉(zhuǎn)錄為cDNA;利用miRcute增強(qiáng)型miRNA熒光定量檢測試劑盒,按照試劑盒說明書在實時擴(kuò)增PCR儀上測定目的miRNA含量。以U6作為內(nèi)參照,采用2-ΔΔCt法計算相對表達(dá)量。
3.5Western blot分析將肝組織/細(xì)胞,加入RIPA裂解液、蛋白酶抑制劑PMSF及磷酸酶抑制劑,在冰浴環(huán)境下充分裂解,對裂解液進(jìn)行4 ℃離心,取上清液,用BCA蛋白定量試劑盒在酶標(biāo)儀上進(jìn)行蛋白定量。將各樣品稀釋為相同濃度,加入溴酚藍(lán)后煮5 min制備樣品。分離目的蛋白,每孔加入10~50 μg的樣品,將分離得到的目的蛋白轉(zhuǎn)移到硝酸纖維素(NC)膜上,采用5% BSA封閉1 h,在將含有目的蛋白的NC膜與適當(dāng)濃度的Ⅰ抗在4℃冰箱中孵育過夜(12 h),在將膜與1∶15 000倍稀釋后的Anti-rabbit IgG, HRP-linked Antibody室溫孵育1 h,最后將NC膜條帶放入化學(xué)發(fā)光凝膠成像系統(tǒng),并利用儀器上的圖片處理軟件對蛋白條帶進(jìn)行定量分析。
使用SPSS 22.0統(tǒng)計軟件進(jìn)行數(shù)據(jù)分析,用均數(shù)±標(biāo)準(zhǔn)誤(mean±SEM)來表示實驗結(jié)果。兩組之間的差異顯著性采用獨立樣本檢驗比較;使用Pearson相關(guān)分析檢驗指標(biāo)之間是否存在相關(guān)性。差異檢驗的顯著性水平定為=0.05。
用棕櫚酸處理AML12細(xì)胞以誘導(dǎo)IR,并在0、8、12和24 h測量培養(yǎng)液中的葡萄糖濃度。CON組和PA組在0和8 h的葡萄糖濃度無顯著差異(>0.05),24 h時,PA組葡萄糖濃度顯著高于CON組(<0.05,圖1A)。用miR-363-3p模擬物或抑制劑轉(zhuǎn)染進(jìn)行AML12細(xì)胞--的過表達(dá)和敲減,并用棕櫚酸刺激24 h后,miR-363-3p過表達(dá)的細(xì)胞培養(yǎng)液葡萄糖含量顯著降低(<0.05,圖1D),--敲減的細(xì)胞培養(yǎng)液葡萄糖剩余含量沒有顯著差異(>0.05,圖1E)。
Figure 1. Effect of miR-363-3p on insulin resistance in AML12 cells. A: glucose concentration in AML12 cell culture medium after 0.25 mmol/L PA treatment for different time (n=5); B and C: the relative miR-363-3p level after treatment with mimic or inhibitor (n=3); D and E: the glucose concentration in the treated medium after transfection with miR-363-3p mimic or inhibitor followed by 0.25 mmol/L PA (n=5). Mean±SEM. #P<0.05 vs CON group; **P<0.01 vs NC group; △P<0.05 vs PA+mimic-NC group.
與對照組相比,miR-363-3p過表達(dá)的細(xì)胞AKT磷酸化水平顯著上升(<0.05),mTOR磷酸化水平顯著下降(<0.05),見圖2A;--敲減的細(xì)胞AKT磷酸化水平顯著下降(<0.05),mTOR磷酸化水平顯著上升(<0.05),見圖2B。
Figure 2. Effect of miR-363-3p on AKT/mTOR pathway in AML12 cells. A: relative protein levels of p-AKT and p-mTOR in AML12 cells transfected with miR-363-3p mimic; B: relative protein levels of p-AKT and p-mTOR in AML12 cells transfected with miR-363-3p inhibitor. Mean±SEM. n=3. *P<0.05 vs mimic-NC group; #P<0.05 vs inhibitor-NC group.
18周的高脂飲食使小鼠體重、腹腔脂肪和體脂比顯著升高(<0.01,圖3A~3C),空腹血糖、空腹胰島素含量和IR指數(shù)水平顯著升高(<0.05,<0.01,圖3D~3E)。HFD使小鼠產(chǎn)生肥胖和IR;8周運(yùn)動干預(yù)后,體重、腹腔脂肪和體脂比均顯著下降(<0.01,圖3A~3C),空腹血糖、空腹胰島素含量和IR指數(shù)均顯著下降(<0.05,<0.01,圖3D~3F)
Figure 3. Changes of obesity- and insulin resistance-related indexes in mice of each group. A: body weight; B: abdominal fat weight; C: percentage of body fat; D: fasting blood glucose; E: fasting serum insulin; F: insulin resistance index. Mean±SEM. n=6. *P<0.05, **P<0.01 vs NC group; #P<0.05, ##P<0.01 vs HFD group.
與對照組相比,肥胖組小鼠肝臟miR-363-3p水平顯著下降(<0.01,圖4B),肝臟AKT蛋白磷酸化水平顯著下降(<0.01,圖4C),mTOR蛋白磷酸化水平顯著上升(<0.01,圖4D);8周運(yùn)動干預(yù)后,肝臟miR-363-3p水平顯著升高(<0.01,圖4B),肝臟AKT蛋白磷酸化水平顯著上升(<0.01,圖4C),mTOR蛋白磷酸化水平顯著下降(<0.01,圖4D)。
Figure 4. Relative expression level of miR-363-3p (A) and relative protein phosphorylation levels of AKT and mTOR (B) in the liver of mice in each group. Mean±SEM. n=6. **P<0.01 vs NC group; ##P<0.01 vs HFD group.
相關(guān)性分析結(jié)果顯示(圖5),肝臟miR-363-3p表達(dá)與空腹血糖、血清胰島素和IR指數(shù)呈顯著負(fù)相關(guān)(分別為-0.610、-0.830和-0.855,均<0.01);肝臟miR-363-3p表達(dá)與AKT磷酸化水平呈顯著正相關(guān)(=0.751,<0.01),與mTOR磷酸化水平呈顯著負(fù)相關(guān)(=-0.865,<0.01)。
Figure 5. Correlations between liver miR-363-3p and insulin resistance-related indicators. n=18.
近年來,越來越多的報道顯示,miRNAs在正常和病理條件下均發(fā)揮復(fù)雜的生物學(xué)作用。其中miR-363-3p通過調(diào)節(jié)AKT在癌癥的發(fā)生發(fā)展中發(fā)揮作用。雖然AKT也是經(jīng)典的胰島素敏感調(diào)節(jié)因子,但miR-363-3p在肥胖和IR領(lǐng)域鮮見報道。本研究表明miR-363-3p可以調(diào)節(jié)AKT/ mTOR通路及IR。并且運(yùn)動促進(jìn)了肝臟miR-363-3p表達(dá),改善了AKT/mTOR通路障礙及IR。
肥胖通常伴隨著血脂異常和IR。AKT/ mTOR通路是調(diào)節(jié)肝臟IR的關(guān)鍵途徑[24]。AKT磷酸化受損可以反映葡萄糖代謝功能障礙和IR的嚴(yán)重程度[24-25]。研究顯示,15周的HFD會導(dǎo)致小鼠AKT/mTOR通路紊亂,誘發(fā)肝臟IR以及肝脂肪變性[26]。本研究也證實,18周的高脂飲食使小鼠出現(xiàn)肥胖、IR和肝臟AKT的蛋白磷酸化水平下降、mTOR的蛋白磷酸化水平上升。長期的HFD損傷了肝AKT/ mTOR通路,并導(dǎo)致了IR。
miR-363-3p是IR的潛在靶點。miR-363-3p在PA誘導(dǎo)的HepG2(人肝癌細(xì)胞)IR模型中表達(dá)下降,在肥胖小鼠肝臟的表達(dá)也顯著降低,并且伴隨著IR[9]。本實驗的結(jié)果也顯示,miR-363-3p在PA誘導(dǎo)的AML12(小鼠肝上皮細(xì)胞)IR模型中表達(dá)下降。并且miR-363-3p模擬物可以改善PA誘導(dǎo)的肝細(xì)胞IR。給予C57BL/6小鼠18周高脂飲食后,肝臟miR-363-3p表達(dá)下降,并且肝臟miR-363-3p與IR相關(guān)指標(biāo)呈顯著負(fù)相關(guān)。因此,肝臟肥胖狀態(tài)下miR-363-3p被抑制可能小鼠肝臟IR的原因之一。
雖然眾多研究顯示,miR-363-3p可以調(diào)控AKT磷酸化[10-12],但關(guān)于miR-363-3p對AKT磷酸化調(diào)控的方向目前存在爭議。在PBMC(外周血單個核細(xì)胞)、C2C12(小鼠成肌細(xì)胞)細(xì)胞中,miR-363-3p通過靶向PTEN正調(diào)控調(diào)節(jié)p-AKT和p-mTOR的水平[27]。但在TPC-1(人甲狀腺癌細(xì)胞)和WERI-Rb-1(視網(wǎng)膜神經(jīng)細(xì)胞)中,過表達(dá)的miR-363-3p通過靶向PI3Kca抑制AKT Ser473位點的磷酸化[11-12]。在人肝癌PLC8024和Huh7細(xì)胞系中,miR-363-3p也可以通過SPAG5抑制AKT Ser473位點的磷酸化[10]。為了驗證miR-363-3p對小鼠肝臟AKT/ mTOR通路的影響,本實驗對AML12施予了miR-363-3p的模擬物或抑制劑處理,并檢測AKT和mTOR的磷酸化水平。結(jié)果顯示,miR-363-3p可以促進(jìn)AML12細(xì)胞AKT磷酸化,抑制負(fù)向調(diào)控的下游因子mTOR的磷酸化。并且動物實驗也顯示,小鼠肝臟miR-363-3p的表達(dá)與AKT的磷酸化水平呈正相關(guān),與mTOR的磷酸化水平呈負(fù)相關(guān)。由此,推測miR-363-3p可以抑制AKT Ser473位點的磷酸化,且miR-363-3p可能通過調(diào)節(jié)AKT/mTOR通路參與了小鼠肥胖狀態(tài)下的肝臟IR。
越來越多的證據(jù)表明,運(yùn)動是治療肥胖引發(fā)的IR和相關(guān)代謝疾病的有效方法[28-29]。通過對肥胖小鼠進(jìn)行8周跑臺運(yùn)動干預(yù),本實驗的結(jié)果也證實了8周的跑臺運(yùn)動可以改善肥胖和胰島素敏感。研究顯示,AKT/mTOR通路是運(yùn)動改善肝臟IR的重要靶點[30],本實驗的結(jié)果也顯示八周跑臺運(yùn)動后,小鼠肝臟AKT磷酸化水平顯著升高,mTOR的磷酸化水平顯著下降。目前,運(yùn)動通過調(diào)節(jié)AKT-mTOR通路改善肝臟IR的具體機(jī)制尚不清楚。且運(yùn)動對miR-363-3p影響未見報道。本實驗的結(jié)果顯示,八周跑臺運(yùn)動顯著提高了肥胖小鼠肝臟miR-363-3p的表達(dá)。提示運(yùn)動可能通過促進(jìn)miR-363-3p的表達(dá)來緩解AKT/mTOR通路紊亂,從而改善肝臟IR。
雖然本研究的結(jié)果表明肝臟miR-363-3p可能參與了肥胖和運(yùn)動對小鼠胰島素途徑的影響,將miR-363-3p與IR聯(lián)系了起來,為未來的研究提供了參考資料。但miR-363-3p靶基因尚未確定。進(jìn)一步研究miR-363-3p影響IR的靶基因及其可能機(jī)制,可以進(jìn)一步闡明microRNA與IR之間的關(guān)系。
[1] NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2 416 population-based measurement studies in 128.9 million children, adolescents, and adults[J]. Lancet, 2017, 390(10113):2627-2642.
[2] Guh DP, Zhang W, Bansback N, et al. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis[J]. BMC Public Health, 2009, 9(1):88.
[3] Reaven G. Why a cluster is truly a cluster: insulin resistance and cardiovascular disease[J]. Clin Chem, 2008, 54(5):785-787.
[4] Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance[J]. Physiol Rev, 2018, 98(4):2133-2223.
[5] Perron MP, Boissonneault V, Gobeil L A, et al. Regulatory RNAs: future perspectives in diagnosis, prognosis, and individualized therapy[J]. Methods Mol Biol, 2007:311-326.
[6] De Sousa RAL, Improta-Caria AC. Regulation of micro-RNAs in Alzheimer′s disease, type 2 diabetes, and aerobic exercise training[J]. Metab Brain Dis, 2022, 37(3):559-580.
[7]李響, 于閃閃, 胡艷玲, 等. miR-23b通過靶基因調(diào)控腎性高血壓[J]. 中國病理生理雜志, 2021, 37(4):626-633.
Li X, Yu SS, Hu YL, et al. miR-23b inhibits renal hypertension by targetinggene[J]. Chin J Pathophysiol, 2021, 37(4):626-633.
[8]易芷瑤, 趙安職, 張銘, 等. 核內(nèi)miR-199b-5p通過上調(diào)CDK9表達(dá)促進(jìn)心肌細(xì)胞肥大[J]. 中國病理生理雜志, 2021, 37(2):193-201.
Yi ZY, Zhao AZ, Zhang M, et al. Nuclear miR-199b-5p promotes cardiomyocyte hypertrophy by up-regulating CDK9 expression[J]. Chin J Pathophysiol, 2021, 37(2):193-201.
[9] Shu L, Zhao H, Huang W, et al. Resveratrol upregulates mmu-miR-363-3p via the PI3K-Akt pathway to improve insulin resistance induced by a high-fat diet in mice[J]. Diabetes Metab Syndr Obes, 2020, 13:391-403.
[10] Yang YF, Zhang MF, Tian QH,et al. SPAG5 interacts with CEP55 and exerts oncogenic activities via PI3K/AKT pathway in hepatocellular carcinoma[J]. Mol Cancer, 2018, 17(1):117.
[11] Ma X, Jin L, Lei X, et al. MicroRNA?363?3p inhibits cell proliferation and induces apoptosis in retinoblastoma cells via the Akt/mTOR signaling pathway by targeting PIK3CA[J]. Oncol Rep, 2020, 43(5):1365-1374.
[12] Liu J, Li Q, Li R, et al. MicroRNA-363-3p inhibits pa-pillary thyroid carcinoma progression by targeting PIK3CA[J]. Am J Cancer Res, 2017, 7(1):148-158.
[13] Ong PS, Wang LZ, Dai X, et al. Judicious toggling of mTOR activity to combat insulin resistance and cancer: current evidence and perspectives[J]. Front Pharmacol, 2016, 7:393.
[14] Lu P, Chen X, Zhang Z, et al. Insulin upregulates betatrophin expression via PI3K/Akt pathway[J]. Sci Rep, 2017, 7(1):5594.
[15] Lee AY, Christensen SM, Duong N, et al.Sirt3 pharmacologically promotes insulin sensitivity through PI3/AKT/mTOR and their downstream pathway in adipocytes[J]. Int J Mol Sci, 2022, 23(7):3740.
[16] Leontieva OV, Paszkiewicz GM, Blagosklonny MV. Weekly administration of rapamycin improves survival and biomarkers in obese male mice on high-fat diet[J]. Aging Cell, 2014, 13(4):616-622.
[17] 周曉勐, 傅力. mTOR復(fù)合物在有氧運(yùn)動改善胰島素抵抗過程中的作用研究[J]. 中國運(yùn)動醫(yī)學(xué)雜志, 2015, 34(11):1064-1069, 1057.
Zhou XM, Fu L. The role of mTOR complex in attenuating the development of insulin resistance of mice during aerobic exercise[J]. Chin J Sports Med, 2015, 34(11):1064-1069, 1057.
[18] Krause M, Rodrigues-Krause J, O'hagan C, et al. The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production[J]. Eur J Appl Physiol, 2014, 114(2):251-260.
[19] Zhang Y, Ye T, Zhou P, et al. Exercise ameliorates insulin resistance and improves ASK1-mediated insulin sig-nalling in obese rats[J]. J Cell Mol Med, 2021, 25(23):10930-10938
[20] Nikroo H, Hosseini SRA, Fathi M,et al. The effect of aerobic, resistance, and combined training on PPAR-α, SIRT1 gene expression, and insulin resistance in high-fat diet-induced NAFLD male rats[J]. Physiol Behav, 2020, 227:113149.
[21] Chandler PC, Viana JB, Oswald KD,et al. Feeding response to melanocortin agonist predicts preference for and obesity from a high-fat diet[J]. Physiol Behav, 2005, 85(2):221-230.
[22] Chen D, Cao S, Chang B, et al. Increasing hypothalamic nucleobindin 2 levels and decreasing hypothalamic infla-mmation in obese male mice via diet and exercise alleviate obesity-associated hypogonadism[J]. Neuropeptides, 2019, 74:34-43.
[23] Zhang ZM, Liu ZH, Nie Q, et al. Metformin improves high-fat diet-induced insulin resistance in mice by downregulating the expression of long noncoding RNA NONMMUT031874.2[J]. Exp Ther Med, 2022, 23(5):332.
[24] Wang Y G, Shi M, Wang T, et al. Signal transduction mechanism of TRB3 in rats with non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2009, 15(19):2329-2335.
[25] Piao L, Choi J, Kwon G, et al. Endogenous catalase delays high-fat diet-induced liver injury in mice[J]. Korean J Physiol Pharmacol, 2017, 21(3):317-325.
[26] Lee SY, Chung KS, Son SR, et al. A botanical mixture consisting of inula japonica and potentilla chinensis relieves obesity via the AMPK signaling pathway in 3T3-L1 adipocytes and HFD-fed obese mice[J]. Nutrients, 2022, 14(18):3685.
[27] Li M, Luo R, Yang W, et al. miR-363-3p is activated by MYB and regulates osteoporosis pathogenesis via PTEN/PI3K/AKT signaling pathway[J]. In Vitro Cell Dev Biol Anim, 2019, 55(5):376-386.
[28] Zhang Y, Wan J, Xu Z, et al. Exercise ameliorates insulin resistance via regulating TGFβ-activated kinase 1 (TAK1)-mediated insulin signaling in liver of high-fat diet-induced obese rats[J]. J Cell Physiol, 2019, 234(5):7467-7474.
[29] Zhang Y, Wan J, Liu S,et al. Exercise induced improvements in insulin sensitivity are concurrent with reduced NFE2/miR-432-5p and increased FAM3A[J]. Life Sci, 2018, 207:23-29.
[30] Wu C, Jiang F, Wei K, et al. Exercise activates the PI3K-AKT signal pathway by decreasing the expression of 5α-reductase type 1 in PCOS rats[J]. Sci Rep, 2018, 8(1):7982.
Exercise attenuates hepatic insulin resistance in obese mice by miR-363-3p/AKT/mTOR pathway
YAO Tingting1,2, LI Tao2, Lü Hongyan1, YANG Yang3, JIANG Feng2, YI Xuejie2△
(1,,116029,;2,,110102,;3,,200434,)
To investigate the role and possible mechanisms of microRNA (miR)-363-3p in the development or improvement of insulin resistance (IR) in mice after long-term obesity and exercise interventions.Mouse liver AML12 cells were treated with palmitic acid, miR-363-3p mimic and miR-363-3p inhibitor, and then the culture medium and cells were collected. Four-week-old male C57BL/6 mice were randomly divided into normal control (NC) group (=6) and high-fat diet (HFD) group (=12). After fed with HFD for 10 weeks, the mice were randomly divided into HFD group (=6) and HFD+exercise (EXE) group (=6). The mice in HFD+EXE group were subjected to 8 weeks of treadmill exercise at 6 d per week, 90 min/d, and 24 m/min. Fasting blood glucose was measured before partial sampling. After sample collection, the body weight and abdominal fat weight of the mice were measured, and plasma and liver tissues were collected. Real-time PCR was used to detect miR-363-3p expression in liver tissues and cells. Western blot was used to detect the protein levels of protein kinase B (PKB, also known as AKT), p-AKT, mammalian target of rapamycin (mTOR) and p-mTOR in liver tissues and cells. ELISA was used to detect fasting serum insulin content. Finally, the glucose oxidase method was used to detect the amount of glucose in the culture medium.Overexpression of miR-363-3p in AML12 cells significantly reduced palmitic acid-induced glucose content in the AML12 cell culture medium (<0.05). Overexpression of miR-363-3p increased phosphorylation of AKT, but decreased mTOR protein phosphorylation. However, this effect was reversed after knockdown of--(<0.05). Eighteen weeks of HFD feeding contributed to body weight gain and IR. At the same time, relative liver miR-363-3p level was significantly decreased (<0.01), p-AKT level was decreased (<0.01), and p-mTOR level was increased (<0.01). Eight weeks of treadmill exercise decreased HFD-induced body weight gain and IR in mice. It also increased miR-363-3p expression in the liver (<0.01), and reversed AKT/mTOR pathway disorders (<0.01). Moreover, miR-363-3p expression in mouse liver was significantly and negatively correlated with fasting blood glucose, serum insulin, IR index and p-mTOR (values were -0.610, -0.830, -0.855 and -0.865, respectively; all<0.01), but positively correlated with AKT protein phosphorylation (=0.751,<0.01).The liver miR-363-3p/AKT/mTOR pathway may play a regulatory role in the occurrence and development of IR in obese mice and in the attenuation of IR by exercise.
exercise; microRNA-363-3p; obesity; insulin resistance; AKT/mTOR signaling pathway
R589.2; R363.2
A
10.3969/j.issn.1000-4718.2023.02.012
1000-4718(2023)02-0297-08
2022-05-09
2023-01-28
[基金項目]國家自然科學(xué)基金資助項目(No. 12072202);遼寧省科學(xué)技術(shù)計劃項目(No. 2019-ZD-0516)
Tel: 15940278868; E-mail: yixuejie8387@163.com
(責(zé)任編輯:宋延君,李淑媛)