遲曉晨, 曹瀛心, 包翠芬, 李婷鈺, 閻麗菁
人參皂苷Rg1通過TLR4/MyD88/NF-κB p65通路調(diào)控小鼠急性腎損傷誘導(dǎo)的急性肝損傷的機(jī)制研究*
遲曉晨1, 曹瀛心1, 包翠芬2△, 李婷鈺1, 閻麗菁2△
(1錦州醫(yī)科大學(xué)組織胚胎學(xué)教研室,遼寧 錦州 121001;2錦州醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)實(shí)驗(yàn)教學(xué)中心,遼寧 錦州 121001)
探討人參皂苷Rg1(GRg1)對小鼠急性腎損傷所誘導(dǎo)的急性肝損傷的保護(hù)作用及其調(diào)控機(jī)制。昆明小鼠隨機(jī)分為假手術(shù)(sham)組、模型(model)組、GRg1組和necrostatin-1 (Nec-1)組,每組10只。制備急性腎損傷模型,24 h后收集血液。采用生化試劑盒檢測小鼠血清肌酐(SCr)、血尿素氮(BUN)、天冬氨酸轉(zhuǎn)氨酶(AST)、谷氨酸轉(zhuǎn)氨酶(ALT)、丙二醛(MDA)和超氧化物歧化酶(SOD)水平。采用ELISA法檢測炎癥因子白細(xì)胞介素1β(IL-1β)、IL-6、IL-8和腫瘤壞死因子α(TNF-α)的表達(dá)。HE染色觀察組織病理學(xué)改變,采用免疫組織化學(xué)和Western blot法檢測TLR4、MyD88和NF-κB p65蛋白的表達(dá)水平。與假手術(shù)組比較,model組小鼠出現(xiàn)明顯的肝細(xì)胞壞死、肝腎功能減退,血清中SCr、BUN、AST和ALT均顯著升高(<0.01),MDA含量顯著上升,SOD活性顯著降低(<0.01),且血清中炎癥因子IL-1β、IL-6、IL-8和TNFα含量顯著升高(<0.01),TLR4、MyD88和NF-κB p65蛋白表達(dá)顯著增高(<0.01);與model組相比,GRg1和Nec-1組處理后小鼠肝細(xì)胞壞死減輕,肝腎功能顯著改善(<0.01),血清中SCr、BUN、AST和ALT水平顯著降低(<0.01),MDA含量顯著降低,SOD活性顯著增高(<0.01),血清中炎癥因子IL-1β、IL-6、IL-8和TNF-α含量顯著降低(<0.01),TLR4、MyD88和NF-κB p65蛋白表達(dá)顯著降低(<0.01);GRg1組和Nec-1組小鼠上述指標(biāo)比較差異無統(tǒng)計(jì)學(xué)意義。GRg1可以改善小鼠急性腎損傷所致急性肝損傷的肝腎功能,其機(jī)制可能與抑制TLR4/MyD88/NF-κB p65信號通路有關(guān)。
人參皂苷Rg1;急性腎損傷;急性肝損傷;TLR4/MyD88/NF-κB p65信號通路
急性腎損傷(acute kidney injury, AKI)多見于原位移植、急性缺血性創(chuàng)傷等疾病,尤其是在腎移植、腎切除等低灌注類大手術(shù)時(shí),發(fā)生率極高[1]。AKI發(fā)生后,機(jī)體出現(xiàn)毒素積累、酸堿平衡失調(diào)、電解質(zhì)失調(diào)、氧化應(yīng)激等一系列炎癥級聯(lián)反應(yīng),引起其它臟器受累,如急性肝損傷(acute hepatic damage, AHD)[2]。上述因素可導(dǎo)致肝臟代謝負(fù)擔(dān)加重,促進(jìn)肝臟細(xì)胞變性、壞死,炎癥滲出物增多,引發(fā)AHD。
炎癥反應(yīng)是維持機(jī)體穩(wěn)態(tài)的重要環(huán)節(jié)。Toll樣受體(Toll-like receptor, TLR)是機(jī)體固有免疫系統(tǒng)重要模式識別受體,可以檢測并激活炎癥信號通路,TLR4可以通過多種通路發(fā)起促炎作用,包括核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體蛋白3(nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)、髓樣分化因子88(myeloid differentiation factor 88, MyD88)等[3-5],AKI發(fā)生后,腎組織中TLR4表達(dá)明顯增高,促發(fā)炎癥反應(yīng),從而引發(fā)一系列的病理改變。
據(jù)目前研究,為了緩解AKI,提升機(jī)體機(jī)能,連續(xù)腎臟替代治療法能夠有效的改善腎臟受損程度,但由于治療程序繁瑣也會對其他器官造成副作用,有實(shí)驗(yàn)研究采用中、西藥改善AKI[6-7],但對于同時(shí)能夠緩解遠(yuǎn)端器官損傷的藥物研究相對較少,人參皂苷Rg1(ginsenoside Rg1, GRg1)是傳統(tǒng)中草藥人參的主要活性成分,具有抗凋亡、改善認(rèn)知功能和保護(hù)神經(jīng)系統(tǒng)功能等多種藥理作用[8-9]。有研究顯示,GRg1可以通過TLR4/NF-κB/NLRP3通路抑制心肌細(xì)胞凋亡和炎癥反應(yīng)[10],但在肝損傷治療的機(jī)制有待進(jìn)一步研究,本項(xiàng)工作擬通過制備動(dòng)物模型,并使用GRg1進(jìn)行干預(yù)治療,以探討GRg1對小鼠AKI所誘導(dǎo)的AHD的保護(hù)作用及其可能的調(diào)控機(jī)制。
SPF級昆明小鼠,雄性5~6周,28~32 g,40只,購自錦州醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心,生產(chǎn)許可證編號為SCXY(遼)2019-0003。本實(shí)驗(yàn)中使用的所有方案均得到了實(shí)驗(yàn)動(dòng)物倫理委員會的審核批準(zhǔn)(No. 2018011001)。
GRg1(吉林大學(xué)有機(jī)化學(xué)教研室);程序性壞死抑制劑necrostatin-1 (Nec-1)購自Sigma;血肌酐(serum creatinine, SCr)、血尿素氮(blood urea nitrogen, BUN)、谷草轉(zhuǎn)氨酶(aspartate aminotransferase, AST)、谷丙轉(zhuǎn)氨酶(alanine aminotransferase, ALT)、超氧化物歧化酶(superoxide dismutase, SOD)和丙二醛(malondialdehyde, MDA)檢測試劑盒(南京建成生物工程研究所);白細(xì)胞介素1β(interleukin-1β, IL-1β)、IL-6、IL-8和腫瘤壞死因子α(tumor necrosis factor-α, TNF-α)酶聯(lián)免疫吸附檢測試劑盒(上海酶聯(lián)生物科技有限公司);抗TLR4和NF-κB p65抗體[艾博抗(上海)貿(mào)易有限公司];MyD88抗體(武漢愛博泰克生物科技有限公司);HRP標(biāo)記的Ⅱ抗IgG(北京中杉金橋生物技術(shù)有限公司);BCA蛋白濃度測定試劑盒和電化學(xué)發(fā)光ECL顯影液(上海碧云天生物技術(shù)有限公司)。
PowerPacTMHC電泳儀(Bio-Rad);MK3酶標(biāo)儀(Thermo Fisher Labsystems);VibraCellVcx105超聲粉碎機(jī)(Sonics);ST 16R超速離心機(jī)(ThermoFisher);AMERSHAM IMAGER600凝膠成像系統(tǒng)(日本通用電氣公司)。
4.1動(dòng)物分組與處理采用隨機(jī)數(shù)字法將小鼠分為4組,假手術(shù)組(sham組)、AKI模型組(model組)、GRg1組和Necrostatin-1抑制劑組(Nec-1組),每組10只。GRg1組術(shù)后腹腔注射GRg1(56 mg/kg[11]),Nec-1組注射Nec-1(1.65 mg/kg[12]),sham組和model組分別注射等量生理鹽水。
4.2動(dòng)物模型制備采用20%烏拉坦麻醉小鼠,沿背正中線剪開皮膚,先于脊柱右側(cè)肌肉開一小口,雙線結(jié)扎法結(jié)扎右腎后進(jìn)行切除,消毒切口并縫合。然后于脊柱左側(cè)肌肉開一小口,探尋左側(cè)腎臟,游離腎蒂,剝離表面被膜,小心分離腎動(dòng)靜脈,使用無損傷動(dòng)脈夾夾閉腎動(dòng)脈,計(jì)時(shí),觀察到腎臟表面顏色逐漸加深,由粉紅色變?yōu)榘导t色,腎臟體積明顯變大,45 min后,松開動(dòng)脈夾[13],觀察腎臟血流恢復(fù),顏色逐漸轉(zhuǎn)為粉紅色后,將腎臟回納腹腔,消毒切口并逐層縫合,sham組只游離并剝離腎動(dòng)靜脈,做挑起腎動(dòng)脈的動(dòng)作,但不夾閉,術(shù)后注意動(dòng)物保暖,正常喂養(yǎng),24 h后灌流取材[14]。
4.3標(biāo)本收集采集各組小鼠心尖血液,離心力1 370 ×,4 ℃離心15 min后,取上清液于-20 ℃凍存;取血后小鼠生理鹽水灌流,取部分肝組織放入10%中性緩沖福爾馬林溶液中固定,用于制備形態(tài)學(xué)標(biāo)本;其余肝組織置于-80 ℃凍存。
4.4血清肝腎功能指標(biāo)檢測按照試劑盒說明書檢測各組小鼠血清SCr、BUN、AST和ALT水平。
4.5氧化應(yīng)激水平檢測按照試劑盒說明書檢測各組小鼠血清MDA含量和SOD活性。
4.6ELISA法檢測炎癥因子表達(dá)按照試劑盒說明書檢測各組小鼠血清中IL-1β、IL-6、IL-8和TNF-α炎癥因子表達(dá),測450 nm波長吸光度()值,以標(biāo)準(zhǔn)品濃度為橫坐標(biāo),吸光度值為縱坐標(biāo),制作標(biāo)準(zhǔn)曲線,計(jì)算待測樣本實(shí)際濃度值。
4.7HE染色觀察肝臟損傷程度將各組固定在10%中性緩沖福爾馬林液的標(biāo)本常規(guī)脫水后制備石蠟標(biāo)本。切片后進(jìn)行HE染色,光學(xué)顯微鏡下觀察肝臟病理學(xué)改變。
4.8免疫組織化學(xué)染色觀察肝臟病變位置TLR4/MyD88/NF-κB p65蛋白表達(dá)將上述制備好的石蠟切片,采用Envision法進(jìn)行免疫組織化學(xué)染色。石蠟切片常規(guī)脫蠟水合后,置于pH 6.0的檸檬酸緩沖液中,于高壓鍋內(nèi)修復(fù)2.5 min。采用3% H2O2處理以滅活內(nèi)源性過氧化物酶,滴加Ⅰ抗工作液(TLR4 1∶500,MyD88 1:500,NF-κB p65 1∶200)4 ℃孵育過夜,滴加辣根酶標(biāo)記的Ⅱ抗多聚體37 ℃孵育30 min。每步之間采用磷酸鹽緩沖液(phosphate buffer saline,PBS)進(jìn)行漂洗。DAB顯色,蘇木精復(fù)染,中性樹膠封固。采用PBS替代Ⅰ抗作為陰性對照。
4.9Western blot法檢測TLR4/MyD88/NF-κB p65蛋白表達(dá)小鼠灌流后,將取下的肝臟組織剪碎,放入電動(dòng)勻漿器中勻漿,加入組織裂解液和最終濃度為1mmol/L的絲氨酸蛋白酶抑制劑苯甲基磺酰氟(phenylmethanesulfonyl fluoride,PMSF),在冰上裂解30 min后,離心力16 099 ×,4 ℃離心30 min,取上清液置于新的Ep管中,-20 ℃凍存。取少量上清液,以BCA試劑盒進(jìn)行蛋白定量檢測,以最低濃度為標(biāo)準(zhǔn)制定樣本。SDS-PAGE后轉(zhuǎn)至聚偏二氟乙烯(polyvinylidene fluoride,PVDF)膜上,1%山羊血清封閉1 h,三乙醇胺緩沖鹽水溶液(tris buffered saline and tween20,TBST)清洗后加入Ⅰ抗(TLR4 1∶2 000,MyD88 1∶2 000,NF-κB p65 1∶2 000)4 ℃搖床過夜,TBST洗膜,加入HRP標(biāo)記的Ⅱ抗IgG,室溫?fù)u床孵育1 h,TBST洗膜,ECL發(fā)光顯色液顯影,以β-actin為內(nèi)參照,采用ImageJ圖像處理分析計(jì)算各指標(biāo)灰度值。
采用SPSS 25.0軟件對各組數(shù)據(jù)進(jìn)行分析,計(jì)數(shù)資料以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)形式表示,多組之間數(shù)據(jù)比較采用單因素方差分析,以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
與sham組相比,model組小鼠BUN和SCr水平顯著升高(<0.01);與model組相比,GRg1組和Nec-1組BUN和SCr水平則顯著降低(<0.01),見圖1A、B。與sham組相比,model組小鼠血清AST和ALT水平顯著升高(<0.01);與model組相比,GRg1組和Nec-1組小鼠血清AST和ALT水平顯著降低(<0.01),見圖1C、D。與sham組相比,model組小鼠血清MDA含量顯著升高(<0.01),SOD活性顯著降低(<0.01);與model組相比,GRg1組和Nec-1組小鼠血清MDA含量顯著降低(<0.01),SOD活性顯著升高(<0.01),見圖1E、F。
Figure 1. The BUN level (A), SCr level (B), serum AST activity (C), serum ALT activity (D), serum MDA content (E) and serum SOD activity (F) of mice in each group. Mean±SD. n=3 in A, B, D and F; n=4 in C and E. **P<0.01 vs sham group; ##P<0.01 vs model group; △P<0.05 vs GRg1 group.
與sham組相比,model組小鼠血清IL-1β、IL-6、IL-8和TNF-α水平顯著升高(<0.01);與model組相比,GRg1組和Nec-1組小鼠血清IL-1β、IL-6、IL-8和TNF-α水平顯著降低(<0.01),見圖2。
Figure 2. IL-1β, IL-6, IL-8, and TNF-α contents of mice in each group. Mean±SD. n=4. **P<0.01 vs control group; ##P<0.01 vs model group.
HE染色結(jié)果顯示,sham組小鼠肝臟呈現(xiàn)正常組織表現(xiàn);model組肝臟于被膜下及肝小葉均可見明顯的局灶狀壞死,有的肝細(xì)胞的細(xì)胞質(zhì)淡染、空泡狀為脂肪樣變性(黑色箭頭),有的肝細(xì)胞的細(xì)胞質(zhì)呈明顯的嗜酸樣變,與周圍細(xì)胞著色明顯不同,細(xì)胞可見核固縮(紅色箭頭)。近血管處有的可見明顯的炎癥細(xì)胞浸潤(*);GRg1和Nec-1組小鼠可見少量肝細(xì)胞的細(xì)胞質(zhì)呈嗜酸樣變,肝損傷細(xì)胞數(shù)量明顯減少,未見脂肪樣變性及明顯的炎癥細(xì)胞浸潤,見圖3。
Figure 3. Pathological changes in the liver of mice in each group (HE staining, scale bar=50 μm). The black arrow shows hepatocyte steatosis. The red arrow shows the eosin ophilic change. * shows inflammatory infiltration.
4.1TLR4表達(dá)情況免疫組化染色顯示,sham組僅見少量表達(dá)微弱的陽性細(xì)胞;model組可見較多的肝細(xì)胞的細(xì)胞質(zhì)和肝血竇內(nèi)呈明顯的黃色或棕黃色陽性表達(dá);GRg1組和Nec-1組的陽性表達(dá)細(xì)胞數(shù)量較少,肝細(xì)胞的細(xì)胞質(zhì)著色呈淡黃色或黃色,見圖4。Western blot結(jié)果顯示,與sham組相比較,model組呈現(xiàn)明顯TLR4表達(dá)條帶,顯著高于sham組;與model組比較,GRg1組和Nec-1組的表達(dá)條帶明顯減弱;而GRg1組和Nec-1組之間則無顯著差異,見圖5。
Figure 4. The expression of TLR4 protein in the liver of mice in each group observed by immunohistochemical staining. Positive cells are indicated by arrows.
Figure 5. The expression level of TLR4 in the liver of mice in each group. Mean±SD. n=4. **P<0.01 vs sham group; ##P<0.01 vs model group.
4.2MyD88表達(dá)情況免疫組化染色顯示,sham組可見肝血竇內(nèi)有少量呈淡黃色或黃色的陽性細(xì)胞;model組可見部分肝血竇以及部分肝細(xì)胞的細(xì)胞質(zhì)內(nèi)有黃色、棕黃色或褐色顆粒,為陽性表達(dá)細(xì)胞;GRg1組和Nec-1組的陽性細(xì)胞數(shù)量較少,且表達(dá)細(xì)胞呈色為淡黃色或黃色,見圖6。Western blot結(jié)果顯示,model組呈現(xiàn)明顯MyD88表達(dá)條帶,顯著高于sham組;與model組比較,GRg1組和Nec-1組的表達(dá)條帶明顯減弱;而GRg1組和Nec-1組之間則無顯著差異,見圖7。
Figure 6. The expression of MyD88 protein in the liver of mice in each group observed by immunohistochemical staining. Positive cells are indicated by arrows.
Figure 7. The expression level of MyD88 in the liver of mice in each group. Mean±SD. n=4. **P<0.01 vs sham group; ##P<0.01 vs model group.
4.3NF-κB p65(phospho S536)表達(dá)情況p-NF-κB p65(Ser536)為NF-κB p65的活化形式。NF-κB p65被激活后從細(xì)胞質(zhì)移入到細(xì)胞核內(nèi)發(fā)揮其轉(zhuǎn)錄作用,因此主要定位于細(xì)胞核。免疫組化染色觀察sham組可見少量肝細(xì)胞的細(xì)胞核呈淡黃色或黃色,肝血竇的竇腔內(nèi)也有少量陽性表達(dá)細(xì)胞;model組可見較多肝細(xì)胞的細(xì)胞核呈黃色或棕黃色,肝血竇竇腔內(nèi)的陽性表達(dá)細(xì)胞也較多;而GRg1組和Nec-1組NF-κB p65活化細(xì)胞數(shù)量較少,見圖8。Western blot結(jié)果顯示,與sham組比較,model組呈現(xiàn)明顯p-NF-κB p65表達(dá)條帶,顯著高于Sham組;與model組比較,GRg1組和Nec-1組的表達(dá)條帶明顯減弱;而GRg1組和Nec-1組之間則無顯著差異,見圖9。
Figure 8. The expression of NF-κB p65 protein in the liver of mice in each group was observed by immunohistochemical staining. Positive cells are indicated by arrows.
Figure 9. The expression level of p-NF-κB p65 in the liver of mice in each group. Mean±SD. n=4. **P<0.01 vs sham group; ##P<0.01 vs model group.
AKI是由各種原因?qū)е碌哪I功能快速下降,伴隨一系列連貫的細(xì)胞事件發(fā)生,包括活性氧釋放、凋亡、壞死、炎癥細(xì)胞的浸潤和活性介質(zhì)的釋放,導(dǎo)致腎組織或其它組織損傷[15- 16]。本實(shí)驗(yàn)通過阻斷腎動(dòng)脈血流45 min后復(fù)灌24 h的方法制備AKI模型,結(jié)果顯示,經(jīng)過缺血再灌注處理的小鼠血清肌酐和尿素氮的含量顯著升高,腎臟形態(tài)學(xué)病理檢測可見部分腎小管上皮細(xì)胞變性、壞死,腎小管管型形成,有的可見脫落細(xì)胞,提示小鼠出現(xiàn)AKI。在此基礎(chǔ)上,檢測小鼠肝臟功能變化,結(jié)果顯示血清谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶含量顯著增高。肝臟病理切片觀察顯示,model組肝臟可見明顯的局灶狀壞死,部分肝細(xì)胞胞質(zhì)淡染甚至空泡狀。有的肝細(xì)胞胞質(zhì)呈明顯的嗜酸樣變,與周圍細(xì)胞明顯不同。細(xì)胞核有的固縮,近血管處有的可見明顯的炎性細(xì)胞浸潤。上述結(jié)果均提出小鼠出現(xiàn)了AHD。而經(jīng)過GRg1處理后,小鼠肝組織的壞死情況明顯改善,提示GRg1對小鼠肝損傷具有保護(hù)作用。
細(xì)胞壞死時(shí)由于細(xì)胞裂解釋放出內(nèi)含物,經(jīng)常引發(fā)炎癥反應(yīng)。炎癥因子作為炎癥微環(huán)境的關(guān)鍵組成部分,在AHD過程中也發(fā)揮著關(guān)鍵作用。包括IL-1β、IL-6、IL-8和TNF-α等[17]。IL-1β和TNF-α是重要的炎癥因子,參與炎癥反應(yīng)、細(xì)胞凋亡、氧化應(yīng)激等,具有強(qiáng)烈的促炎活性[15, 18-19]。在TNF-α的刺激下白細(xì)胞不斷加劇炎癥反應(yīng)[20],吞噬細(xì)胞和間充質(zhì)細(xì)胞產(chǎn)生IL-8,誘導(dǎo)趨化、胞吐和氧爆發(fā)。加劇促炎因子表達(dá)[21]。AKI發(fā)生后,單核細(xì)胞和巨噬細(xì)胞快速產(chǎn)生IL-6,并介導(dǎo)遠(yuǎn)端器官效應(yīng)[22]。IL-6能夠清除感染因子和修復(fù)受損組織,對肝細(xì)胞穩(wěn)態(tài)至關(guān)重要[23]。機(jī)體受到損傷后,處于應(yīng)激狀態(tài),由于交感神經(jīng)興奮會產(chǎn)生大量的氧自由基,體內(nèi)氧化與抗氧化平衡被打破,中性粒細(xì)胞發(fā)生炎癥浸潤,蛋白酶分泌增加,氧化中間產(chǎn)物大量釋放,如白三烯、血栓素A2等,都是促炎介質(zhì),加劇炎癥反應(yīng),惡性循環(huán)。
本研究結(jié)果顯示,AKI誘發(fā)肝損傷后,血清中的炎癥及壞死相關(guān)因子IL-1β、IL-6、IL-8和TNF-α的表達(dá)水平顯著上調(diào),切片觀察結(jié)果顯示在部分肝細(xì)胞呈現(xiàn)變性或壞死狀態(tài),近肝血管附近有炎癥細(xì)胞浸潤現(xiàn)象,提示壞死的同時(shí)伴隨著炎癥反應(yīng)。同時(shí),檢測到model組SOD的活性顯著降低,MDA的含量顯著升高。SOD為自由基清除劑,當(dāng)體內(nèi)SOD含量降低,機(jī)體清除自由基能力下降,自由基含量升高,其細(xì)胞毒性致使脂質(zhì)過氧化,MDA含量升高,損傷細(xì)胞膜,從而加劇炎癥反應(yīng)。而經(jīng)Nec-1處理后,組織病理改變明顯減輕,上述炎癥相關(guān)因子的表達(dá)降低,提示AKI所致肝損傷癥狀可以被Nec-1抑制。經(jīng)GRg1處理后,肝臟受損的程度與model組相比明顯減輕,肝功能相對恢復(fù),IL-1β、IL-6、IL-8和TNF-α的表達(dá)水平顯著降低,SOD水平升高,MDA含量減少,表明GRg1處理對AKI所誘導(dǎo)的肝損傷具有保護(hù)作用。
TLR4/MyD88/NF-κB p65通路是參與機(jī)體固有免疫的重要通路。TLR4通過招募MyD88發(fā)揮其功能[24],MyD88是含有TLRs結(jié)構(gòu)域的接頭蛋白,是TLR受體家族下游信號通路的典型適配器。MyD88的死亡結(jié)構(gòu)域與IL-1R相關(guān)激酶(IL-1R-related kinase, IRAK)的死亡結(jié)構(gòu)域相結(jié)合,引起后者磷酸化,進(jìn)一步誘導(dǎo)IκB的活化,從而導(dǎo)致NF-κB的激活和轉(zhuǎn)位[25],誘導(dǎo)TNF-α表達(dá),TNF-α增高的同時(shí)還會促進(jìn)NF-κB p65活化,兩者互相作用,加重?fù)p傷,促進(jìn)多種炎癥因子釋放,啟動(dòng)程序性壞死,加劇炎癥反應(yīng)進(jìn)而導(dǎo)致一系列損傷[26-27],有研究表明Nec-1可以降低TLR4的表達(dá),抑制NF-κB p65磷酸化,降低缺血再灌注所致細(xì)胞內(nèi)ROS產(chǎn)生[28-29]。
本實(shí)驗(yàn)結(jié)果顯示,model組小鼠肝組織內(nèi)有數(shù)量較多的TLR4、MyD88和p-NF-κB p65陽性細(xì)胞表達(dá),主要表達(dá)于實(shí)質(zhì)肝細(xì)胞及肝血竇。其中TLR4和MyD88主要定位于細(xì)胞質(zhì),而p-NF-κB p65為活化的NF-κB p65,主要定位于細(xì)胞核。此結(jié)果提示由AKI所誘導(dǎo)的AHD過程中啟動(dòng)了TLR4/MyD88/NF-κB p65通路,由于TLR4的表達(dá)增高,進(jìn)一步與MyD88結(jié)合后,誘導(dǎo)NF-κB p65磷酸化,從而使其定位改變,從細(xì)胞質(zhì)迅速移入細(xì)胞核,啟動(dòng)細(xì)胞核轉(zhuǎn)錄,進(jìn)而促進(jìn)炎癥因子IL-1β、IL-6、IL-8和TNF-α等的釋放,促發(fā)炎癥反應(yīng),進(jìn)一步導(dǎo)致細(xì)胞壞死等肝損傷。進(jìn)一步采用GRg1處理后,TLR4、MyD88和p-NF-κB p65蛋白的表達(dá)水平明顯降低,提示GRg1抑制了TLR4功能,從而減少了TLR4與MyD88的結(jié)合,進(jìn)一步抑制NF-κB p65的磷酸化水平,減少促炎相關(guān)因子IL-1β、IL-6、IL-8和TNF-α等的釋放,減輕炎癥細(xì)胞浸潤,從而使肝細(xì)胞壞死情況明顯改善。且應(yīng)用GRg1處理的療效與陽性對照藥Nec-1的處理效果并無明顯差異。上述結(jié)果提示,GRg1可能通過抑制TLR4/MyD88通路的激活,干預(yù)NF-κB p65磷酸化水平,抑制AHD炎癥反應(yīng)發(fā)展、減輕壞死、改善肝功能,從而發(fā)揮保護(hù)肝功能作用。
[1] Siew ED, Parr SK, Wild MG, et al. Kidney disease awareness and knowledge among survivors ofacute kidney injury[J]. Am J Nephrol, 2019, 49(6):449-459.
[2] Choi YJ, Zhou D, Barbosa ACS, et al. Activation of constitutive androstane receptor ameliorates renal ischemia-reperfusion-induced kidney and liver injury[J]. Mol Pharmacol, 2018, 93(3):239-250.
[3] Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling[J]. Cell Mol Life Sci, 2021, 78(4):1233-1261.
[4]許武軍, 謝娟娟, 陳仙. H2S通過抑制TLR4/MyD88/PI3K信號通路減輕尿源性膿毒血癥誘導(dǎo)的急性腎損傷[J]. 中國病理生理雜志, 2019, 35(2):243-247.
Xu WJ, Xie JJ, Chen X. Hydrogen sulfide attenuates urosepsis-induced acute kidney injury by blocking TLR4/MyD88/PI3K signaling pathway[J]. Chin J Pathophysiol, 2019, 35(2):243-247.
[5] Chen Y, Jin S, Teng X, et al. Hydrogen sulfide attenuates LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress[J]. Oxid Med Cell Longev, 2018, 2018:6717212.
[6] Wang Z, Wu J, Hu Z, et al. Dexmedetomidine alleviates lipopolysaccharide-induced acute kidney injury by inhibiting p75NTR-mediated oxidative stress and apoptosis[J]. Oxid Med Cell Longev,2020, 2020(4):5454210.
[7] Wang J, Zhou L, Yin W, et al. Clinical efficacy of Danhong injection in preventing contrast-induced acute kidney injury based on propensity score matching method[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2020, 45(10):1193-1198.
[8] Li Y, Wang L, Wang P, et al. Ginsenoside Rg1 rescues stress-induced depression-like behaviors via suppression of oxidative stress and neural inflammation in rats[J]. Oxid Med Cell Longev, 2020, 2020:2325391.
[9] Lin J, Huang HF, Yang SK, et al. The effect of Ginsenoside Rg1 in hepatic ischemia reperfusion (I/R) injury ameliorates ischemia-reperfusion-induced liver injury by inhibiting apoptosis[J]. Biomed Pharmacother, 2020, 129:110398.
[10] Luo M, Yan D, Sun Q, et al. Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-κB/NLRP3 pathway[J]. J Cell Biochem, 2020, 121(4):2994-3004.
[11] Xiao Q, Zhang S, Ren H, et al. Ginsenoside Rg1 alleviates ANIT-induced intrahepatic cholestasis in rats via activating farnesoid X receptor and regulating transporters and metabolic enzymes[J]. Chem Biol Interact, 2020, 324(9):109062.
[12] Huang Z, Epperly M, Watkins SC, et al. Necrostatin-1 rescues mice from lethal irradiation[J]. Biochim Biophys Acta, 2016, 1862(4):850-856.
[13] Fu Y, Tang C, Cai J, et al. Rodent models of AKI-CKD transition[J]. Am J Physiol Renal Physiol, 2018, 315(4):F1098-F1106.
[14] Hesketh EE, Czopek A, Clay M, et al. Renal ischaemia reperfusion injury: a mouse model of injury and regeneration[J]. J Vis Exp, 2014, 88(6):51816-52824.
[15] Dasdelen D, Solmaz M, Menevse E, et al. Increased apoptosis, tumor necrosis factor-alpha, and DNA damage attenuated by 3',4'-dihydroxyflavonol in rats with brain ischemia-reperfusion[J]. Indian J Pharmacol, 2021, 53(1):39-49.
[16] Zhao S, Chen W, Li W, et al. LncRNA TUG1 attenuates ischaemia-reperfusion-induced apoptosis of renal tubular epithelial cells by sponging miR-144-3p via targeting Nrf2[J]. J Cell Mol Med,2021, 25(20):9767-9783.
[17] Rong Z, Huang Y, Cai H, et al. Gut microbiota disorders promote inflammation and aggravate spinal cord injury through the TLR4/MyD88 signaling pathway[J]. Front Nutr, 2021, 13(8):702659-702673.
[18] Iwawaki T. From property of IL-1beta to imaging of inflammation[J]. Nihon Rinsho Meneki Gakkai Kaishi, 2017, 40(5):329-336.
[19] 付陽, 董一飛. 白細(xì)胞介素33通過增強(qiáng)炎癥反應(yīng)加重脂多糖誘導(dǎo)的急性腎損傷[J]. 中國病理生理雜志, 2022, 38(8):1424-1429.
Fu Y, Dong YF. Interleukin-33 aggravates lipopolysaccharide-induced acute kidney injury in mice by enhancing inflammation[J]. Chin J Pathophysiol, 2022, 38(8):1424-1429.
[20] Chen T, Zhang X, Zhu G, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-κB and AP-1 signaling pathway[J]. Medicine (Baltimore), 2020, 99(38):e22241.
[21] Skrypnyk NI, Gist KM, Okamura K, et al. IL-6-mediated hepatocyte production is the primary source of plasma and urine neutrophil gelatinase-associated lipocalin during acute kidney injury[J]. Kidney Int, 2020, 97(5):966-979.
[22] Schmidt-Arras D, Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy[J]. J Hepatol, 2016, 64(6):1403-1415.
[23] Mlachkova A, Popova C, Doseva V. Presence of IL-8 gene polymorphism and IL-8 serum levels in patients with chronic periodontitis-literature review[J]. Folia Med (Plovdiv), 2020, 62(2):253-257.
[24] Zhu X, Liu J, Chen O, et al. Neuroprotective and anti-inflammatory effects of isoliquiritigenin in kainic acid-induced epileptic rats via the TLR4/MYD88 signaling pathway[J]. Inflammopharmacology, 2019, 27(6):1143-1153.
[25] Zhu G, Cheng Z, Huang Y, et al. MyD88 mediates colorectal cancer cell proliferation, migration and invasion via NF-κB/AP1 signaling pathway[J]. Int J Mol Med, 2020, 45(1):131-140.
[26] 陶計(jì)委, 南亞強(qiáng), 周杰, 等. Exendin-4通過抑制Toll樣受體4/核因子κB信號通路對帕金森病小鼠保護(hù)作用的研究[J]. 中國病理生理雜志, 2022, 38(3):502-508.
Tao JW, Nan YQ, Zhou J, et al. Protective effect of exendin-4 on Parkinson disease mice by inhibiting Toll-like receptor 4/nuclear factor-κB signaling pathway[J]. Chin J Pathophysiol, 2022, 38(3):502-508.
[27] Yan S, Fang C, Cao L, et al. Protective effect of glycyrrhizic acid on cerebral ischemia/reperfusion injury via inhibiting HMGB1-mediated TLR4/NF-κB pathway[J]. Biotechnol Appl Biochem, 2019, 66(6):1024-1030.
[28] Liang S, Lv ZT, Zhang JM, et al. Necrostatin-1 attenuates trauma-induced mouse osteoarthritis and IL-1beta induced apoptosis via HMGB1/TLR4/SDF-1 in primary mouse chondrocytes[J]. Front Pharmacol, 2018, 9(11):1378-1389.
[29] Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications[J]. Pharmacol Res, 2021, 163(1):105297-105313.
Mechanism of ginsenoside Rg1 regulating acute hepatic damage induced by acute kidney injury in mice through TLR4/MyD88/NF-κB p65 signaling pathway
CHI Xiaochen1, CAO Yingxin1, BAO Cuifen2△, LI Tingyu1, YAN Lijing2△
(1,,121001,;2,,121001,)
To investigate the protective effect of ginsenoside Rg1 (GRg1) on acute hepatic damage induced by acute kidney injury in mice and its regulatory mechanism.Kunming mice were randomly divided into sham group, model group, GRg1 group and necrostatin-1 (Nec-1) group, with 10 mice in each group. The acute kidney injury model was prepared, and blood was collected after 24 h. The serum creatinine (SCr), blood urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), and superoxide dismutase (SOD) levels were measured by biochemical kits. The expression of interleukin-1β (IL-1β), IL-6, IL-8, and tumor necrosis factor-α(TNF-α) were measured by ELISA. Histopathological changes were observed by HE staining, the levels of TLR4, MyD88 and NF-κB p65 were detected by immunohistochemistry and Western blot.Compared with sham group, the model group showed significant hepatocyte necrosis and hepatorenal function were significantly decreased. SCr, BUN, AST and ALT were significantly increased (<0.01). The content of MDA was increased and the activity of SOD was decreased dramatically (<0.01), the serum levels of IL-1β, IL-6, IL-8 and TNF-α were remarkably increased (<0.01). The expressions of TLR4, MyD88 and NF-κB p65 were significantly increased (<0.01). Compared with the model group, hepatocyte necrosis was reduced, liver and kidney functions were dramatically improved (<0.01), serum levels of SCr, BUN, AST and ALT were decreased significantly (<0.01). The content of MDA was decreased and the activity of SOD was increased obviously (<0.01). The contents of inflammatory factors IL-1β, IL-6, IL-8, TNF-α were remarkably decreased (<0.01). The expressions of TLR4, MyD88 and NF-κB p65 were significantly decreased (<0.01). There was no significant difference in the above indexes between GRg1 group and Nec-1 group.Ginsenoside Rg1 can improve liver and kidney function in mice with acute hepatic damage induced by acute kidney injury, and the mechanisms may be related to the inhibition of the TLR4/MyD88/NF-κB p65 signaling pathway.
ginsenoside Rg1; acute kidney injury; acute hepatic damage; TLR4/MyD88/NF-κB p65 signaling pathway
R363.2; R692
A
10.3969/j.issn.1000-4718.2023.02.011
1000-4718(2023)02-0287-10
2022-01-24
2022-12-16
[基金項(xiàng)目]國家自然科學(xué)基金資助項(xiàng)目(No. 81774116);遼寧省教育廳項(xiàng)目(No. JYTJCZR2020083)
包翠芬 Tel: 13941605408; E-mail: 736466881@qq.com; 閻麗菁 Tel: 18704160516; E-mail: 3212141299@qq.com
(責(zé)任編輯:宋延君,李淑媛)