張煒,劉濤,何家樂,張家發(fā),張宇梁,龍江游,b,謝小柱,b,c
激光表面改性技術(shù)
飛秒激光全劃切超薄碳化硅基片
張煒a,劉濤a,何家樂a,張家發(fā)a,張宇梁a,龍江游a,b,謝小柱a,b,c
(廣東工業(yè)大學(xué) 機(jī)電工程學(xué)院 a.激光微納加工研究中心 b.省部共建精密電子制造技術(shù)與裝備國(guó)家重點(diǎn)實(shí)驗(yàn)室 c.實(shí)驗(yàn)教學(xué)部,廣州 510006)
為實(shí)現(xiàn)超薄碳化硅基片全劃切,需在加工出窄線寬(小于25 μm)的切割槽的同時(shí)保證基片的強(qiáng)度。使用波長(zhǎng)為1 030 nm的紅外飛秒激光對(duì)碳化硅基片進(jìn)行全劃切加工,通過掃描電子顯微鏡和光學(xué)顯微鏡分析脈沖重復(fù)頻率、脈沖能量、切割速度和掃描次數(shù)對(duì)切口寬度、深度以及斷面形貌的影響,采用能譜儀對(duì)不同脈沖能量下的劃切斷面進(jìn)行微區(qū)元素分析,采用激光共聚焦顯微鏡測(cè)量劃切斷面粗糙度,以及采用電子萬能實(shí)驗(yàn)機(jī)測(cè)試劃切樣品的抗彎強(qiáng)度。劃切斷面的元素主要有Si、C、O 3種,O元素富集在斷面的上下邊緣位置。SiO2顆粒噴濺重沉積影響斷面微納結(jié)構(gòu)。斷面的粗糙度隨脈沖能量的增強(qiáng)而上升,基片強(qiáng)度反而下降。在激光脈沖能量為3.08 μJ、脈沖重復(fù)頻率為610 kHz、切割速度為4 mm/s、切割12次的條件下,可以加工出寬度為15 μm、深度高于100 μm的良好切割槽,斷面粗糙度為296 nm,基片抗彎強(qiáng)度為364 MPa。切割槽寬度和深度與脈沖重復(fù)頻率、脈沖能量、切割速度和掃描次數(shù)有關(guān)。O元素的分布說明存在SiO2堆積在斷面上下邊緣部分的現(xiàn)象。使用小脈沖能量激光進(jìn)行劃切,可以減少SiO2顆粒噴濺重沉積,從而使斷面出現(xiàn)大量熔塊狀結(jié)構(gòu),得到粗糙度較低的斷面形貌。斷面粗糙度降低,意味著劃切斷面存在的微裂紋等缺陷減少,從而使強(qiáng)度上升。本試驗(yàn)最終采用較優(yōu)激光劃切工藝參數(shù),實(shí)現(xiàn)了飛秒激光全劃切超薄SiC基片,槽寬僅為15 μm。由于短脈寬小脈沖能量高重復(fù)頻率激光的作用以及激光輻射下SiC材料的相分離機(jī)制,基片劃切斷面燒蝕形貌良好,且抗彎強(qiáng)度較好。
激光切割;超薄碳化硅;紅外飛秒激光;斷面形貌;粗糙度測(cè)試;強(qiáng)度測(cè)試
作為第三代半導(dǎo)體芯片的典型代表,碳化硅(SiC)擁有比硅更優(yōu)秀的半導(dǎo)體性能,包括耐高壓能力、耐高溫能力、耐輻射能力以及更強(qiáng)的高頻能力、更低的電子轉(zhuǎn)換損耗等[1]。因此,SiC器件被廣泛應(yīng)用在5G通訊、新能源汽車、航天航空等前沿領(lǐng)域。其中,劃片作為SiC芯片制備流程中的后端工藝之一,劃片質(zhì)量與效率會(huì)極大地影響整個(gè)芯片制造的良品率和成本。
晶圓劃片按切割方式主要有金剛石砂輪劃片[2]、激光隱切[3-5]、激光全劃切[6-8]等。金剛石砂輪劃切易出現(xiàn)晶圓崩邊破損和刀具磨損等問題。激光加工屬于非接觸式加工,不會(huì)產(chǎn)生機(jī)械應(yīng)力損傷,因此更有利于加工超薄硬脆材料[9-11]。激光隱切加工質(zhì)量較高,但設(shè)備成本高且工藝復(fù)雜,材料的適用性不強(qiáng)。而激光全劃切超薄SiC設(shè)備及工藝可控性好,更適合加工超薄SiC基片。
超快激光由于其獨(dú)特的非線性吸收機(jī)制和極短的脈沖作用時(shí)間,有利于高質(zhì)量的微納加工[12-13]。Finn等[14]研究表明,使用飛秒激光劃切,有利于提高劃片強(qiáng)度。Dong等[15]研究表明,飛秒激光小脈沖
能量有利于獲得高質(zhì)量的表面。Domke[16]和Sudani等[17]研究表明,劃切表面粗糙度和斷面粗糙度會(huì)影響晶圓的強(qiáng)度,雙面拋光后的晶圓基片強(qiáng)度不受表面粗糙度的影響,此時(shí)其強(qiáng)度受劃切斷面粗糙度的影響最為顯著,故有必要研究劃片后斷面粗糙度與芯片強(qiáng)度性能的變化。
因此,本文采用1 030 nm紅外高脈沖重復(fù)頻率飛秒激光系統(tǒng)進(jìn)行超薄SiC基片全劃切。研究單個(gè)激光脈沖對(duì)SiC基片表面燒蝕形貌的影響,測(cè)定SiC的燒蝕閾值。研究了脈沖重復(fù)頻率、脈沖能量、切割速度和掃描次數(shù)對(duì)切槽情況(切口寬度、切口深度與斷面形貌)的影響,并對(duì)切割樣品的斷面粗糙度和強(qiáng)度性能進(jìn)行檢測(cè)分析。
飛秒激光劃切裝置示意圖如圖1a所示。采用飛秒激光器(PHAROS from Light Conversion)作為激光源,其波長(zhǎng)為1 030 nm,脈沖持續(xù)時(shí)間為290 fs,激光脈沖重復(fù)頻率為0~610 kHz,最大輸出功率為
15 W,輸出高斯光束,偏振態(tài)為水平偏振。輸出的激光束被一個(gè)10X物鏡(Mitutoyo)聚焦,NA值為0.26,聚焦光斑大小為9.7 μm。將樣品放置在三軸電動(dòng)平臺(tái)(Aerotech ANT130)上,通過計(jì)算機(jī)控制實(shí)現(xiàn)平臺(tái)運(yùn)動(dòng)。試驗(yàn)樣品為厚度為100 μm±10 μm,由山東天岳生產(chǎn)的厚度為350 μm的N型4H-SiC減薄得到。試驗(yàn)前將樣品浸泡在無水乙醇中超聲波清洗3 min,再預(yù)置覆層;劃切后依次使用丙酮溶液、無水乙醇、去離子水各超聲清洗3 min,最后通過壓縮氮?dú)獯蹈伞?/p>
使用光學(xué)顯微鏡(Zeiss AX10)測(cè)量激光燒蝕凹坑的直徑及劃槽尺寸(深度和寬度),測(cè)量結(jié)果取3個(gè)不同位置的算術(shù)平均值。試驗(yàn)后樣件的表面和斷面微觀形貌通過場(chǎng)發(fā)射掃描電鏡(Hitach SU8220)和光學(xué)顯微鏡(Zeiss AX10)進(jìn)行觀察。采用能譜儀(EDS)對(duì)樣品斷面進(jìn)行微區(qū)元素分析。樣品斷面粗糙度通過激光共聚焦顯微鏡(OLS4100)測(cè)量得到。樣品抗彎強(qiáng)度由電子萬能實(shí)驗(yàn)機(jī)(Inspekt Table Blue 5KN)檢測(cè)得到。
擁有四面體晶體結(jié)構(gòu)的4H-SiC是一種穩(wěn)定的化合物,其禁帶寬度為3.2 eV,1 030 nm波長(zhǎng)激光對(duì)應(yīng)的電子伏特=1.20 eV小于禁帶寬度,單個(gè)光子的能量無法破壞其化學(xué)鍵而引起材料的去除,即材料的去除是通過多光子吸收實(shí)現(xiàn)的[18]。根據(jù)圖1c單個(gè)激光脈沖作用SiC表面的形貌可發(fā)現(xiàn),當(dāng)<3.08 μJ時(shí),凹坑表現(xiàn)為弱燒蝕現(xiàn)象;當(dāng)>3.08 μJ時(shí),凹坑表現(xiàn)為強(qiáng)燒蝕現(xiàn)象,存在明顯熔化和重凝現(xiàn)象。輸入脈沖能量越大,現(xiàn)象越明顯。當(dāng)=6.16 μJ時(shí),單脈沖燒蝕凹坑邊緣已出現(xiàn)明顯堆積,為獲得更好的加工質(zhì)量,取=6.16 μJ為研究的脈沖能量的上限。
對(duì)SiC的燒蝕閾值[19-20]進(jìn)行測(cè)定可得到適合SiC劃切的能量密度區(qū)間。圖1b中根據(jù)直徑回歸法計(jì)算閾值,計(jì)算出不同等效脈沖數(shù)下的單脈沖能量th()和燒蝕閾值th():th(1)=0.379 μJ,th(1)=0.995 J/cm2;th(1 000)=0.062 μJ,th(1 000)=0.136 J/cm2;th(10 000)= 0.027 μJ,th(10 000)=0.053 J/cm2。隨著等效脈沖數(shù)的增大,其燒蝕閾值減小。
在紅外激光通過物鏡聚焦加工SiC材料時(shí),會(huì)出現(xiàn)自聚焦現(xiàn)象,材料折射率發(fā)生與光強(qiáng)相關(guān)的變化,從而使材料聚光并在內(nèi)部造成損傷。而當(dāng)激光脈沖能量大于燒蝕閾值時(shí)便不會(huì)產(chǎn)生自聚焦現(xiàn)象。所以,本文選取其單脈沖燒蝕閾值為研究的脈沖能量下限。根據(jù)以上所述,文中激光脈沖能量范圍為0.38 μJ<<6.16 μJ。
圖1 激光劃切示意圖(a);不同脈沖數(shù)下燒蝕閾值(b);單個(gè)激光脈沖作用SiC表面后的形貌(c)
為了探求更合適的脈沖能量,其他加工參數(shù)不變,改變單脈沖能量,探究能量對(duì)切割效果的影響。取劃切加工=10 000,具體加工參數(shù)為切割速度= 4 mm/s、重復(fù)頻率=610 kHz、掃描次數(shù)=12,光斑半徑=4.85 μm,代入公式(1)可得=11 124≈10 000。
圖2a1—c1以及圖2a2—c2中可觀察到,當(dāng)=
1.23 μJ時(shí),劃切槽非常窄但斷面仍存在未劃切部分,這是由于能量較小,材料的去除率較低導(dǎo)致的;當(dāng)=3.08 μJ時(shí),隨著脈沖能量上升,材料的去除量增加,SiC基片實(shí)現(xiàn)全劃切;當(dāng)=4.93 μJ時(shí),槽邊緣崩邊較為嚴(yán)重,斷面過燒蝕。因此,為了確保加工質(zhì)量,需要選擇合適的激光脈沖能量。圖2d顯示,切割槽寬度和深度隨著脈沖能量的上升而增加,當(dāng)=3.08 μJ時(shí)剛好實(shí)現(xiàn)全劃切,此時(shí)切割槽寬度僅為15 μm,深度為110 μm,且切口干凈,整體加工質(zhì)量較好。綜上所述,選取激光加工脈沖能量為3.08 μJ。
圖2 不同激光脈沖能量下切割槽的光學(xué)顯微鏡圖:a1—c1)表面圖;a2—c2)斷面圖;d)變化規(guī)律圖
Fig.2 Optical micrographs of the grooves under different pulse energy: a1-c1) the surface image; a2-c2) the section image; d) the variation of width and depth
已有研究表明,脈沖重復(fù)頻率可能會(huì)影響加工質(zhì)量和效率[21],故選擇脈沖能量=3.08 μJ、掃描速度=4 mm/s、切割次數(shù)=12的加工參數(shù),探究激光脈沖重復(fù)頻率對(duì)劃切效果的影響。從圖3a1—c1以及圖3a2—c2中觀察可得,在=100 kHz時(shí),劃切槽寬度窄至7.66 μm,但由于重復(fù)頻率低,其光斑重疊率小,導(dǎo)致槽邊緣質(zhì)量下降且斷面掛渣增加;當(dāng)=300 kHz時(shí),光斑重疊率上升,邊緣質(zhì)量上升,斷面較平整干凈;當(dāng)=610 kHz時(shí),由于單脈沖能量一致,脈沖重復(fù)頻率上升,導(dǎo)致激光輻射能量增加,并且高重復(fù)頻率可以降低材料閾值,故槽寬和槽深增加,材料去除效率提高,從而使SiC基片實(shí)現(xiàn)全劃切。圖3d顯示,切割槽寬度和深度隨著脈沖重復(fù)頻率的上升而增加。由于高重頻能提高劃切質(zhì)量和去除效率,故后期試驗(yàn)均使用本系統(tǒng)的最高重頻=610 kHz。
高脈沖重復(fù)頻率可以搭配更高的劃切速度,從而提高加工效率[22],故試驗(yàn)選定脈沖能量=3.08 μJ、重復(fù)頻率=610 kHz、切割次數(shù)=12的加工參數(shù),改變切割速度,研究其對(duì)切割效果的影響。從圖4a1—c1以及圖4a2—c2可觀察到,當(dāng)=2 mm/s時(shí),其切割槽由于單位時(shí)間作用面積上的能量太大,導(dǎo)致邊緣崩邊嚴(yán)重以及斷面顯出嚴(yán)重的熱影響;圖4d表明,隨著切割速度上升,切割槽寬度和深度都會(huì)下降。在= 12 mm/s時(shí),槽寬非常小,約為12 μm,但劃切深度不足。這是由于速度越快,單位時(shí)間輸入激光能量減小,材料去除量也隨之下降。當(dāng)= 4 mm/s時(shí),其切割槽寬度較小同時(shí)深度足夠,可以實(shí)現(xiàn)全劃切,并且斷面光滑。綜上所述,選用4 mm/s的切割速度較優(yōu)。
已有研究表明,劃切次數(shù)是影響切割槽深度的主要因素[18]。為達(dá)到全劃切所需要的切割槽深度,采用脈沖能量=3.08 μJ、切割速度=4 mm/s、重復(fù)頻率=610 kHz的加工參數(shù)不變,改變掃描次數(shù),研究其對(duì)切割效果的影響。
圖3 不同脈沖重復(fù)頻率下切割槽的光學(xué)顯微鏡圖:a1—c1)表面圖;a2—c2)斷面圖;d)變化規(guī)律圖
圖4 不同激光切割速度下切割槽的光學(xué)顯微鏡圖:a1—c1)表面圖;a2—c2)斷面圖;d)變化規(guī)律圖
從圖5a1—c1以及圖5a2—c2可以觀察到,當(dāng)掃描次數(shù)=2時(shí),次數(shù)過小不足以切穿,切割槽邊緣不平整;當(dāng)=12時(shí),深度已達(dá)到飽和,剛好切穿且切割槽邊緣光滑;當(dāng)=20時(shí),次數(shù)過多導(dǎo)致線寬增加且燒蝕嚴(yán)重,側(cè)面底部邊緣出現(xiàn)掛渣。因此,適當(dāng)?shù)卦黾哟螖?shù)不僅可以增加深度,還能改善切割槽邊緣質(zhì)量。圖5d表明,隨著掃描次數(shù)的增加,切割寬度和深度先快速增加后減緩,最后達(dá)到飽和。這是由于激光劃切SiC表面形成粗糙結(jié)構(gòu),導(dǎo)致SiC對(duì)激光的吸收率增加,切割槽寬度和深度會(huì)迅速增加;但切割槽被加工到一定深度,因?yàn)榧す饩劢构獍哂幸欢ǖ慕股钜约案咚构馐鴮?dǎo)致的V型槽側(cè)面會(huì)吸收大部分激光能量,激光去除效率減弱,導(dǎo)致最后深度和寬度達(dá)到飽和。綜上所述,選用掃描次數(shù)為12時(shí)劃切效果較優(yōu)。
對(duì)最佳工藝參數(shù)條件下加工的SiC基片斷面進(jìn)行微區(qū)成分分析,結(jié)果如圖6c—e所示。導(dǎo)電型4H-SiC劃切斷面主要由Si、C、O 3種元素組成,元素的相對(duì)質(zhì)量比分別為68.44%、22.68%和8.88%。面中間區(qū)域元素分布均勻,由圖6a—b也可以觀察到斷面的形貌起伏微小。在適當(dāng)?shù)哪芰枯敵鱿拢す鈱?duì)其多次劃切,斷面粗糙度較小。這是由于超快激光去除材料機(jī)制,激光輻射后幾百皮秒內(nèi)SiC會(huì)發(fā)生相位爆炸,噴射材料中包括Si和C蒸汽以及SiC熔體,前兩者會(huì)發(fā)生氧化生成SiO2顆粒和CO2氣體。SiC熔體在噴射后幾微秒內(nèi)保持高溫,還會(huì)發(fā)生相分離現(xiàn)象[23],直接分解為Si和C單質(zhì)。SiC的相分離現(xiàn)象,減弱SiC熔體飛濺、回流和重融現(xiàn)象,是實(shí)現(xiàn)高質(zhì)量劃切的有利因素;斷面O元素富集在斷面兩邊,證明存在SiO2堆積現(xiàn)象,這是由于重融層的生成以及材料于底部無法排出而積累所致[24]。
圖7中顯示了在=4 mm/s、=610 kHz、=12加工參數(shù)下,使用不同脈沖能量劃切的斷面形貌。隨脈沖能量上升,材料被去除,劃切斷面底部出現(xiàn)不同團(tuán)簇結(jié)構(gòu),其尺寸不斷增大。這是由于SiO2顆粒濺射重沉積所致。斷面存在SiO2納米顆粒以及相分離生成的Si和C單質(zhì)的大顆粒[25-26]。高斯分布的激光切割會(huì)導(dǎo)致V型切割槽,從圖7c1—c2可觀察到,越靠近V型槽底的位置燒蝕更嚴(yán)重,出現(xiàn)更多的SiO2納米顆粒再沉積和Si、C單質(zhì),致使側(cè)面出現(xiàn)過燒蝕現(xiàn)象,粗糙度上升,變化與圖8b對(duì)應(yīng)。圖7a1—a2中燒蝕底部出現(xiàn)針孔狀條紋結(jié)構(gòu),這是相鄰2個(gè)脈沖疊加作用導(dǎo)致的[18]。由圖7b1—b2可得,最佳加工參數(shù)下的基片斷面結(jié)構(gòu)主要為熔塊狀結(jié)構(gòu),斷面較為光滑。
圖5 不同激光掃描次數(shù)下切割槽的光學(xué)顯微鏡圖:a1—c1)表面圖;a2—c2)斷面圖;d)變化規(guī)律圖
圖6 劃切斷面的EDS微區(qū)成分分析:a)劃切斷面的SEM圖;b)激光共聚焦顯微圖; c—e)不同元素EDS圖
圖7 不同脈沖能量下劃切斷面SEM圖:a1—c1)斷面圖;a2—c2)局部放大圖
對(duì)劃切SiC基片斷面進(jìn)行粗糙度a測(cè)量,測(cè)量范圍為0.25 mm×0.1 mm,并進(jìn)行三點(diǎn)抗彎強(qiáng)度測(cè)試,以2個(gè)固定距離的支點(diǎn)平衡支撐切割后的基片,在兩支點(diǎn)的中心位置施加一個(gè)垂直向下的力,從而壓破薄片[27],如圖8a所示。試驗(yàn)所用的抗彎壓強(qiáng)計(jì)算公式見式(2)。
式中:、、、和分別為抗彎壓強(qiáng)、施加壓力、支點(diǎn)的距離、薄片的寬度、薄片的厚度,其中=8 mm,=2.5 mm,=0.1 mm。壓力為測(cè)試過程中基片破裂時(shí)施加的最大壓力。文中存在未全劃切的基片,需經(jīng)過裂片處理后測(cè)量其粗糙度和強(qiáng)度。裂片固然會(huì)使粗糙度略微上升以及使強(qiáng)度略微下降,但對(duì)其隨激光脈沖能量變化的趨勢(shì)影響不大。
如圖8b所示,隨著激光脈沖能量增大,劃切斷面粗糙度也隨之增加,相反劃切基片的強(qiáng)度隨之降低。當(dāng)<3.08 μJ時(shí),斷面存在未劃切部分以及低能量造成的弱燒蝕區(qū)域,導(dǎo)致a比較低;當(dāng)≥3.08 μJ時(shí),實(shí)現(xiàn)全劃切,但由于能量增大,強(qiáng)燒蝕導(dǎo)致汽化重凝材料增多,斷面結(jié)構(gòu)橫向起伏幅度增大,即其斷面a增大。
圖8 劃切基片抗彎強(qiáng)度檢測(cè)與劃切效果
目前關(guān)于超薄碳化硅晶圓劃切強(qiáng)度的相關(guān)報(bào)道較少,而關(guān)于超薄硅晶圓劃切的報(bào)道顯示,各種工藝下薄硅晶圓劃切強(qiáng)度使用激光劃切工藝在250 MPa左右[28],優(yōu)異的斷面粗糙度為350 nm[17]。由于碳化硅晶圓的莫氏硬度更高,給減薄工藝帶來一定的難度,由減薄導(dǎo)致?lián)p傷增加,因此同種加工手段下相比薄硅晶圓測(cè)試獲得的強(qiáng)度應(yīng)該更低。當(dāng)=3.08 μJ、a=296 nm且=364 MPa時(shí),本試驗(yàn)在實(shí)現(xiàn)全劃切的前提下可以制備出較高強(qiáng)度的基片。
由于選用短脈寬的飛秒激光,所以加工產(chǎn)生的熱影響較??;SiC材料受激光輻射后會(huì)發(fā)生相分離現(xiàn)象;小激光脈沖能量輸出可以減弱納米顆粒堆積程度;高重復(fù)頻率激光劃切有利于在低脈沖能量下實(shí)現(xiàn)高去除量。以上4個(gè)因素有利于減少全劃切斷面產(chǎn)生的碎屑、過燒蝕和裂紋等不良現(xiàn)象,使劃切基片最終達(dá)到良好的斷面形貌以及抗彎強(qiáng)度性能。圖8c和圖8d分別為最終劃切表面和側(cè)面效果圖。
1)切割槽寬度和深度與脈沖重復(fù)頻率、脈沖能量、切割速度和掃描次數(shù)有關(guān)。掃描次數(shù)對(duì)切割深度起著最重要的作用。影響切割寬度的主要因素為脈沖能量,其次是切割速度。高脈沖重復(fù)頻率能提高劃切質(zhì)量和去除效率。
2)激光劃切斷面由于SiO2納米顆粒噴濺出現(xiàn)不同尺寸的微納團(tuán)簇結(jié)構(gòu)。O元素的存在證明激光燒蝕基片時(shí)氧化物的生成,O元素富集在斷面的上下邊緣部分,說明存在SiO2堆積在斷面上下邊緣位置的現(xiàn)象;使用小脈沖能量激光進(jìn)行劃切,可以減少SiO2顆粒噴濺再沉積,從而使斷面出現(xiàn)大量熔塊狀結(jié)構(gòu),得到粗糙度較低的斷面形貌。斷面粗糙度降低,意味著劃切斷面存在的微裂紋等缺陷減少,從而使強(qiáng)度上升;脈沖能量過大則會(huì)使斷面出現(xiàn)過燒蝕,SiO2顆粒堆積導(dǎo)致斷面粗糙度上升。
3)采用較優(yōu)激光劃切工藝參數(shù),實(shí)現(xiàn)了飛秒激光全劃切超薄SiC基片,槽寬僅為15 μm。由于短脈寬小脈沖能量高重復(fù)頻率激光的作用以及SiC材料的相分離機(jī)制,基片劃切斷面燒蝕形貌良好,且抗彎強(qiáng)度較好。
[1] PUSHPAKARAN B N, SUBBURAJ A S, BAYNE S B, et al. Impact of Silicon Carbide Semiconductor Techno-logy in Photovoltaic Energy System[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 971-989.
[2] MARKS M R, HASSAN Z, CHEONG K Y. Ultrathin Wafer Pre-Assembly and Assembly Process Technologies: A Review[J]. Critical Reviews in Solid State and Mate-rials Sciences, 2015, 40(5): 251-290.
[3] ZHANG Zhe, WEN Zhi-dong, SHI Hai-yan, et al. Dual Laser Beam Asynchronous Dicing of 4H-SiC Wafer[J]. Micromachines, 2021, 12(11): 1331.
[4] OHMURA E, FUKUYO F, FUKUMITSU K, et al. Modi-fied-Layer Formation Mechanism into Silicon with Per-meable Nanosecond Laser[J]. International Journal of Com-putational Materials Science and Surface Engineering, 2007, 1(6): 677.
[5] KIM E, SHIMOTSUMA Y, SAKAKURA M, et al. 4H- SiC Wafer Slicing by Using Femtosecond Laser Double- Pulses[J]. Optical Materials Express, 2017, 7(7): 2450-2460.
[6] HOOPER A, FINN D. Analysis of Silicon Micromac-hining by UV Lasers, and Implications for Full Cut Laser Dicing of Ultra-Thin Semiconductor Device Wafers[J]. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT), 2010, 2010(DPC): 1743-1759.
[7] FORNAROLI C, HOLTKAMP J, GILLNER A. Dicing of Thin Si Wafers with a Picosecond Laser Ablation Pro-cess[J]. Physics Procedia, 2013, 41: 603-609.
[8] MARKS M R, CHEONG K Y, HASSAN Z. A Review of Laser Ablation and Dicing of Si Wafers[J]. Precision Engineering, 2022, 73: 377-408.
[9] SHIN H, KIM D. Strength of Ultra-Thin Glass Cut by Internal Scribing Using a Femtosecond Bessel Beam[J]. Optics & Laser Technology, 2020, 129: 106307.
[10] INDRI?IūNAS S, SVIRPLYS E, JORUDAS J, et al. Laser Processing of Transparent Wafers with a AlGaN/ GaN Heterostructures and High-Electron Mobility Devices on a Backside[J]. Micromachines, 2021, 12(4): 407.
[11] 江偉, 謝小柱, 魏昕, 等. 脈沖光纖激光控制斷裂切割超薄鈦酸鍶陶瓷基片[J]. 中國(guó)激光, 2016, 43(5): 91-99.
JIANG Wei, XIE Xiao-zhu, WEI Xin, et al. Pulse Fiber Laser Controlled Fracture Cutting of Ultrathin Strontium Titanate Ceramic Substrate[J]. Chinese Journal of Lasers, 2016, 43(5): 91-99.
[12] ZHAO Wan-qin, WANG Wen-jun, LI B Q, et al. Wave-length Effect on Hole Shapes and Morphology Evolution during Ablation by Picosecond Laser Pulses[J]. Optics & Laser Technology, 2016, 84: 79-86.
[13] SUN Xiao-yan, ZHOU Jian-hang, DUAN Jian, et al. Experimental Research on Ultrasound-Assisted Under-water Femtosecond Laser Drilling[J]. Laser and Particle Beams, 2018, 36(4): 487-493.
[14] FINN D S, LIN Zhi-bin, KLEINERT J, et al. Study of Die Break Strength and Heat-Affected Zone for Laser Proce-ssing of Thin Silicon Wafers[J]. Journal of Laser Applica-tions, 2015, 27(3): 032004.
[15] DONG Y, MOLIAN P. Femtosecond Pulsed Laser Abla-tion of 3CSiC Thin Film on Silicon[J]. Applied Physics A, 2003, 77(6): 839-846.
[16] DOMKE M, EGLE B, STROJ S, et al. Ultrafast-Laser Dicing of Thin Silicon Wafers: Strategies to Improve Front-and Backside Breaking Strength[J]. Applied Physics A, 2017, 123(12): 746.
[17] SUDANI N, VENKATAKRISHNAN K, TAN Bo. Laser Singulation of Thin Wafer: Die Strength and Surface Roughness Analysis of 80 Μm Silicon Dice[J]. Optics and Lasers in Engineering, 2009, 47(7-8): 850-854.
[18] 謝小柱, 黃顯東, 陳蔚芳, 等. 脈沖綠激光劃切藍(lán)寶石基片過程研究[J]. 中國(guó)激光, 2013, 40(12): 104-112.
XIE Xiao-zhu, HUANG Xian-dong, CHEN Wei-fang, et al. Study on Scribing of Sapphire Substrate by Pulsed Green Laser Irradiation[J]. Chinese Journal of Lasers, 2013, 40(12): 104-112.
[19] FARID N, NIETO D, O'CONNOR G M. Thin Film Ena-bling Sub-250?nm Nano-Ripples on Glass by Low Flue-nce IR Picosecond Laser Irradiation[J]. Optics & Laser Technology, 2018, 108: 26-31.
[20] NIETO D, ARINES J, O’CONNOR G M, et al. Single- Pulse Laser Ablation Threshold of Borosilicate, Fused Silica, Sapphire, and Soda-Lime Glass for Pulse Widths of 500?fs, 10?ps, 20?ns[J]. Applied Optics, 2015, 54(29): 8596-8601.
[21] BONAMIS G, MISHCHICK K, AUDOUARD E, et al. High Efficiency Femtosecond Laser Ablation with Giga-hertz Level Bursts[J]. Journal of Laser Applications, 2019, 31(2): 022205.
[22] ELAHI P, AK?AALAN ?, ERTEK C, et al. High-Power Yb-Based All-Fiber Laser Delivering 300?fs Pulses for High-Speed Ablation-Cooled Material Removal[J]. Optics Letters, 2018, 43(3): 535-538.
[23] DAVIAU K, LEE K. High-Pressure, High-Temperature Behavior of Silicon Carbide: A Review[J]. Crystals, 2018, 8(5): 217.
[24] FENG Shao-chuan, ZHANG Ru, HUANG Chuan-zhen, et al. An Investigation of Recast Behavior in Laser Abla-tion of 4H-Silicon Carbide Wafer[J]. Materials Science in Semiconductor Processing, 2020, 105: 104701.
[25] LONG Jiang-you, PENG Qing-fa, CHEN Gao-pan, et al. Centimeter-Scale Low-Damage Micromachining on Single- Crystal 4H-SiC Substrates Using a Femtosecond Laser with Square-Shaped Flat-Top Focus Spots[J]. Ceramics International, 2021, 47(16): 23134-23143.
[26] XIE Xiao-zhu, PENG Qing-fa, CHEN Gao-pan, et al. Femtosecond Laser Modification of Silicon Carbide Subs-trates and Its Influence on CMP Process[J]. Ceramics International, 2021, 47(10): 13322-13330.
[27] MARKS M R, CHEONG K Y, HASSAN Z. Femtosecond Laser Dicing of Ultrathin Si Wafers with Cu Backside Layer-a Fracture Strength and Microstructural Study[J]. Journal of Manufacturing Processes, 2021, 62: 859-872.
[28] DIJKSTRA P, VAN BORKULO J, VAN DER STAM R. Laser-Based Full Cut Dicing Evaluations for Thin Si Wafers[C]//2020 China Semiconductor Technology Inter-national Conference (CSTIC). Shanghai, China. IEEE, 2020: 1-5.
Full Dicing of Ultra-thin Silicon Carbide Substrate by Femtosecond Laser
a,a,a,a,a,a,b,a,b,c
(a. Laser Micro/Nano Processing Lab, b. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, c. Department of Experiment Teaching, School of Electromechanial Engineering, Guangdong University of Technology, Guangzhou 510006, china)
To achieve full dicing of ultra-thin silicon carbide substrate in this paper, it is necessary to attain a narrow grooves (<25 μm) with high quality while ensuring bending strength of substrate after dicing. The silicon carbide substrate was full diced by femtosecond laser with the wavelength of 1 030 nm. The effects of pulse repetition rate, pulse energy, dicing speed and scanning times on the groove width, groove depth and section morphology were analyzed by scanning electron microscope and optical microscopy. The microelement analysis of the section surface under different pulse energy was carried out by energy dispersive spectrometer, the surface roughness was measured by laser scanning confocal microscope, and the bending strength of substrate were tested by electronic universal testing machine. The results show that there were mainly three elements in the groove section, including Si, C and O. O element is enriched at the edge of the section. The micro/nano structure of the cross section was affected by sputtering and redeposition of SiO2particle. Different size structure occurred for using diverse pulse energy. The surface roughness of the section increased with the enhancement of pulse energy, whereas the strength decreased according to the three point bend testing. A better groove with the width of 15 μm and depth greater than 100 μm was obtained by pulse energy of 3.08 μJ, pulse repetition rate of 610 kHz, dicing speed of 4 mm/s and scanning times of 12. The surface roughness of section was 296 nm and the bending strength of substrate was 364 MPa. It can be concluded that the width and depth of the cutting groove are related to the process parameters of pulse repetition rate, pulse energy, dicing speed and scanning times. The scanning time plays the most important role in the cutting depth. The main factor which affects the cutting width is the pulse energy, followed by the cutting speed. The distribution of O element indicates that SiO2is accumulated at the edges of the section. Low pulse energy of laser is conductive to the dicing of substrate, for it can decrease the sputtering and redeposition of SiO2particle which enables the formation of a large number of the melted block structure and low surface roughness of the section. With the reduction in section roughness which means the less defects such as micro-cracks in the fracture surface, the bending strength augments. Excessive pulse energy will cause over-ablation in the section, and the severe redeposition of SiO2particles will give rise to the roughness of the section. Using the excellent processing parameters in laser dicing, the silicon carbide substrate can be full diced by femtosecond laser with a 15 μm-wide groove. For the ultra-short laser with low pulse energy and high pulse repetition ratio is used and the phase separation phenomenon of SiC materials under the laser radiation exists, the high quality of ablation section morphology and the excellent bending stress of substrate can be attained.
laser dicing; ultra-thin silicon carbide; infrared femtosecond laser; section morphology; surface roughness test; bending strength test
v261.8
A
1001-3660(2023)01-0306-08
10.16490/j.cnki.issn.1001-3660.2023.01.031
2022–01–04;
2022–04–01
2022-01-04;
2022-04-01
廣東省基礎(chǔ)與應(yīng)用基礎(chǔ)研究基金區(qū)域聯(lián)合基金重點(diǎn)項(xiàng)目(2020B1515120058);國(guó)家自然科學(xué)基金(52075103)
Key Project of Regional Joint Fund of Guangdong Basic and Applied Basic Research Foundation (2020B1515120058); National Natural Science Foundation of China (52075103)
張煒(1996—),男,碩士研究生,主要研究方向?yàn)榧す馕⒓{加工。
ZHANG Wei (1996-), Male, Postgraduate, Research focus: laser micro/nano processing.
謝小柱(1975—),男,博士,教授,主要研究方向?yàn)榧す馕⒓{加工。
XIE Xiao-zhu (1975-), Male, Doctor, Professor, Research focus: laser micro/nano processing.
張煒, 劉濤, 何家樂, 等. 飛秒激光全劃切超薄碳化硅基片[J]. 表面技術(shù), 2023, 52(1): 306-313.
ZHANG Wei, LIU Tao, HE Jia-le, et al. Full Dicing of Ultra-thin Silicon Carbide Substrate by Femtosecond Laser[J]. Surface Technology, 2023, 52(1): 306-313.
責(zé)任編輯:萬長(zhǎng)清