馬世忠,孫榮祿,2,牛偉,2,張連旺,蔣廷普,楊佳偉
退火對(duì)激光熔覆CoCrFeNiW0.6高熵合金涂層組織與性能的影響
馬世忠1,孫榮祿1,2,牛偉1,2,張連旺1,蔣廷普1,楊佳偉1
(1.天津工業(yè)大學(xué) 機(jī)械工程學(xué)院,天津 300387;2.天津市現(xiàn)代機(jī)電裝備技術(shù)重點(diǎn)實(shí)驗(yàn)室,天津 300387)
目的 通過對(duì)激光熔覆CoCrFeNiW0.6高熵合金涂層進(jìn)行退火處理,使涂層性能得到進(jìn)一步提高。方法 采用RFL–C1000光纖激光器在45鋼表面制備CoCrFeNiW0.6高熵合金涂層,通過SXL–1200管式電阻爐在不同溫度下(600、800、1 000 ℃)對(duì)高熵合金涂層進(jìn)行退火處理,保溫時(shí)間為2 h,冷卻方式為隨爐冷卻。利用X射線衍射儀(XRD)、掃描電子顯微鏡(SEM)、能譜儀(EDS)、顯微硬度計(jì)、摩擦磨損試驗(yàn)機(jī)等對(duì)熔覆層的微觀組織、顯微硬度和摩擦磨損性能進(jìn)行分析和測(cè)試。結(jié)果 CoCrFeNiW0.6高熵合金涂層由FCC相和μ相(Fe7W6)組成,經(jīng)過不同溫度退火處理后,涂層未析出新的相,μ相衍射峰強(qiáng)度呈先減小后增大的趨勢(shì);涂層組織經(jīng)高溫退火(800 ℃、1 000 ℃,2 h)后發(fā)生了明顯的改變,經(jīng)800 ℃/2 h退火處理后,枝晶間析出了大量μ相沉淀,經(jīng)1 000 ℃/2 h退火處理后晶界開始出現(xiàn)斷裂分解,晶粒內(nèi)部和晶界部位析出了大量的富W顆粒相(μ 相)。經(jīng)1 000 ℃/2 h退火處理后,熔覆層具有較高的平均顯微硬度,為475.68HV0.3,相較于未經(jīng)退火處理的熔覆層,其硬度提高了約45%;經(jīng)600 ℃/2 h退火處理后,涂層的平均摩擦因數(shù)最低,約為0.226,磨損量最小,與未經(jīng)退火處理的涂層相比,其磨損量降低了約28%。退火溫度的升高并未使磨損機(jī)制發(fā)生明顯改變,主要為磨粒磨損。結(jié)論 高溫退火處理可以促進(jìn)μ相的生成;經(jīng)退火后,CoCrFeNiW0.6高熵合金涂層的硬度得到顯著提高,改善了涂層的摩擦磨損性能,強(qiáng)化機(jī)制為固溶強(qiáng)化和第二相強(qiáng)化。
激光熔覆;高熵合金;退火;微觀組織;顯微硬度;摩擦磨損性能
傳統(tǒng)合金一般以1種或2種元素為主元,通過添加少量其他功能元素來提高合金某方面的性能。由于合金熵的局限性,傳統(tǒng)合金已經(jīng)不能滿足人們?cè)絹碓礁叩男枨?,因此?guó)內(nèi)外眾多學(xué)者逐漸超出傳統(tǒng)合金的研究領(lǐng)域,對(duì)多主元合金展開了廣泛研究,并提出一系列新的合金設(shè)計(jì)方法。2004年,葉均蔚教授等[1]提出了“高熵合金”這一理念,由5~13種主元構(gòu)成,為了達(dá)到高熵值,同時(shí)規(guī)定每種主元的含量(均用原子數(shù)分?jǐn)?shù)表示)在5%~35%之間。高熵合金打破了傳統(tǒng)合金的設(shè)計(jì)原則,開創(chuàng)了新型合金的研究先河。因?yàn)楦哽睾辖鹁哂歇?dú)特的高熵效應(yīng)、遲滯擴(kuò)散效應(yīng)、晶格畸變效應(yīng)、“雞尾酒”效應(yīng)[2-5],因此具有良好的強(qiáng)度、硬度、耐磨性、耐蝕性和熱穩(wěn)定性等[6-7],逐漸成為目前的研究熱點(diǎn)。
Co、Cr、Fe、Ni等元素的原子半徑和電負(fù)性相近,不同元素原子之間的混合焓較小。由這幾種元素組成的合金容易形成單一的面心立方(FCC)固溶體結(jié)構(gòu),且具有良好的塑性和韌性,但在硬度、強(qiáng)度、耐磨性等方面表現(xiàn)一般[8-9],因此經(jīng)常通過合金化手段向CoCrFeNi中加入其他功能元素,以實(shí)現(xiàn)高熵合金綜合性能的提升。Liu等[10]通過真空電弧熔煉技術(shù)制備了CoCrFeNiMo高熵合金塊體,研究發(fā)現(xiàn),隨著Mo元素含量的增加,金屬間化合物沉淀不斷增多,合金的顯微硬度和屈服應(yīng)力不斷增加,塑性降低;在=1時(shí),合金具有較好的綜合性能。
機(jī)械零件的失效往往先發(fā)生在材料的表面,因此在零件表面制備高熵合金涂層,既能保證零件具有優(yōu)異的性能,又能提高其經(jīng)濟(jì)性。Ding等[11]制備了CoCrFeNiTiNbB高熵合金涂層,在加入B后,涂層中原位合成了TiB相,組織中出現(xiàn)了更多的短棒狀枝晶和等軸晶,其組織更加精細(xì)均勻,經(jīng)過60 min摩擦磨損實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)=1.25時(shí),涂層的磨損量?jī)H為基材的0.45倍左右,磨損機(jī)制由磨粒磨損和黏著磨損(<1)轉(zhuǎn)變?yōu)閱我坏哪チDp(≥1)。Gao等[12]在AISI 1045鋼表面制備了FeCoNiCrAl0.5Ti0.5高熵合金涂層,發(fā)現(xiàn)涂層出現(xiàn)了菊花狀共晶結(jié)構(gòu),并且具有良好的耐磨性,其磨損率僅為基材的三分之一。在高熵合金涂層制備過程中容易出現(xiàn)成分偏析及各種晶格結(jié)構(gòu)缺陷,這會(huì)影響高熵合金涂層的組織和性能。采用適當(dāng)?shù)臒崽幚砉に嚳梢栽诓桓淖兒辖鹪爻煞值那闆r下使得合金發(fā)生相變,從而改善合金的微觀組織結(jié)構(gòu),減少合金內(nèi)部的缺陷,減小應(yīng)力,提高合金的性能[13]。Xiong等[14]將FeMnCrNiCo+TiC(TiC的質(zhì)量分?jǐn)?shù)為20%)高熵合金涂層進(jìn)行600 ℃/750 ℃/ 900 ℃熱處理,并保溫75 h,結(jié)果表明,熱處理使TiC顆粒分布更加均勻,并且促進(jìn)了TiC的分解,使涂層固溶強(qiáng)化作用得到加強(qiáng),并且在900 ℃時(shí)生成了新的M23C6碳化物,提高了涂層的顯微硬度、抗裂性和耐磨性。
基于以上研究和發(fā)現(xiàn),文中將采用激光熔覆技術(shù)制備CoCrFeNiW0.6高熵合金涂層,并通過退火處理,探究不同退火溫度(600、800、1 000 ℃)對(duì)涂層組織與性能的影響。
基材選用45鋼,將基材切割成50 mm×50 mm× 10 mm的基板,選取基板的50 mm×50 mm表面作為熔覆面,采用角磨機(jī)粗磨熔覆面,以去除氧化皮,并用200目至800目的砂紙將熔覆面打磨平整待用。使用JA2003電子精密天平稱量不同質(zhì)量的W單質(zhì)粉末(純度為99.9%,粒度為300目)、CoCrFeNi合金粉末(粒度為45~105 μm),粉末中各元素的原子數(shù)分?jǐn)?shù)如表1所示。利用MSK–SFM–1型臥式行星球磨機(jī)將合金粉末混合均勻,球磨機(jī)的轉(zhuǎn)速為300 r/min,混合時(shí)間為120 min;研磨球材質(zhì)為硬質(zhì)合金,直徑為3~5 mm,球料比為3∶1。將混合均勻的合金粉末置于干燥箱內(nèi),在80 ℃下烘干(12 h),以保證粉末的干燥性和流動(dòng)性。
表1 CoCrFeNiW0.6高熵合金的元素成分 at.%
采用RFL–C1000激光器進(jìn)行單層激光熔覆實(shí)驗(yàn)。供粉方法選擇預(yù)置涂層法,預(yù)置涂層的厚度為1 mm,在實(shí)驗(yàn)過程中通入氬氣,防止材料在高溫下發(fā)生氧化,氬氣流量為10 L/min。激光熔覆工藝參數(shù)如表2所示。采用SXL–1200管式電阻爐在不同溫度下對(duì)高熵合金涂層進(jìn)行退火處理,處理溫度分別為600、800、1 000 ℃,保溫時(shí)間為2 h,冷卻方式為隨爐冷卻。為了簡(jiǎn)化,文中將未經(jīng)退火處理的初始樣品和經(jīng)過600、800、1 000 ℃退火處理的樣品分別用W0.6、W0.6/600 ℃、W0.6/800 ℃、W0.6/1 000 ℃表示。
表2 激光熔覆工藝參數(shù)
利用電火花線切割機(jī)將熔覆后的樣板切割成尺寸為10 mm×10 mm×10 mm和10 mm×5 mm×10 mm的試樣。使用240目至1000目砂紙將涂層表面打磨平整,采用D8–X射線衍射儀檢測(cè)多道涂層的相成分。使用240目至1500目砂紙將試樣截面打磨平整,并拋光。利用飽和FeCl3鹽酸溶液腐蝕后,采用GeminiSEM 500熱場(chǎng)發(fā)射掃描電鏡(FSEM)和其所配置的特征X射線能譜儀(EDS)對(duì)熔覆層的微觀組織和元素分布進(jìn)行觀察和測(cè)試。利用HV1000Z自動(dòng)轉(zhuǎn)塔顯微硬度計(jì)測(cè)試單道熔覆層的顯微硬度,所加載荷為3 N,加載時(shí)間為10 s,沿熔覆層截面向下每隔0.1 mm打1個(gè)點(diǎn),同一深度測(cè)試3個(gè)點(diǎn),并取其平均值。使用800目砂紙沿同一方向持續(xù)打磨涂層表面,以保證實(shí)驗(yàn)所用涂層表面平整,并處于同一粗糙度,利用環(huán)塊式摩擦磨損試驗(yàn)機(jī)(M–2000型)對(duì)熔覆層進(jìn)行摩擦磨損實(shí)驗(yàn),摩擦環(huán)為淬火處理后的GCr15鋼,實(shí)驗(yàn)參數(shù)如表3所示。
表3 摩擦磨損實(shí)驗(yàn)參數(shù)
不同退火溫度下,涂層的XRD圖譜如圖1所示。未經(jīng)退火處理時(shí),W0.6出現(xiàn)了FCC相和μ相衍射峰,經(jīng)與標(biāo)準(zhǔn)PDF卡片對(duì)比,此時(shí)μ相的主要成分為Fe7W6。經(jīng)過600、800、1 000 ℃退火處理后,μ相衍射峰強(qiáng)度呈先減小后增大的趨勢(shì),F(xiàn)CC相衍射峰強(qiáng)度與初始樣品相比明顯降低,并且在1 000 ℃時(shí),μ相衍射峰變得更多。經(jīng)與標(biāo)準(zhǔn)PDF卡片對(duì)比,此時(shí)的μ相主要由Fe7W6和Co7W6組成。經(jīng)過計(jì)算,W0.6、W0.6/600 ℃、W0.6/800 ℃、W0.6/1 000 ℃在(200)晶面的晶格常數(shù)分別為3.624、3.628、3.620、3.592 ?(1 ?=0.1 nm),晶格常數(shù)呈先增大后減小的趨勢(shì)。這是因?yàn)榧す馊鄹簿哂休^高的加熱速率和冷卻速率,其制備的涂層在未經(jīng)熱處理的情況下,容易出現(xiàn)成分偏析及各種晶格結(jié)構(gòu)缺陷,內(nèi)應(yīng)力較大[13]。未經(jīng)熱處理時(shí),析出的μ相降低了固溶體中W元素的含量,涂層組織狀態(tài)不平衡,經(jīng)600 ℃/2 h退火處理后,殘余應(yīng)力得到釋放,晶格結(jié)構(gòu)缺陷得到緩解,原子擴(kuò)散能力得到增強(qiáng),析出μ相中的W原子進(jìn)入固溶體中,占據(jù)了原晶格點(diǎn)陣中的位置。由于W原子的半徑較大,從而導(dǎo)致晶格發(fā)生了畸變,使得晶格常數(shù)變大,μ相的體積分?jǐn)?shù)減少,μ相衍射峰強(qiáng)度減弱。在傳統(tǒng)高溫合金中,μ相通常在700~1 000 ℃內(nèi)析出[15],對(duì)此次實(shí)驗(yàn)起到了借鑒作用。在經(jīng)過800、1 000 ℃,2 h退火處理后,固溶體中的W原子以μ相化合物的形式析出,固溶體中W元素的含量減少,使得晶格常數(shù)變小,μ相體積分?jǐn)?shù)增大,μ相衍射峰強(qiáng)度增大。
圖1 不同退火溫度下CoCrFeNiW0.6高熵合金熔覆層X射線衍射圖
在不同退火溫度下,涂層的微觀組織和不同位置EDS點(diǎn)掃描結(jié)果如圖2和表4所示。未經(jīng)退火處理時(shí),涂層的顯微組織呈樹枝晶結(jié)構(gòu),并在枝晶間析出了少量的沉淀,經(jīng)EDS分析發(fā)現(xiàn)沉淀中富集W元素,枝晶寬度約為4~5 μm。經(jīng)過600 ℃/2 h退火處理后,枝晶繼續(xù)生長(zhǎng),寬度約為4 μm,枝晶間沉淀的W元素含量有所降低。經(jīng)過800 ℃/2 h退火處理后,枝晶寬度約為2~3 μm,顯微組織析出了大量富W沉淀物,其Ni元素含量較低。經(jīng)過1 000 ℃/2 h退火處理后,顯微組織晶粒形態(tài)發(fā)生了顯著變化,晶界開始斷裂分解,晶粒內(nèi)部和晶界部位出現(xiàn)了大量的細(xì)小顆粒物,其寬度小于0.5 μm,且趨于均勻分布,枝晶寬度約為3~4 μm,斷裂晶界的W元素含量較高,基體中W元素較為貧乏。由于激光熔覆具有較高的能量密度,使基材與合金粉末共同熔化,形成對(duì)流熔池,導(dǎo)致熔覆層中測(cè)定的Fe元素含量高于理論值[16]。W0.6/1 000 ℃高熵合金熔覆層的局部EDS面掃描圖像如圖3所示,可以看到,W元素在明亮區(qū)域(析出顆粒和斷裂晶界)存在明顯的偏聚,基體中W元素的含量較低。
圖2 不同退火溫度下CoCrFeNiW0.6高熵合金涂層的微觀組織
表4 不同退火溫度下CoCrFeNiW0.6高熵合金熔覆層測(cè)試點(diǎn)EDS分析
結(jié)合XRD圖像與金屬材料凝固理論[17-18]分析,在凝固條件下,界面前沿溶質(zhì)會(huì)富集成一個(gè)邊界層,導(dǎo)致液相凝固溫度與界面前沿實(shí)際溫度產(chǎn)生差異,從而引起成分過冷。此時(shí),界面在生長(zhǎng)過程中變得不穩(wěn)定,不斷生長(zhǎng)至液體深處,形成了枝晶。溶質(zhì)的擴(kuò)散速率遠(yuǎn)小于凝固速率,激光熔覆具有較快的加熱、冷卻速率,實(shí)現(xiàn)平衡凝固十分困難,因此在未經(jīng)退火處理時(shí),較快的冷卻速率使W原子擴(kuò)散受阻,部分W原子進(jìn)入固溶體晶格中,形成了置換固溶體。另一部分W原子與Fe原子結(jié)合,生成了新的化合物沉淀(Fe7W6),即μ相,如圖2a所示。經(jīng)過600 ℃/2 h退火處理后,殘余應(yīng)力減小,晶格結(jié)構(gòu)缺陷得到緩解,溫度的升高為原子擴(kuò)散提供了能量,使W原子進(jìn)一步擴(kuò)散到固溶體晶格中。此時(shí),μ相硬質(zhì)沉淀的體積分?jǐn)?shù)變小,如圖2b所示。經(jīng)過800 ℃/2 h退火處理后,高溫退火使固溶體內(nèi)部W原子從固溶體中析出[19],并在枝晶間與Fe原子結(jié)合聚集,促進(jìn)了μ相沉淀的形成和生長(zhǎng),如圖2c所示。經(jīng)過1 000 ℃/2 h退火處理后,固溶體內(nèi)部的W原子進(jìn)一步擴(kuò)散,并從固溶體中析出,形成了大量富W納米級(jí)顆粒相,如圖2d所示,這與高溫合金退火后TCP相的析出行為十分相似[20-21]。在XRD圖中可見,此時(shí)μ相衍射峰增多,且強(qiáng)度更大,因此判斷顆粒相為μ相,證明1 000 ℃/2 h的退火處理可以起到細(xì)化μ相的作用。在以往研究中,不少學(xué)者也得出了相似的結(jié)論[19,22]。
由圖4可以看出,退火溫度的升高使熔覆層的硬度逐漸增大。經(jīng)計(jì)算,W0.6、W0.6/600 ℃、W0.6/800 ℃、W0.6/1 000 ℃熔覆層的平均硬度分別為(327.75± 15.35)HV0.3、(380.27±32.27)HV0.3、(419.15±34.15)HV0.3、(475.68±32.92)HV0.3。經(jīng)過1 000 ℃/2 h退火處理后,熔覆層硬度達(dá)到最大值,相較于未經(jīng)退火處理的熔覆層,其硬度提高了約45%。顯微硬度的提高主要有以下幾個(gè)原因:W原子具有較大的原子半徑,在進(jìn)入晶格形成置換固溶體時(shí),會(huì)產(chǎn)生晶格畸變效應(yīng),造成更加明顯的固溶強(qiáng)化效果;W元素促進(jìn)了μ相的形成,μ相屬于硬質(zhì)相[23],能有效抑制位錯(cuò)運(yùn)動(dòng),增大位錯(cuò)滑移的阻力,實(shí)現(xiàn)第二相強(qiáng)化;高溫退火處理(800 ℃/2 h、1 000 ℃/2 h)促進(jìn)了μ相的析出,使得合金的硬度進(jìn)一步提高。這也表明CoCrFeNiW0.6高熵合金涂層有退火硬化的現(xiàn)象。未經(jīng)退火處理時(shí),熱影響區(qū)的硬度較高、變化較大,經(jīng)退火處理后,熱影響區(qū)的硬度下降,并接近于基材的硬度,變化較小。結(jié)合熱影響區(qū)顯微組織(圖5)分析,退火前后熱影響區(qū)組織發(fā)生了明顯變化,由退火前的淬火組織轉(zhuǎn)變?yōu)橥嘶鸷蟮闹楣怏w組織,從而使該區(qū)域硬度下降,并接近于基材硬度。
圖3 W0.6/1 000 ℃高熵合金熔覆層元素分布
圖4 不同退火溫度下CoCrFeNiW0.6高熵合金涂層的顯微硬度
圖5 熱影響區(qū)顯微組織
不同退火溫度下涂層的摩擦因數(shù)曲線如圖6所示。由于實(shí)驗(yàn)前期存在跑合階段,導(dǎo)致涂層的摩擦因數(shù)普遍不穩(wěn)定,隨著摩擦副與涂層之間接觸面的增大,摩擦因數(shù)會(huì)逐漸穩(wěn)定[24]。涂層的平均摩擦因數(shù)與磨損量如圖7所示,W0.6、W0.6/600 ℃、W0.6/800 ℃、W0.6/1 000 ℃涂層在穩(wěn)定磨損階段(5~20 min)的平均摩擦因數(shù)分別為0.311、0.226、0.288、0.291,涂層的磨損量分別為2.9、2.1、2.6、2.8 mg。經(jīng)過退火處理后,涂層的摩擦因數(shù)和磨損量降低。經(jīng)600 ℃/2 h退火處理后,涂層的摩擦因數(shù)和磨損量達(dá)到最低,與未經(jīng)退火處理的涂層相比,磨損量降低了約28%;在800 ℃/2 h、1 000 ℃/2 h退火處理后,涂層的摩擦因數(shù)和磨損量有不同程度的升高,但均低于未經(jīng)退火處理的涂層。結(jié)合微觀組織分析,經(jīng)600 ℃/2 h退火處理后,緩解了晶格結(jié)構(gòu)缺陷,加上少量富W沉淀的嵌入,使微觀界面的穩(wěn)定性大大提高;W元素傾向于向固溶體中擴(kuò)散,使晶格畸變加劇,固溶強(qiáng)化得到顯著增強(qiáng)。經(jīng)800 ℃/2 h退火處理后,W原子從固溶體中析出,在枝晶間與Fe原子結(jié)合形成了大量μ相硬質(zhì)沉淀,增大了位錯(cuò)滑移的阻力,使涂層硬度得到提高,過多的μ相硬質(zhì)沉淀使得涂層在摩擦磨損過程中產(chǎn)生了更多具有更高硬度的磨屑,其作為磨粒不斷微切削涂層表面,使涂層磨損加劇。經(jīng)1 000 ℃/2 h退火處理后,析出的μ相沉淀更細(xì)小、更密集,使摩擦磨損過程中產(chǎn)生的硬質(zhì)沉淀磨屑進(jìn)一步增多,同時(shí),晶界的斷裂分解也使微觀界面的穩(wěn)定性降低,使涂層的摩擦因數(shù)略高于W0.6/800 ℃。由此可見,μ相在常溫摩擦磨損中起到了“雙刃劍”的作用,既能提高涂層的硬度,增加位錯(cuò)滑移的阻力,提高摩擦磨損性能,又會(huì)在摩擦磨損過程中產(chǎn)生具有更高硬度的磨粒,降低摩擦磨損性能,而最終μ相對(duì)常溫摩擦磨損性能的影響是2種情況綜合的結(jié)果。
圖6 不同退火溫度下CoCrFeNiW0.6高熵合金涂層的摩擦因數(shù)
圖7 不同參數(shù)CoCrFeNiW0.6高熵合金熔覆層的磨損量和平均摩擦因數(shù)
涂層磨損形貌如圖8所示,未經(jīng)退火處理時(shí),熔覆層磨損表面出現(xiàn)了較寬、較深的犁溝形磨痕,大量磨屑在犁溝處堆積,主要磨損機(jī)制為磨粒磨損。這是因?yàn)槲唇?jīng)退火處理時(shí),熔覆層硬度較低,硬質(zhì)沉淀顆粒在摩擦磨損過程中出現(xiàn)了脫落現(xiàn)象,在有良好塑性的FCC固溶體的“黏合”作用下[25],形成了大顆粒磨屑,受到磨環(huán)切向力的作用,與熔覆層發(fā)生了相對(duì)運(yùn)動(dòng),形成了寬而深的犁溝形磨痕。經(jīng)過退火處理后,磨損表面犁溝形磨痕變淺,并且出現(xiàn)了大量片狀細(xì)小磨屑,磨損機(jī)制主要為磨粒磨損。這是因?yàn)樵?00 ℃/2 h退火處理后,W原子趨于向固溶體晶格中擴(kuò)散,使晶格畸變加劇,固溶強(qiáng)化效果得到顯著增強(qiáng),硬度提高,有效阻礙了位錯(cuò)滑移,μ相硬質(zhì)顆粒的減少,使磨損表面變得更平坦,磨痕變淺。經(jīng)800 ℃/2 h、1 000 ℃/2 h退火處理后,析出的大量μ相硬質(zhì)沉淀雖然使熔覆層硬度得到顯著提高,但也會(huì)在摩擦磨損過程中使更多硬質(zhì)顆粒脫落,形成磨粒,在磨環(huán)切向力的作用下,加劇對(duì)熔覆層的微切削作用,并形成細(xì)長(zhǎng)磨痕。
圖8 不同退火溫度CoCrFeNiW0.6高熵合金涂層的磨損形貌
1)CoCrFeNiW0.6高熵合金涂層由FCC相和μ相組成,經(jīng)過不同溫度退火處理后,涂層并未析出新的相,μ相衍射峰強(qiáng)度呈先減小后增大的趨勢(shì)。未經(jīng)退火處理和經(jīng)600 ℃/2 h退火處理后,涂層顯微組織主要由樹枝晶和少量μ相沉淀組成。經(jīng)過800 ℃/2 h退火處理后,枝晶間析出了大量的μ相沉淀。經(jīng)1 000 ℃/2 h退火處理后,晶界開始斷裂分解,組織中析出了大量的富W顆粒相(μ相),在晶粒內(nèi)部和晶界部位均勻分布,μ相得到細(xì)化。
2)經(jīng)1 000 ℃/2 h退火處理后,熔覆層的顯微硬度達(dá)到最大值(475.68HV0.3),相較于未經(jīng)退火處理的熔覆層,其硬度提高了約45%;經(jīng)600 ℃/2 h退火處理后,涂層在穩(wěn)定磨損階段的平均摩擦因數(shù)最低(0.226),磨損量最小(2.1 mg),與未經(jīng)退火處理的涂層相比,其磨損量降低了約28%,涂層的摩擦磨損性能最好。強(qiáng)化機(jī)制主要為固溶強(qiáng)化和第二相(μ相)強(qiáng)化。經(jīng)退火處理后,磨損機(jī)制并未發(fā)生明顯改變,主要為磨粒磨損,磨損表面變平坦,磨痕變淺。
[1] TSAI M H, YE J W. High-Entropy Alloys: A Critical Review[J]. Materials Research Letters, 2014, 2(3): 107- 123.
[2] YE Y F, WANG Q, LU J. High-Entropy Alloy: Challenges and Prospects[J]. Materials Today, 2016, 19(6): 349-362.
[3] 王雪姣, 喬珺威, 吳玉程. 高熵合金: 面向聚變堆抗輻照損傷的新型候選材料[J]. 材料導(dǎo)報(bào), 2020, 34(17): 17058-17066.
WANG Xue-jiao, QIAO Jun-wei, WU Yu-cheng. High Entropy Alloys: The New Irradiation-Resistant Candidate Materials towards the Fusion Reactors[J]. Materials Reports, 2020, 34(17): 17058-17066.
[4] 韓志東. 含Ti高熵合金的結(jié)構(gòu)與性能研究[D]. 北京: 清華大學(xué), 2017: 1-4.
HAN Zhi-dong. Research on the Structures and Properties of Ti-Containing High Entropy Alloys[D]. Beijing: Tsinghua University, 2017: 1-4.
[5] MISHRA R S, HARIDAS R S, AGRAWAL P. High Entropy Alloys-Tunability of Deformation Mechanisms through Integration of Compositional and Microstructural Domains[J]. Materials Science and Engineering: A, 2021, 812: 141085.
[6] ZHANG Wei-ran, LIAW P K, ZHANG Yong. Science and Technology in High-Entropy Alloys[J]. Science China Materials, 2018, 61(1): 2-22.
[7] 張世一, 王勇, 韓彬, 等. 激光熔覆多主元高熵合金涂層的研究進(jìn)展[J]. 材料導(dǎo)報(bào), 2017, 31(S1): 485-488.
ZHANG Shi-yi, WANG Yong, HAN Bin, et al. Progress in Laser Clad Multi-Principal-Element High Entropy Alloy Coatings[J]. Materials Reports, 2017, 31(S1): 485-488.
[8] LIU W H, YANG T, LIU C T. Precipitation Hardening in CoCrFeNi-Based High Entropy Alloys[J]. Materials Chemistry and Physics, 2018, 210: 2-11.
[9] SHABANI M, INDECK J, HAZELI K, et al. Effect of Strain Rate on the Tensile Behavior of CoCrFeNi and CoCrFeMnNi High-Entropy Alloys[J]. Journal of Mate-rials Engineering and Performance, 2019, 28(7): 4348-4356.
[10] LIU Ying, XIE Yong-xin, CUI Shao-gang, et al. Effect of Mo Element on the Mechanical Properties and Tribo-lo-gical Responses of CoCrFeNiMoHigh-Entropy Alloys[J]. Metals, 2021, 11(3): 486.
[11] DING Lin, WANG Hong-xin. Microstructure and Wear Resistance of Laser Clad CoCrFeNiTiNbBHigh Entropy Alloy Coatings[J]. Journal of Thermal Spray Technology, 2021, 30(8): 2187-2196.
[12] GAO Shuo-hong, CAO Jia-jun, QIU Zhao-guo, et al. A Novel Wear-Resistant FeCoNiCrAl0.5Ti0.5Coating Fabri-cated by Laser Cladding Technology[J]. Materials Letters, 2022, 321: 132393.
[13] 李承澤, 尤俊華, 白鶴山, 等. 高熵合金的熱處理綜述[J]. 材料熱處理學(xué)報(bào), 2020, 41(5): 1-12.
LI Cheng-ze, YOU Jun-hua, BAI He-shan, et al. A Review of Heat Treatment of High Entropy Alloys[J]. Transactions of Materials and Heat Treatment, 2020, 41(5): 1-12.
[14] XIONG Jian-kun, WANG Da-yong, CAI Yang-chuan, et al. Effect of High-Temperature Heat Treatment on Microstructure and Properties of FeMnCrNiCo?+?20 wt.%TiC High-Entropy Alloy Coating[J]. Applied Physics A, 2022, 128(4): 267.
[15] 王雷. CoCrFeNiW高熵合金組織與力學(xué)性能研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2020: 32-35.
WANG Lei. Microstructure and Mechanical Properties of CoCrFeNiWHigh Entropy Alloys[D]. Harbin: Harbin Institute of Technology, 2020: 32-35.
[16] LIU Hao, GAO Wen-peng, LIU Jian, et al. Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coa-ting Fabricated by Laser Cladding[J]. Journal of Materials Engineering and Performance, 2020, 29(11): 7170-7178.
[17] ZHENG Hui-ting, CHEN Rui-run, QIN Gang, et al. Microstructure Evolution, Cu Segregation and Tensile Properties of CoCrFeNiCu High Entropy Alloy during Directional Solidification[J]. Journal of Materials Science and Technology, 2020, 38: 19-27.
[18] LUO Zhi-cong, WANG Hai-peng. Primary Dendrite Growth Kinetics and Rapid Solidification Mechanism of Highly Undercooled Ti-Al Alloys[J]. Journal of Materials Science and Technology, 2020, 40: 47-53.
[19] WANG Pei, WANG Ya-fei, CUI Fei, et al. Microstructural Evolution, Mechanical Properties and Corrosion Resi-s-tance of CoCrFeNiW0.5High Entropy Alloys with Various Annealing Heat Treatment[J]. Journal of Alloys and Compounds, 2022, 918: 165602.
[20] ZHANG Jian, LI Jin-guo, JIN Tao, et al. Effect of Mo Concentration on Creep Properties of a Single Crystal Nickel-Base Superalloy[J]. Materials Science and Engi-nee-ring: A, 2010, 527(13/14): 3051-3056.
[21] LIU X G, WANG L, LOU L H, et al. Effect of Mo Addition on Microstructural Characteristics in a re- Containing Single Crystal Superalloy[J]. Journal of Mate-rials Science and Technology, 2015, 31(2): 143-147.
[22] WANG Lei, WANG Liang, TANG Ying-chun, et al. Micro-structure and Mechanical Properties of CoCrFeNiWHigh Entropy Alloys Reinforced by μ Phase Particles[J]. Journal of Alloys and Compounds, 2020, 843: 155997.
[23] NIU Zuo-zhe, XU Juan, WANG Tao, et al. Micro-stru-cture, Mechanical Properties and Corrosion Resistance of CoCrFeNiW(= 0, 0.2, 0.5) High Entropy Alloys[J]. Intermetallics, 2019, 112: 106550.
[24] 許啟民, 張霄, 趙禹, 等. 退火對(duì)等離子熔覆FeCoCrNiAl高熵合金涂層組織與耐磨性的影響[J]. 表面技術(shù), 2022, 51(3): 86-94.
XU Qi-min, ZHANG Xiao, ZHAO Yu, et al. Effect of Annealing on Microstructure and Abrasive Resistance of a Plasma Cladded FeCoCrNiAl High Entropy Alloy Coating[J]. Surface Technology, 2022, 51(3): 86-94.
[25] ZHANG Tong, LIU Hao, HAO Jing-bin, et al. Evaluation of Microhardness, Tribological Properties, and Corrosion Resistance of CrFeNiNbTi High-Entropy Alloy Coating Deposited by Laser Cladding[J]. Journal of Materials Engineering and Performance, 2021, 30(12): 9245-9255.
Effect of Annealing on Microstructure and Properties of Laser Cladding CoCrFeNiW0.6High Entropy Alloy Coating
1,1,2,1,2,1,1,1
(1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China; 2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China)
The work aims to further improve the properties of laser cladding CoCrFeNiW0.6high entropy alloy coating by annealing treatment.
RFL-C1000 fiber laser was used to prepare CoCrFeNiW0.6high entropy alloy coating on the surface of 45#steel. The high entropy alloy coating was annealed at different temperature by SXL-1200 tubular resistance furnace. The processing temperature was 600 ℃, 800 ℃ and 1 000 ℃, and the holding time was 2 h. D8 X-ray diffrotometer (XRD), GeminiSEM 500 thermal field emission scanning electron microscope (FSEM), X-ray energy spectrometer (EDS), HV1000Z microhardness tester, M-2000 friction and wear testing machine, etc. were adopted to analyze and test the microstructure, microhardness and friction and wear properties of the coating.
The CoCrFeNiW0.6high entropy alloy coating was composed of FCC phase and μ phase (Fe7W6), and no new phase was precipitated after annealing at different temperature. After annealing at 600 ℃ for 2 h, the increase of temperature provided energy for atomic diffusion, and the lattice structure defects were alleviated, so that the W atoms further diffused into the solid solution lattice, resulting in lattice distortion, increase of lattice constant and decrease of μ phase volume fraction and μ phase diffraction peak intensity. After annealing at 800 ℃ and 1 000 ℃ for 2 h, W atoms in the solid solution were precipitated as μ-phase compounds, the content of W element in the solid solution decreased, the lattice constant decreased, the volume fraction of μ-phase increased, and the intensity of μ-phase diffraction peak increased. After annealing at 800 ℃ and 1 000 ℃ for 2 h, the microstructure of the coating changed obviously. After annealing at 800 ℃ for 2 h, a large amount of μ phases were precipitated in the microstructure of the coating, and the annealing at 1 000 ℃ for 2 h caused the grain boundary to fracture and decompose, and a large amount of W-rich particles (μ phase) appeared in the grain interior and grain boundary. After annealing at 1 000 ℃ for 2 h, the cladding coating had the highest average microhardness of 475.68HV0.3, which was 45% higher than that of the cladding coating without annealing treatment. The hardness of the heat affected zone tended to be stable and was close to the hardness of the substrate after annealing. In the process of friction and wear, the shedding of μ-phase hard particles aggravated the micro-cutting effect of the grinding wheel on the cladding coating and affected the friction and wear properties of the coating. After annealing at 600 ℃ for 2 h, the average friction coefficient of the coating was the lowest, about 0.226, and the wear mass loss was the least. Compared with the coating without annealing treatment, the wear mass loss was reduced by 28%, and the friction and wear properties of the coating were the best. The increase of annealing temperature did not change the wear mechanism of the coating obviously. After annealing treatment, the furrow shape wear marks on the worn surface became shallower, and a lot of flake small debris appeared, which was dominated by abrasive wear. High temperature annealing can promote the formation of μ phase. After annealing, the hardness of CoCrFeNiW0.6high entropy alloy coating is significantly improved, and the friction and wear properties of the coating are improved. The strengthening mechanism is solid solution strengthening and second phase strengthening.
laser cladding; high entropy alloy; annealing; microstructure; microhardness;friction and wear properties
TG174.4
A
1001-3660(2023)01-0038-09
10.16490/j.cnki.issn.1001-3660.2023.01.004
2022–07–22;
2022–09–08
2022-07-22;
2022-09-08
馬世忠(1996—),男,碩士生,主要研究方向?yàn)榻饘俨牧媳砻鎻?qiáng)化和增材制造技術(shù)。
MA Shi-zhong (1996-), Male, Postgraduate, Research focus: surface strengthening of metal materials and additive manufacturing technology.
孫榮祿(1964—),男,博士,教授,主要研究方向?yàn)榻饘俨牧媳砻鎻?qiáng)化和增材制造技術(shù)。
SUN Rong-lu (1964-), Male, Doctor, Professor, Research focus: surface strengthening of metal materials and additive manufacturing technology.
馬世忠, 孫榮祿, 牛偉, 等.退火對(duì)激光熔覆CoCrFeNiW0.6高熵合金涂層組織與性能的影響[J]. 表面技術(shù), 2023, 52(1): 38-46.
MA Shi-zhong, SUN Rong-lu, NIU Wei, et al. Effect of Annealing on Microstructure and Properties of Laser Cladding CoCrFeNiW0.6High Entropy Alloy Coating[J]. Surface Technology, 2023, 52(1): 38-46.
責(zé)任編輯:彭颋