賈彥軍,陳瀚寧,張家奇,雷劍波
激光熔化沉積CoCrNiNbW高熵合金耐磨及腐蝕性研究
賈彥軍a,陳瀚寧b,張家奇c,雷劍波c
(天津工業(yè)大學(xué) a.機(jī)械工程學(xué)院 b.計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院 c.激光技術(shù)研究所,天津 300387)
解決Q235鋼材料在實(shí)際應(yīng)用中由于磨損、腐蝕導(dǎo)致使用壽命縮短問(wèn)題,提升Q235鋼表面的硬度、耐磨性和耐蝕性。利用激光熔化沉積技術(shù)在Q235鋼表面制備無(wú)裂紋CoCrNiNbW高熵合金涂層。采用掃描電子顯微鏡、X射線光譜儀、光學(xué)顯微鏡表征其微觀組織結(jié)構(gòu)、元素分布和物相成分;采用顯微硬度計(jì)、試塊-試環(huán)摩擦磨損試驗(yàn)機(jī)分別測(cè)試高熵合金涂層和Q235鋼的顯微硬度和耐磨性能,研究涂層的強(qiáng)化機(jī)制和磨損機(jī)理;采用電化學(xué)工作站測(cè)試分析高熵合金涂層和Q235鋼的電化學(xué)腐蝕行為,研究涂層的耐蝕性和腐蝕機(jī)制。CoCrNiNbW高熵合金涂層的微觀組織主要由等軸晶組成,涂層中部和底部存在未熔化Nb和W顆粒,起強(qiáng)化相作用;主要物相由富含Co、Ni的FCC相及富含Nb的BCC相組成;高熵合金涂層的平均顯微硬度為800HV0.2,約為基材的4倍;涂層的磨損機(jī)制以磨粒磨損為主,磨損率為2.315′10–5g·m–1,約為基材的1/5;在質(zhì)量分?jǐn)?shù)3.5%的NaCl溶液中,高熵合金涂層具有更好的耐腐蝕性,腐蝕電阻約為基材的8倍。高熵合金涂層的顯微硬度、耐磨性和耐腐蝕性較Q235鋼基材有很大提升。
激光熔化沉積;增材制造;高熵合金;耐磨性能;電化學(xué)腐蝕性能
高熵合金(High-entropy alloy,HEA)是Yeh等[1-2]提出的一種新型高強(qiáng)度合金,與傳統(tǒng)合金不同,高熵合金由至少5種元素以等摩爾比或近似等摩爾比組成,每種元素的質(zhì)量分?jǐn)?shù)在5%~35%之間。根據(jù)傳統(tǒng)合金化理論,合金的成分越多,形成金屬間化合物的可能性就越大,但在很多高熵合金中并沒(méi)有形成金屬間化合物相,其相組成只是簡(jiǎn)單的FCC、BCC單相或雙相固溶體組合[3],因此其微觀結(jié)構(gòu)分布相對(duì)均勻,且具有理想的力學(xué)性能和穩(wěn)定結(jié)構(gòu)[4-6]。由于高熵合金具有高硬度[7]、良好高溫性能[8]、優(yōu)異耐腐蝕性和抗氧化能力[9]等特點(diǎn),在機(jī)械制造、航空航天、綠色加工和表面工程等重要領(lǐng)域具有巨大發(fā)展?jié)摿蛷V闊應(yīng)用前景。目前,高熵合金制備技術(shù)有固態(tài)加工[10-12]、液態(tài)加工[13-15]和薄膜沉積[16]等技術(shù)。由于這些技術(shù)的凝固速率較低,容易形成第二相化合物,而且制備的高熵合金涂層厚度較薄,與基體的結(jié)合性較差,因而無(wú)法滿足高強(qiáng)度的應(yīng)用場(chǎng)合。
激光熔化沉積技術(shù)(Laser melting deposition,LMD)是增材制造技術(shù)的一個(gè)分支,具有功率密度高、材料范圍廣、成型速度快、冷卻速率高、熱影響區(qū)小、熔覆層稀釋率低,以及與基材能實(shí)現(xiàn)良好的冶金結(jié)合等特點(diǎn)[17]。采用LMD制備的高熵合金涂層既保證了其本身的優(yōu)異性能,又能實(shí)現(xiàn)高熵合金與基體良好的冶金結(jié)合,這為在耐磨性與耐腐蝕性較差的普通材料上制備高熵合金層提供了可能。Shu等[18]使用激光熔覆在低碳鋼基體上制備了CoCrNiSiBFe高熵合金涂層,并研究了在773 K時(shí)的高溫磨損機(jī)理,結(jié)果表明,相比于柱狀枝晶底層非晶層具有更好的耐磨性。許詮等[19]在45鋼上制備了(CoCrFeNi)95Nb5高熵合金涂層,研究了其微觀形貌、元素組成和耐腐蝕性。結(jié)果表明,涂層具備優(yōu)異的耐腐蝕性,使用質(zhì)量分?jǐn)?shù)3.5%的NaCI溶液測(cè)量其動(dòng)電位極化曲線時(shí)涂層表現(xiàn)出了明顯的鈍化行為。邱星武等[20]利用激光熔覆制備了Al2CrFeCoxCuNiTi高熵合金熔覆層,其組織主要由等軸晶構(gòu)成,且發(fā)現(xiàn)有納米尺度的球狀粒子在等軸晶上分布,F(xiàn)CC+BCC1+BCC2+Laves相是其主要組成相,且FCC結(jié)構(gòu)含量與Co元素含量成正相關(guān),BCC結(jié)構(gòu)含量則成負(fù)相關(guān)。
目前,高熵合金研究大多數(shù)集中在其組織及物相方面,關(guān)于激光熔化沉積高熵合金涂層耐磨性及耐腐蝕性機(jī)理的研究較少。采用激光熔化沉積方法制備了CoCrNiNbW高熵合金涂層,重點(diǎn)討論了激光熔化沉積對(duì)涂層的微觀組織、摩擦磨損性能和電化學(xué)腐蝕性能的影響,為相關(guān)研究提供理論依據(jù)和實(shí)驗(yàn)參考。
基材為Q235(A3)鋼,其成分見(jiàn)表1。在進(jìn)行實(shí)驗(yàn)前,先使用激光清洗機(jī)(山東海富光子HFB-C50)對(duì)基材表面進(jìn)行清潔,去除基材表面雜質(zhì),對(duì)表面進(jìn)行粗化、整平,防止金屬氧化物及雜質(zhì)對(duì)實(shí)驗(yàn)效果產(chǎn)生影響。
表1 基材成分
采用Laserline-4000型激光器(德國(guó),Laserline,光斑直徑4 mm、最大功率4 400 W),在Q235鋼表面制備多道單層CoCrNiNbW高熵合金熔覆層,其工藝參數(shù)見(jiàn)表2,實(shí)驗(yàn)流程見(jiàn)圖1。
圖1 實(shí)驗(yàn)流程
表2 試驗(yàn)工藝參數(shù)
通過(guò)X射線衍射儀(XRD,日本理學(xué)D/MAX- 2500)對(duì)物相進(jìn)行分析(Cu靶、加速電壓40 kV、工作電流140 mA)。使用光學(xué)顯微鏡(Leica DVM6A)、掃描電子顯微鏡(ZEISS Sigma 300、配備X射線能譜儀EDS、加速電壓15 kV),觀察實(shí)驗(yàn)制備樣品的宏觀形貌、微觀組織形貌和元素成分及分布。
在室溫條件下,使用M-2000型摩擦磨損試驗(yàn)機(jī)對(duì)涂層進(jìn)行干滑動(dòng)摩擦實(shí)驗(yàn)。具體實(shí)驗(yàn)參數(shù)見(jiàn)表3。使用精度為0.1 mg的天平對(duì)樣品磨損前后的質(zhì)量進(jìn)行稱重,根據(jù)公式計(jì)算材料的磨損率。磨損實(shí)驗(yàn)后收集磨屑,觀察磨痕和磨屑的形貌,分析磨損類型和材料的耐磨性能。
表3 摩擦磨損實(shí)驗(yàn)參數(shù)
將待測(cè)試塊截面研磨拋光后,采用顯微硬度計(jì)(HXDG1000T,上海比目?jī)x器有限公司)測(cè)量涂層顯微硬度分布,測(cè)量時(shí)加載載荷為200 N,保持時(shí)間為10 s。從熔覆層垂直方向截面頂部開(kāi)始測(cè)試,每個(gè)測(cè)試點(diǎn)相距100 μm,直至穿過(guò)基材熱影響區(qū)。使用電化學(xué)分析儀(CHI-640型,上海辰華儀器有限公司)對(duì)CoCrNiNbW高熵合金熔覆層的耐腐蝕性能進(jìn)行分析,電化學(xué)測(cè)試參數(shù)見(jiàn)表4。測(cè)試完得到其自腐蝕電位和腐蝕電流密度。使用軟件對(duì)電化學(xué)交流阻抗譜進(jìn)行分析,得到試樣的電化學(xué)評(píng)價(jià)參數(shù)并建立相對(duì)應(yīng)的等效電路。
表4 電化學(xué)測(cè)試參數(shù)
高熵合金CoCrNiNbW涂層的XRD圖譜見(jiàn)圖2,可以發(fā)現(xiàn)涂層物相僅由FCC和BCC組成,未出現(xiàn)金屬間化合物,這表明涂層在激光熔化沉積過(guò)程中發(fā)生了固溶體凝固[21]。FCC的3個(gè)衍射峰分別為44.68°、51.54°、75.98°,主要富含Co和Ni元素;BCC的2個(gè)衍射峰為64.87°和82.29°,主要富含Nb元素。
高熵合金涂層中部顯微組織和元素分布見(jiàn)圖3。由于激光的快速加熱和冷卻,其過(guò)冷度較大,因此會(huì)有大量晶核形成于熔池內(nèi)部且未有足夠的時(shí)間生長(zhǎng),從而形成細(xì)小的等軸晶,晶體晶粒尺寸普遍在10 μm以下,為涂層獲得良好的性能提供了保證。涂層的組織致密、成分均勻,未發(fā)生明顯的元素偏析現(xiàn)象,這可能是由于元素混合導(dǎo)致的高熵效應(yīng)抑制了復(fù)雜金屬間化合物的出現(xiàn)[22]。5種元素含量見(jiàn)表5。
圖2 高熵合金CoCrNiNbW涂層的XRD圖
圖3 高熵合金CoCrNiNbW涂層中部的元素分布
表5 涂層中部元素含量分布表
在高熵合金涂層中存在未熔化的Nb和W顆粒,為了進(jìn)一步研究這些顆粒周圍元素的分布,對(duì)其進(jìn)行EDS分析見(jiàn)圖4—5,可以看出,未熔化顆粒周圍元素分布均勻,未出現(xiàn)明顯的元素偏析現(xiàn)象。
高熵合金CoCrNiNbW涂層截面沿深度方向的硬度分布曲線見(jiàn)圖6。由圖6可知,熔覆層的硬度有所波動(dòng),最大值為920HV0.2,平均值也達(dá)到了800HV0.2,約為基材Q235鋼的4倍左右,這顯著增加了基材的使用壽命。此外,涂層頂部的顯微硬度略低于中部和底部,這是由于在底部和中部未熔化的Nb和W顆粒較多,擴(kuò)散分布在基體中起到了強(qiáng)化相作用。
涂層與基材的磨損數(shù)據(jù)見(jiàn)圖7。由7a可知,樣塊的磨損分為3個(gè)階段,首先是初期磨損階段,之后進(jìn)入正常磨損和劇烈磨損階段。在初期磨損過(guò)程中,合金表面凹凸不平,對(duì)磨環(huán)與磨損表面呈現(xiàn)為點(diǎn)接觸或者線接觸,因此局部應(yīng)力大。在磨損時(shí)間4 min之前,摩擦因數(shù)在對(duì)磨環(huán)與合金試樣接觸時(shí)快速上升,之后隨著點(diǎn)接觸和線接觸逐漸變?yōu)槊娼佑|而不斷下降。在正常磨損階段,磨損表面粗糙度明顯降低,磨損量與磨擦因數(shù)都趨于平緩,接觸面隨磨損時(shí)間緩慢擴(kuò)大,摩擦因數(shù)隨之緩慢上升。在摩擦反復(fù)進(jìn)行下,摩擦副表面會(huì)產(chǎn)生一層冷加工硬化層,導(dǎo)致表面硬度增加,因此磨損速率進(jìn)一步減慢。
圖4 Nb顆粒周圍元素分布
圖5 W顆粒周圍元素分布
圖6 高熵合金CoCrNiNbW硬度曲線
式中:為磨損量;為對(duì)磨環(huán)寬直徑;為對(duì)磨環(huán)轉(zhuǎn)動(dòng)圈數(shù)。
磨損后表面形貌見(jiàn)圖8,可以看出,犁溝與剝落坑是磨損表面典型形貌。當(dāng)涂層的微凸起與對(duì)磨環(huán)接觸時(shí),局部應(yīng)力使凸起與對(duì)磨環(huán)發(fā)生焊合,在相對(duì)運(yùn)動(dòng)和剪切力作用下,焊合區(qū)域被剪切或撕裂,在磨損表面形成剝落坑。被剪切的焊合區(qū)域、涂層中硬質(zhì)相及未掉落磨屑會(huì)對(duì)涂層表面產(chǎn)生微切削作用,進(jìn)而形成凹槽及犁溝。由圖8c—d可知,高熵合金磨損表面出現(xiàn)許多灰白色區(qū)域,且該區(qū)域同其他磨損表面相比表面更平整,犁溝深度也降低。
為了進(jìn)一步分析高熵合金的磨損機(jī)理,對(duì)磨屑的形貌和元素組成進(jìn)行了分析,結(jié)果見(jiàn)圖9。高熵合金磨屑尺寸之間差異大,以塊狀和粉末狀分布為主,進(jìn)一步說(shuō)明了磨損機(jī)制主要為磨粒磨損與黏著磨損[23-24]。對(duì)堆塊狀磨屑與粉末狀磨屑的元素分布進(jìn)行對(duì)比,2種磨屑中都以Fe、Cr元素為主,這是由于在涂層與對(duì)磨環(huán)的接觸中,對(duì)磨環(huán)表面也會(huì)磨損變?yōu)槟バ?。在塊狀磨屑中W、Nb元素明顯增多,質(zhì)量分?jǐn)?shù)分別為11.38%、5.7%;粉末狀磨屑中氧含量較高(質(zhì)量分?jǐn)?shù)32.4%)。在空氣環(huán)境中,由于摩擦升溫及表面活化能改變,涂層表面生成一層具有自修復(fù)性的潤(rùn)滑氧化膜,即發(fā)生了氧化磨損[24]。當(dāng)發(fā)生黏著磨損時(shí),在較大尺寸的剝落中含有部分基體,直接落下形成的磨屑中O含量較低,而未掉落的剝落經(jīng)過(guò)三體摩擦進(jìn)一步被研磨,原始剝落的比表面積增加,與O2反應(yīng)更加充分,因此在粉末狀磨屑中氧含量更多。
圖7 涂層與基材磨損數(shù)據(jù)
圖8 磨損表面形貌
圖9 磨屑形貌及其元素分布
在室溫下用質(zhì)量分?jǐn)?shù)3.5%的NaCl溶液作為電解液,測(cè)試基材(Q235)和高熵合金樣品的電化學(xué)腐蝕性為。2種樣品的動(dòng)電位極化曲線見(jiàn)圖10。從圖10可知,隨著陽(yáng)極區(qū)域的腐蝕電壓增加,2種樣品的腐蝕電流都明顯增大,并且在陽(yáng)極區(qū)域存在明顯鈍化階段。極化電阻與材料的耐腐蝕性能息息相關(guān),極化電阻愈大,說(shuō)明材料耐腐蝕性越好[25]。自腐蝕電阻計(jì)算公式見(jiàn)式(2)—(3)。從動(dòng)電位極化曲線中計(jì)算得標(biāo)準(zhǔn)腐蝕參數(shù)見(jiàn)表6。
圖10 基材和CoCrNiNbW的動(dòng)電位極化曲線
表6 極化曲線標(biāo)準(zhǔn)電極腐蝕參數(shù)
由表6可知,高熵合金的自腐蝕電位為–0.840 V,自腐蝕電流為0.912mA×cm–2,約為基材的75%,這表明CoCrNiNbW的腐蝕傾向小,耐腐蝕性優(yōu)異。
高熵合金和基材的交流阻抗譜見(jiàn)圖11。Nyquist曲線代表的容抗弧半徑越大,材料的耐腐蝕性能越好[26]。由圖11可知,高熵合金的容抗弧要明顯大于基材(Q235)的容抗弧,這與動(dòng)電位極化曲線結(jié)果一致。交流阻抗譜的Bode阻抗圖和Bode相角圖見(jiàn)圖11b—c。Bode圖由低頻區(qū)、中頻區(qū)和高頻區(qū)組成,低頻區(qū)對(duì)應(yīng)阻抗模量為103Ω·cm2,表明在對(duì)應(yīng)電化學(xué)界面處存在鈍化膜,具有高電容的特性;中頻區(qū)域?qū)?yīng)于Bode圖的相位角,高熵合金的相位角接近–70°;高頻區(qū)域的斜率接近于0,但與電阻關(guān)系不大。從Bode相位圖可以看出,在高頻區(qū)相位角下降較為明顯,說(shuō)明了溶液電阻在高頻區(qū)占有主導(dǎo)地位。而在低頻區(qū)下降速率明顯減緩但仍處于下降過(guò)程,表明了試樣表面產(chǎn)生了一層致密的鈍化膜[27]。一般來(lái)說(shuō),材料的阻抗模量值越大、相位角最大值越大,材料的耐腐蝕性越好。
CoCrNiNbW及基材Q235的等效電路模型見(jiàn)圖12,其電氣參數(shù)見(jiàn)表7。激光增材制造的CoCrNiNbW電荷轉(zhuǎn)移電阻ct(4.206′105Ω×cm–2)為基材Q235鋼的2.4倍,這表明CoCrNiNbW的腐蝕阻力較大,腐蝕速率較慢,其耐腐蝕性能良好。為樣品表面氧化膜的致密度,CoCrNiNbW的彌散指數(shù)1、2分別為0.856 9和0.884 3,高于Q235鋼(0.829 3和0.657 4)。氧化膜的致密度代表材料阻礙腐蝕的能力,說(shuō)明CoCrNiNbW合金表面形成了更加致密的氧化膜。
圖11 涂層與基材在質(zhì)量分?jǐn)?shù)3.5% NaCl溶液中EIS結(jié)果
圖12 等效模擬電路
表7 等效模擬電路的電氣參數(shù)
采用激光熔化沉積方法在Q235鋼表面制備了CoCrNiNbW高熵合金涂層,對(duì)其微觀組織結(jié)構(gòu)、顯微硬度、耐磨性能和電化學(xué)腐蝕性能進(jìn)行了測(cè)試和分析。
1)CoCrNiNbW高熵合金涂層的組織主要由等軸晶組成,物相主要由富含Co、Ni的FCC相和富含Nb的BCC相組成。
2)CoCrNiNbW高熵合金涂層的顯微硬度最高值為920HV0.2,平均值為800HV0.2,約為基材的4倍。
3)與基材相比,高熵合金涂層的耐磨性顯著提升,以磨粒磨損為主,磨損率約為基材的1/5。
4)與基材相比,高熵合金涂層的耐電化學(xué)腐蝕性能顯著提升,腐蝕電阻為基材的8倍.
[1] YEH J W, CHEN Y L, LIN S J, et al. High-entropy Alloys–a New Era of Exploitation[J]. Materials Science Forum. Trans Tech Publications Ltd, 2007, 560: 1-9.
[2] JOO S H, KATO H, JANG M J, et al. Tensile Defor-mation Behavior and Deformation Twinning of An Equi-molar CoCrFeMnNi High-entropy Alloy[J]. Materials Science and Engineering: A, 2017, 689: 122-133.
[3] SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and Room Temperature Properties of A High-entropy TaNbHfZrTi Alloy[J]. Journal of Alloys and Compounds, 2011, 509 (20): 6043-6048.
[4] YEH J W, CHEN S K, LIN S J, et al. Nanostructured High-entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.
[5] LU Z P, WANG H, CHEN M W, et al. An Assessment on the Future Development of High-Entropy Alloys: SummaryFrom a Recent Workshop[J]. Intermetallics, 2015, 66: 67-76.
[6] MIRACLE D B, SENKOV O N. A Critical Review of High Entropy Alloys and Related Concepts[J]. Acta Materialia, 2017, 122: 448-511.
[7] XIAO J K, TAN H, CHEN J, et al. Effect of Carbon Content on Microstructure, Hardness and Wear Resistance of CoCrFeMnNiCx High-entropy Alloys[J]. Journal of Alloys and Compounds, 2020, 847: 156533.
[8] CHEN L, ZHOU Z, TAN Z, et al. High Temperature Oxi-da-tion Behavior of Al0. 6CrFeCoNi and Al0. 6CrFeCoNiSi0.3 High Entropy Alloys[J]. Journal of Alloys and Com-pounds, 2018, 764: 845-852.
[9] YE F, JIAO Z, YAN S, et al. Microbeam Plasma Arc Remanufacturing: Effects of Al on Microstructure, Wear Resistance, Corrosion Resistance and High Temperature Oxidation Resistance of AlxCoCrFeMnNi High-entropy Alloy Cladding Layer[J]. Vacuum, 2020, 174: 109178.
[10] ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and Properties of High-Entropy Alloys[J]. Progress in Materials Science, 2014, 61: 1-93.
[11] ALCALA M D, REAL C, FOMBELLA I, et al. Effects of Milling Time, Sintering Temperature, Al Content on The Chemical Nature, Microhardness and Microstructure of Mechanochemically Synthesized FeCoNiCrMn High Entropy Alloy[J]. Journal of Alloys and Compounds, 2018, 749: 834-843.
[12] JOO S H, KATO H, JANG M J, et al. Structure and Properties of Ultrafine-Grained CoCrFeMnNi High-entropy Alloys Produced by Mechanical Alloying and Spark Plasma Sintering[J]. Journal of Alloys and Compounds, 2017, 698: 591-604.
[13] CHEN Y Y, DUVAL T, HUNG U D, et al. Microstructure and Electrochemical Properties of High Entropy Alloys—a Comparison with Type-304 Stainless Steel[J]. Corrosion Science, 2005, 47(9): 2257-2279.
[14] BHATTACHARJEE P P, SATHIARAJ G D, ZAID M, et al. Microstructure and Texture Evolution During Annea-ling of Equiatomic CoCrFeMnNi High-entropy Alloy[J]. Journal of Alloys and Compounds, 2014, 587: 544-552.
[15] SHUN T T, DU Y C. Age hardening of the Al0. 3CoCrFeNiC0. 1 High Entropy Alloy[J]. Journal of Alloys and Compounds, 2009, 478(1/2): 269-272.
[16] LIAO W, LAN S, GAO L, et al. Nanocrystalline High- entropy Alloy (CoCrFeNiAl0.3) Thin-Film Coating by Magnetron Sputtering[J]. Thin Solid Films, 2017, 638: 383-388.
[17] 郝文俊, 孫榮祿, 牛偉, 等. 激光熔覆CoCrFeNiSix高熵合金涂層的組織及性能[J]. 表面技術(shù), 2021, 50(5): 87-94.
HAO Wen-jun, SUN Rong-lu, NIU Wei, et al. Microstruc-ture and Properties of Laser Cladding CoCrFeNiSix High- entropy Alloy Coating[J]. Surface Technology, 2021, 50(5): 87-94
[18] SHU F Y, WU L, ZHAO H Y, et al. Microstructure and High-temperature Wear Mechanism of Laser Cladded CoCrBFeNiSi High-entropy Alloy Amorphous Coating[J]. Materials Letters, 2018, 211: 235-238.
[19] 許詮, 黃燕濱, 劉謙, 等. 激光熔覆法制備(CoCrFeNi)_ (95)Nb_5高熵合金涂層的表征與耐蝕性研究[J]. 電鍍與涂飾, 2019, 38(11): 536-541.
XU Quan, HUANG Yan-bin, LIU Qian, et al. Charac-teri-zation and Corrosion Resistance Study of Laser-clad (CoCrFeNi)95Nb5High-entropy Alloy Coating[J]. Elec-trop-lating & Finishing, 2019, 38(11): 536-541.
[20] 邱星武, 張?jiān)迄i, 劉春閣. 激光熔覆法制備Al2CrFeCoxCuNiTi高熵合金涂層的組織與性能[J]. 粉末冶金材料科學(xué)與工程, 2013(5): 735-740.
QIU Xing-wu, ZHANG Yun-peng, LIU Chun-ge. Micros-tructure and Properties of Al2CrFeCoxCuNiTi High-entropy Alloy Coating Prepared by Laser Cladding[J]. Materials Science and Engineering of Powder Metallurgy, 2013, 18(5): 735-740.
[21] ZHANG J, LI X, ZHANG Y, et al. Sluggish Dendrite Growth in an Undercooled High Entropy Alloy[J]. Intermetallics, 2020, 119: 106714.
[22] CUI P, LI W, LIU P, et al. Effects of Nitrogen Content on Microstructures and Mechanical Properties of (AlCrTiZrHf) N High-entropy Alloy Nitride Films[J]. Journal of Alloys and Compounds, 2020, 834: 155063.
[23] CUI Y, SHEN J, MANLADAN S M, et al. Wear Resis-tance of FeCoCrNiMnAlx High-entropy Alloy Coatings at High Temperature[J]. Applied Surface Science, 2020, 512: 145736.
[24] WANG J, ZHANG B, YU Y, et al. Study of High Tem-perature Friction and Wear Performance of (CoCrFeMnNi) 85Ti15 High-entropy Alloy Coating Prepared by Plasma Cladding[J]. Surface and Coatings Technology, 2020, 384: 125337.
[25] 李彥洲, 石巖. 鋁合金表面激光沉積AlCrFeCoNiCu涂層的組織及耐蝕性能[J]. 中國(guó)光學(xué), 2019, 12(2): 344-354.
LI Yan-zhou, SHI Yan. Microstructure and Corrosion Resistance of AlCrFeCoNiCu High-entropy Coating by Laser Deposition on an Aluminum Alloy[J]. Chinese Optics, 2019, 12(2):344-354.
[26] 黃杰, 賀定勇, 杜開(kāi)平, 等. FeCrNiMo激光熔覆層組織與電化學(xué)腐蝕行為研究[J]. 表面技術(shù), 2020, 49(12): 228-234.
HUANG Jie, HE Ding-yong, DU Kai-ping, et al. Micros-tructure and Electrochemical Corrosion Behavior of FeCrNiMo Layer Fabricated by Laser Cladding[J]. Surface Technology, 2020, 49(12): 228-234
[27] YANG X, DONG X, LI W, et al. Effect of Solution and Aging Treatments on Corrosion Performance of Laser Solid Formed Ti-6Al-4V Alloy in a 3.5 wt.% NaCl Solu-tion[J]. Journal of Materials Research and Technology, 2020, 9(2): 1559-1568.
Research on Wear Resistance and Electrochemical Corrosion Properties of CoCrNiNbW High Entropy Alloy by Laser Melting Deposited
a,b,c,c
(a. School of Mechanical Engineering, b. School of Computer Science and Technology Tiangong University, c. Laser Technology Institute, Tiangong University,Tianjin 300387, China)
The service life of Q235 steel is shortened due to wear and corrosion in practical application. It is necessary to improve the microhardness, wear resistance and corrosion resistance of Q235 steel surface. High entropy alloy (HEA) is a new type of high strength alloy with relatively uniform microstructure distribution and ideal mechanical properties and stable structure. Due to the characteristics of high hardness, good high temperature performance, excellent corrosion resistance and oxidation resistance, HEA is widely used in machinery manufacturing, aerospace, green processing surface engineering and other important fields which have great development potential and broad application prospects. A crack-free CoCrNiNbW high-entropy alloy coating was fabricated on the surface of Q235 steel by laser melting deposition technology in this artical.
The substrate is Q235 steel. The surface is cleaned by laser cleaning machine (Shandong Haifu photon HFB-C50) to remove impurities on the substrate surface and prevent metal oxides and impurities from affecting the experimental effect.Apply the Laserline-4000 laser in the CoCrNiNbW cladding experiment. The optimum process parameters were determined after optimization. The moving speed of the spot is 8 mm/s during the cladding process; the laser power of the multi-pass cladding is 720 W, and the overlap between the two adjacent passes is 50%.The phase was analyzed by X-ray diffractometer (XRD) (Japanese science D / max-2500) (Cu target, acceleration voltage 40 kV, working current 140 mA). Optical microscope (Leica dvm6a), scanning electron microscope (Zeiss sigma 300) and X-ray spectrometer were used (EDS), accelerating voltage 15 kV). The macro morphology, microstructure morphology, composition and distribution of elements of the samples were observed. The dry sliding friction test of the coating was carried out by M-2000 friction and wear tester at room temperature. The material of the grinding ring is GCr15, the load is set to 120 N, and the wear time is 1 hour. After the wear experiment, collect the wear debris, observe the morphology of wear marks and wear debris, and analyze the wear type and wear resistance of the material. The electrochemical workstation (CHI-640) test was used to analyze the electrochemical corrosion behavior of the high-entropy alloy coating and Q235 steel. The electrochemical impedance spectroscopy, self corrosion potential and corrosion current density were analyzed by software, the electrochemical evaluation parameters of the samples were obtained, and the corresponding equivalent circuit was established.
The microstructure of the CoCrNiNbW high-entropy alloy coating is mainly composed of equiaxed crystals, and there are unmelted Nb and W particles in the middle and bottom of the coating, which play the role of strengthening phase; The main phases are composed of the FCC phase rich in Co, Ni and the BCC phase rich in Nb. The average microhardness of the high-entropy alloy coating is 800HV0.2, which is about four times that of the substrate material. The wear mechanism is mainly abrasive wear, and the wear rate is 2.315×10–5g·m–1, which is about 1/5 of the substrate material. In 3.5 wt.% NaCl solution, high-entropy alloy coating has better corrosion resistance, and the corrosion resistance is about 8 times that of the substrate. The microhardness, wear resistance, and corrosion resistance of the high-entropy alloy coating are greatly improved compared to the Q235 steel substrate.
laser melting deposition; additive manufacturing; high-entropy alloys; wear resistance; electrochemical corrosion performance
V261.8
A
1001-3660(2022)12-0350-08
10.16490/j.cnki.issn.1001-3660.2022.12.036
2021–08–01;
2022–01–05
2021-08-01;
2022-01-05
賈彥軍(1981—),男,碩士,高級(jí)實(shí)驗(yàn)師,主要研究方向?yàn)榻饘俨牧媳砻鎻?qiáng)化和激光材料加工。
JIA Yan-jun (1981-), Male, Master, Senior experimentalist, Research focus: surface strengthening of metal materials and processing of laser materials.
陳瀚寧(1979—),男,博士,教授,主要研究方向?yàn)榧す獠牧霞庸?、智能制造?/p>
CHEN Han-ning (1979-), Male, Doctor, Professor, Research focus: processing of laser materials and intelligent manufacturing.
賈彥軍, 陳瀚寧, 張家奇, 等.激光熔化沉積CoCrNiNbW高熵合金耐磨及腐蝕性研究[J]. 表面技術(shù), 2022, 51(12): 350-357.
JIA Yan-jun, CHEN Han-ning, ZHANG Jia-qi, et al. Research on Wear Resistance and Electrochemical Corrosion Properties of CoCrNiNbW High Entropy Alloy by Laser Melting Deposited[J]. Surface Technology, 2022, 51(12): 350-357.