亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        考慮熱膨脹的角接觸球軸承動(dòng)態(tài)及熱特性研究*

        2022-12-26 08:29:28李俊浩
        機(jī)電工程 2022年12期
        關(guān)鍵詞:滾珠內(nèi)圈功耗

        李俊浩,張 長(zhǎng),2*

        (1.青海大學(xué) 機(jī)械工程學(xué)院,青海 西寧 810016;2.清華大學(xué) 摩擦學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100084)

        0 引 言

        由于具有結(jié)構(gòu)簡(jiǎn)單、旋轉(zhuǎn)精度高、極限轉(zhuǎn)速比高、摩擦力矩小和可同時(shí)承受徑向和軸向載荷的特點(diǎn),角接觸球軸承目前被廣泛應(yīng)用于各類(lèi)高速主軸上。

        在復(fù)雜的工況下,角接觸球軸承的內(nèi)部動(dòng)態(tài)及熱特性會(huì)在很大程度上影響軸承的使用性能。

        眾多學(xué)者已經(jīng)針對(duì)角接觸球軸承運(yùn)轉(zhuǎn)過(guò)程中的內(nèi)部特性開(kāi)展了大量研究。

        軸承的生熱率是通過(guò)功率損耗來(lái)計(jì)算的。PALMGREN A[5]在研究中,采用經(jīng)驗(yàn)公式求得總摩擦力矩的方法,計(jì)算了軸承的生熱率,但是該方法的局限性較大。HARRIS T A等人[6]115-141推導(dǎo)了軸承運(yùn)轉(zhuǎn)過(guò)程中,各部位的摩擦功耗計(jì)算方法,并根據(jù)軸承各組件的力學(xué)和運(yùn)動(dòng)學(xué)特性,計(jì)算了各部位的摩擦功耗,進(jìn)而采用求和的方式得到了軸承的總生熱率。

        熱網(wǎng)絡(luò)法是軸承傳熱數(shù)值計(jì)算的主要手段。BURTON R A等人[7,8]和STEIN J L等人[9]通過(guò)建立軸承的熱網(wǎng)絡(luò)模型,分析了軸承運(yùn)轉(zhuǎn)過(guò)程中,各組件的熱傳遞狀況。

        以上學(xué)者對(duì)擬靜力學(xué)模型計(jì)算方法優(yōu)化,以及復(fù)雜工況下角接觸球軸承內(nèi)部的動(dòng)態(tài)特性方面進(jìn)行了深入研究,并針對(duì)軸承的摩擦生熱及軸承傳熱的數(shù)值計(jì)算建立了分析模型;然而,針對(duì)聯(lián)合載荷下,高速軸承考慮熱膨脹的研究較少。

        首先,筆者在考慮慣性載荷作用的基礎(chǔ)上,將熱膨脹參數(shù)加入角接觸球軸承力學(xué)及運(yùn)動(dòng)學(xué)分析中,使模型更加優(yōu)化;其次,在考慮軸承自旋的基礎(chǔ)上以局部法計(jì)算生熱量,并采用熱網(wǎng)絡(luò)法建立脂潤(rùn)滑高速角接觸球軸承的傳熱模型,計(jì)算軸承各組件溫度,得到軸承運(yùn)轉(zhuǎn)前后的溫度差;最后,將溫度差數(shù)值重新代入模型進(jìn)行修正計(jì)算,研究熱膨脹影響下,聯(lián)合載荷作用下的高速角接觸軸承內(nèi)部特性的變化規(guī)律。

        1 角接觸球軸承熱膨脹分析

        1.1 軸承熱膨脹

        高速角接觸球軸承在運(yùn)轉(zhuǎn)過(guò)程中會(huì)產(chǎn)生大量的摩擦熱,其中大部分以熱傳導(dǎo)的方式進(jìn)入軸承內(nèi)部,使軸承的溫度快速上升,導(dǎo)致軸承各組件受熱膨脹。

        熱膨脹的產(chǎn)生會(huì)使軸承內(nèi)、外圈與滾珠相對(duì)位置發(fā)生變化,進(jìn)而造成軸承徑向、軸向位移和滾珠與內(nèi)、外圈之間的接觸角以及接觸載荷發(fā)生變化。

        因此,在分析角接觸球軸承高速運(yùn)轉(zhuǎn)時(shí)的內(nèi)部動(dòng)態(tài)及熱特性時(shí),需要充分考慮熱膨脹的影響。

        1.2 軸承熱膨脹量計(jì)算

        軸承徑向熱膨脹量的計(jì)算一般采用HARRIS T A等人[6]158-159給出的計(jì)算公式:

        u=ξ·ΔT·Dx

        (1)

        式中:u—徑向熱膨脹量;ξ—軸承零件熱膨脹系數(shù);ΔT—軸承零件溫升;Dx—軸承零件直徑。

        軸承軸向熱膨脹量的計(jì)算一般采用公式[10-12]:

        l=ε·ΔT·Lx

        (2)

        式中:l—軸向熱膨脹量;ε—軸承零件熱膨脹系數(shù);ΔT—軸承零件溫升;Lx—軸承零件長(zhǎng)度。

        主軸、軸承和軸承座三者緊密裝配,互相影響。為進(jìn)一步精確計(jì)算模型,筆者充分考慮軸承座、主軸受熱膨脹,及熱膨脹過(guò)程中產(chǎn)生的熱應(yīng)力對(duì)軸承的影響。

        鑒于軸承內(nèi)、外圈寬徑比較小,而軸承座長(zhǎng)徑比較大,在不影響計(jì)算精度的基礎(chǔ)上,筆者將主軸簡(jiǎn)化為長(zhǎng)圓柱,將軸承簡(jiǎn)化為薄圓環(huán),將軸承座簡(jiǎn)化為空心長(zhǎng)圓柱。

        1.2.1 軸承徑向熱膨脹量

        (1)軸承內(nèi)圈徑向熱膨脹。

        軸承內(nèi)圈與主軸接觸配合,其熱膨脹除受自身溫度影響外,還與主軸熱膨脹相關(guān)。假定溫度在軸承內(nèi)圈和主軸上均勻分布,軸承內(nèi)圈和主軸溫升分別為ΔTi、ΔTs,則軸承內(nèi)圈的徑向熱膨脹量為:

        (3)

        式中:ξi—內(nèi)圈熱膨脹系數(shù);Di—內(nèi)圈溝道直徑;ξs—主軸熱膨脹系數(shù);μs—主軸泊松比;Ds—主軸直徑。

        (2)軸承外圈徑向熱膨脹。

        軸承外圈與軸承座接觸配合,其熱膨脹受自身溫升和軸承座影響,假定軸承外圈和軸承座的溫度均勻分布,軸承內(nèi)圈和主軸溫升分別為ΔTo、ΔTh,軸承外圈徑向熱膨脹量為:

        uo=ξh·ΔTh·(1+μh)·Do

        (4)

        式中:ξh—軸承座熱膨脹系數(shù);μh軸承座泊松比;Do—外圈溝道直徑。

        (3)滾珠熱膨脹。

        根據(jù)式(1)可知,軸承滾珠在溫升為ΔTb時(shí),其熱膨脹量為:

        ub=ξb·ΔTb·Db

        (5)

        式中:ξb—滾珠的熱膨脹系數(shù);Db—滾珠的直徑。

        根據(jù)式(3~5),可確定軸承徑向熱膨脹量為:

        ur=ui-uo-2ub

        (6)

        1.2.2 軸承軸向熱膨脹量

        軸向熱膨脹量主要受主軸和軸承座影響,背對(duì)背配置下,根據(jù)式(2),兩者在溫升ΔTs、ΔTh的熱膨脹量分別為:

        ls=εs·ΔTs·Ls,lh=εh·ΔTh·Lh

        (7)

        根據(jù)式(7)可確定單個(gè)軸承在背對(duì)背配置下軸向熱膨脹量為:

        (8)

        2 角接觸球軸承力學(xué)及運(yùn)動(dòng)學(xué)分析

        2.1 考慮熱膨脹的軸承幾何分析

        角接觸球軸承在高速運(yùn)轉(zhuǎn)過(guò)程中,滾珠與內(nèi)外滾道之間會(huì)產(chǎn)生慣性載荷(即陀螺力矩和離心力),在慣性載荷作用下,滾珠和內(nèi)滾道曲率中心將發(fā)生改變,外滾道曲率中心保持不變。

        考慮熱膨脹影響的角接觸球軸承高速運(yùn)轉(zhuǎn)時(shí),滾珠與內(nèi)外滾道曲率中心的幾何關(guān)系,如圖1所示。

        圖1 滾珠中心及滾道溝曲率中心位置關(guān)系δij,δoj—內(nèi)外滾道與滾珠間接觸變形;fi,fo—內(nèi)外滾道溝曲率數(shù);δa、δr—軸承軸向位移和徑向位移;—內(nèi)滾道曲率中心軌跡半徑;θ—相對(duì)角位移;?0—滾珠內(nèi)外滾道初始接觸角;?i、?o—軸承運(yùn)轉(zhuǎn)時(shí)滾珠與內(nèi)外滾道接觸角;BDb—靜止時(shí)外滾道曲率中心—滾珠中心—內(nèi)滾道曲率中心距離;A1j+la、A2j+ur—軸承運(yùn)轉(zhuǎn)時(shí)考慮熱膨脹影響的內(nèi)外滾道曲率中心軸向距離和徑向距離;X1j,X2j—軸承運(yùn)轉(zhuǎn)時(shí)外滾道曲率中心與滾珠中心軸向距離和徑向距離

        根據(jù)軸承外滾道曲率中心—滾珠中心—內(nèi)滾道曲率中心高速運(yùn)轉(zhuǎn)前后的幾何關(guān)系,可以得到以下考慮熱膨脹影響的方程為:

        (9)

        根據(jù)勾股定理確定的幾何方程如下:

        (10)

        2.2 考慮熱膨脹的軸承力學(xué)模型及運(yùn)動(dòng)分析

        2.2.1 軸承力學(xué)模型

        聯(lián)合載荷作用下的角接觸球軸承滾珠的受力情況,與施加徑向載荷的位置和滾珠的位置有關(guān)。

        高速運(yùn)轉(zhuǎn)時(shí),滾珠與內(nèi)外滾道間產(chǎn)生的陀螺力矩和離心力不可忽略,會(huì)進(jìn)一步影響滾珠的受力情況,角位置Ψj處滾珠受力,如圖2所示。

        圖2 滾珠受力情況Mgj—陀螺力矩;Fcj—離心力;Qij,Qoj—滾珠與內(nèi)外滾道法向接觸載荷,Qij=Kijδij,Qoj=Kojδoj

        軸承的高速運(yùn)轉(zhuǎn)會(huì)產(chǎn)生較大的離心力,在這種情況下,軸承一般為外滾道控制,此時(shí),陀螺力矩全部作用于外滾道。根據(jù)Jones的滾道控制理論,可取系數(shù)λi=0,λo=2。

        根據(jù)滾珠的受力情況,考慮熱膨脹影響的水平和豎直方向的平衡方程為:

        (11)

        其中,離心力和陀螺力矩的計(jì)算方程為:

        (12)

        (13)

        式中:m—滾珠質(zhì)量;ω—內(nèi)圈速度;ωm—滾珠軌道速度;ωR—自轉(zhuǎn)角速度;Jb—滾珠轉(zhuǎn)動(dòng)慣量;βj—滾珠螺旋角。

        外滾道控制下,λi=0,軸承在運(yùn)轉(zhuǎn)過(guò)程中其所受力和力矩始終保持平衡。

        根據(jù)軸承內(nèi)部的幾何關(guān)系和滾珠的受力分析可知:在聯(lián)合載荷作用下,軸承內(nèi)圈在x,y,z3個(gè)方向的力和力矩平衡方程為:

        (14)

        2.2.2 軸承運(yùn)動(dòng)分析

        滾動(dòng)軸承運(yùn)動(dòng)學(xué)分析的主要目的是研究滾珠的運(yùn)動(dòng)規(guī)律與計(jì)算方法。軸承內(nèi)部的摩擦主要發(fā)生在滾珠—潤(rùn)滑劑—內(nèi)外圈滾道之間,角接觸球軸承運(yùn)轉(zhuǎn)過(guò)程中,其內(nèi)部的運(yùn)動(dòng)形式十分復(fù)雜,滾珠繞軸承軸線進(jìn)行公轉(zhuǎn)的同時(shí),其本身還進(jìn)行自轉(zhuǎn)運(yùn)動(dòng)。另外,高速情形下,軸承與滾道間的自旋運(yùn)動(dòng)也不可忽略。

        由文獻(xiàn)[6]31-37可知,根據(jù)軸承零件的運(yùn)動(dòng)計(jì)算,確定滾珠的公轉(zhuǎn)角速度ωm、自轉(zhuǎn)角速度ωR和自旋角速度ωs如下:

        (15)

        式中:ω—內(nèi)圈角速度,tanβ=sin?0/(cos?0+γ),γ=Db/Dm。

        2.3 脂潤(rùn)滑角接觸球軸承生熱及傳熱

        2.3.1 生熱分析

        角接觸球軸承穩(wěn)定工作時(shí),其內(nèi)部各組件之間的摩擦?xí)a(chǎn)生熱量,其生熱率的計(jì)算可通過(guò)功率損耗來(lái)計(jì)算[13,14]。

        目前,計(jì)算軸承摩擦功耗主要有兩種方法,即整體法和局部法[15]。整體法僅適用于中等轉(zhuǎn)速、中等載荷,且潤(rùn)滑正常的軸承,其局限性較大,顯然不適用于高速軸承。而局部法則是在考慮內(nèi)外圈、滾珠、保持架、潤(rùn)滑劑之間相互作用的基礎(chǔ)上,根據(jù)其運(yùn)動(dòng)學(xué)關(guān)系,對(duì)各接觸部分摩擦功耗計(jì)算求和。另外,在高速情形下,滾珠的自旋滑動(dòng)加劇,成為軸承摩擦功耗的重要組成部分。

        因此,建立結(jié)合自旋滑動(dòng)的局部法生熱模型,能更準(zhǔn)確地分析角接觸球軸承在高速運(yùn)轉(zhuǎn)情況下產(chǎn)生的摩擦功耗。

        (1)角接觸球軸承在高速運(yùn)轉(zhuǎn)過(guò)程中,由于滾珠與內(nèi)外圈之間速度不同產(chǎn)生速度差,導(dǎo)致發(fā)生差動(dòng)滑動(dòng),產(chǎn)生摩擦功耗。角位置Ψj處的滾珠與內(nèi)外圈滾道之間差動(dòng)滑動(dòng)產(chǎn)生的摩擦功耗為:

        (16)

        式中:τy—滾珠與內(nèi)外圈滾道之間接觸橢圓短軸方向的切應(yīng)力;Vy—滾珠與內(nèi)外圈滾道之間的滑動(dòng)速度。

        (2)高速運(yùn)轉(zhuǎn)下的軸承,由于慣性會(huì)產(chǎn)生較大的陀螺力矩,陀螺力矩又反作用于軸承,引起滾珠的陀螺轉(zhuǎn)動(dòng),角位置Ψj處的滾珠產(chǎn)生的摩擦功耗為:

        (17)

        式中:Fx—滾珠與內(nèi)外圈滾道之間沿長(zhǎng)軸方向的摩擦力。

        (3)角位置Ψj處,滾珠自旋滑動(dòng)產(chǎn)生的摩擦功耗為:

        H3j=Mijωsij+Mojωsoj

        (18)

        式中:M—滾珠內(nèi)外圈自旋摩擦力矩。

        (4)對(duì)于潤(rùn)滑正常的軸承,計(jì)算潤(rùn)滑劑引起的摩擦功耗時(shí),可采用Palmgren法求解潤(rùn)滑劑黏性引起的摩擦力矩,進(jìn)而求解摩擦功耗。筆者根據(jù)un≥2 000,選擇計(jì)算公式為:

        (19)

        式中:f0—與軸承類(lèi)型和潤(rùn)滑方式有關(guān)的系數(shù);v—潤(rùn)滑脂基油的黏度;n—軸承轉(zhuǎn)速。

        (5)角位置Ψj處的滾珠與保持架間的摩擦功耗為:

        H5j=0.5μDbQωmj

        (20)

        式中:μ—保持架與滾珠的摩擦系數(shù);Q—保持架與滾珠的接觸載荷。

        (6)保持架和引導(dǎo)套圈之間的滑動(dòng)摩擦功耗為:

        (21)

        式中:DCR—保持架引導(dǎo)面直徑;FCR—保持架與引導(dǎo)套圈間的滑動(dòng)摩擦力;cn—滑動(dòng)系數(shù);ωc—保持架角速度;ωn—套圈角速度。

        根據(jù)軸承摩擦功耗的來(lái)源,其可簡(jiǎn)化兩部分:(1)滾珠與內(nèi)圈的摩擦功耗;(2)滾珠與外圈的摩擦功耗。二者的摩擦功耗分別為:

        (22)

        2.3.2 傳熱分析

        存在溫度差的物體間主要有熱傳導(dǎo)、熱對(duì)流和熱輻射3種傳熱方式。因?yàn)闈?rùn)滑脂可視為固體或半固體物質(zhì),所以,脂潤(rùn)滑下軸承內(nèi)部的傳熱方式以熱傳導(dǎo)為主。

        根據(jù)角接觸球軸承的結(jié)構(gòu)特點(diǎn),筆者建立的軸承溫度節(jié)點(diǎn)系統(tǒng)如圖3所示。

        圖3 軸承溫度節(jié)點(diǎn)系統(tǒng)

        軸承溫度節(jié)點(diǎn)傳遞系統(tǒng)如圖4所示。

        圖4 軸承溫度節(jié)點(diǎn)傳遞系統(tǒng)

        圖4中各溫度參數(shù)的含義如表1所示。

        表1 軸承溫度節(jié)點(diǎn)

        根據(jù)能量平衡原理,軸承系統(tǒng)在傳熱過(guò)程中的每一個(gè)節(jié)點(diǎn)流入的熱量等于其流出的熱量,流經(jīng)每一個(gè)節(jié)點(diǎn)的熱流量之和等于零。據(jù)此,筆者建立如下傳熱方程:

        (23)

        2.4 軸承計(jì)算模型求解

        該處的計(jì)算模型主要由3部分構(gòu)成:(1)擬靜力學(xué)模型;(2)生熱模型;(3)傳熱模型。

        首先,筆者通過(guò)對(duì)擬靜力學(xué)模型求解得到初始力學(xué)和運(yùn)動(dòng)學(xué)參數(shù);然后,將其代入生熱模型和傳熱模型得到溫度,進(jìn)而通過(guò)間接耦合的方法,將得到的溫度差參數(shù)重新代入擬靜力學(xué)模型進(jìn)行求解;最終,得到更為準(zhǔn)確的力學(xué)和運(yùn)動(dòng)學(xué)參數(shù)。

        其整個(gè)的求解流程圖如圖5所示。

        圖5 求解流程圖

        3 實(shí)驗(yàn)與結(jié)果分析

        為了對(duì)理論計(jì)算結(jié)果的正確性進(jìn)行驗(yàn)證,筆者開(kāi)展了軸承高速脂潤(rùn)滑溫升實(shí)驗(yàn),實(shí)驗(yàn)測(cè)試以QJ203角接觸球軸承為對(duì)象。

        QJ203角接觸球軸承參數(shù)如表2所示。

        表2 軸承參數(shù)

        實(shí)驗(yàn)轉(zhuǎn)速范圍為31 000 r/min~36 000 r/min,軸向載荷為3 000 N、4 000 N和5 000 N,徑向載荷為600 N。

        實(shí)驗(yàn)裝置如圖6所示。

        圖6 溫度測(cè)試實(shí)驗(yàn)臺(tái)

        實(shí)驗(yàn)載荷譜如表3所示。

        表3 QJ203實(shí)驗(yàn)載荷譜

        為了探究考慮熱膨脹影響的不同載荷和轉(zhuǎn)速下,脂潤(rùn)滑高速角接觸球軸承內(nèi)部變化規(guī)律,筆者將滾珠在分析計(jì)算模型中承受徑向力最大的位置定義為“0°位置角滾珠”,其余滾珠按照順時(shí)針?lè)较蛞来闻帕?并將原機(jī)載荷譜中的實(shí)驗(yàn)數(shù)據(jù)代入模型。

        恒速變載和恒載變速下,軸承動(dòng)態(tài)特性和熱特性的理論計(jì)算與分析如下:

        3.1 接觸角變化規(guī)律

        軸向載荷和轉(zhuǎn)速對(duì)不同位置滾珠接觸角的影響,如圖7所示。

        圖7 考慮熱膨脹的軸向載荷和轉(zhuǎn)速對(duì)接觸角的影響

        圖7中:接觸角隨角位置的變化呈“Ω”型,且隨軸向載荷和轉(zhuǎn)速的增大,變化幅度降低;熱膨脹會(huì)減小滾珠與滾道間相對(duì)位置的變化,因而內(nèi)/外圈接觸角變小。

        3.2 接觸載荷變化規(guī)律

        轉(zhuǎn)速30 000 r/min時(shí),軸向載荷對(duì)滾珠與滾道間接觸載荷的影響,如圖8所示。

        圖8 考慮熱膨脹的軸向載荷對(duì)接觸載荷的影響

        圖8中:軸向載荷增大,載荷隨角位置變化呈由“W”型向“U”型的變化趨勢(shì);熱膨脹會(huì)加劇滾珠與滾道間的作用力,使內(nèi)/外圈接觸載荷增大,且隨軸向載荷的增大影響作用更為顯著。

        軸向載荷3 000 N時(shí),轉(zhuǎn)速對(duì)滾珠與滾道間接觸載荷的影響,如圖9所示。

        圖9 考慮熱膨脹的轉(zhuǎn)速對(duì)接觸載荷的影響

        圖9中:接觸載荷隨角位置變化呈“W”型,轉(zhuǎn)速增加,內(nèi)圈接觸載荷小幅降低,外圈接觸載荷則小幅上升;熱膨脹會(huì)使內(nèi)/外圈接觸載荷增大,且會(huì)弱化“W”型變化趨勢(shì)。

        3.3 軸向位移變化規(guī)律

        軸向載荷和轉(zhuǎn)速對(duì)于軸向位移的影響,如圖10所示。

        圖10 考慮熱膨脹的軸向載荷和轉(zhuǎn)速對(duì)軸向位移的影響

        由圖10可知:軸向位移隨軸向載荷的增加而增大,熱膨脹會(huì)使軸向位移減小。另外,未考慮熱膨脹影響時(shí),轉(zhuǎn)速基本不影響軸向位移,考慮熱膨脹影響時(shí),軸向位移隨轉(zhuǎn)速的增加而減小。

        3.4 徑向位移變化規(guī)律

        軸向載荷和轉(zhuǎn)速對(duì)于軸承徑向位移的影響,如圖11所示。

        由圖11可知:徑向位移隨軸向載荷的增大而減小,熱膨脹會(huì)使徑向位移變小。轉(zhuǎn)速對(duì)于徑向位移的影響趨勢(shì)與軸向位移一致。

        圖11 考慮熱膨脹的軸向載荷和轉(zhuǎn)速對(duì)徑向位移的影響

        3.5 運(yùn)動(dòng)參數(shù)變化規(guī)律

        3.5.1 公轉(zhuǎn)角速度和自轉(zhuǎn)角速度

        轉(zhuǎn)速30 000 r/min時(shí),軸向載荷對(duì)不同位置滾珠公轉(zhuǎn)/自轉(zhuǎn)角速度的影響,如圖12所示。

        圖12 考慮熱膨脹的軸向載荷對(duì)公轉(zhuǎn)/自轉(zhuǎn)角速度的影響

        由圖12可知:公轉(zhuǎn)/自轉(zhuǎn)角速度隨角位置的變化呈“Ω”型,熱膨脹會(huì)降低公轉(zhuǎn)/自轉(zhuǎn)角速度;無(wú)論是否考慮熱膨脹的影響,不同軸向載荷下同位置處滾珠公轉(zhuǎn)/自轉(zhuǎn)角速度差值在40 rad/s以內(nèi)。

        由此可見(jiàn),軸向載荷對(duì)于滾珠公轉(zhuǎn)/自轉(zhuǎn)角速度大小影響并不明顯。

        軸向載荷為3 000 N時(shí),轉(zhuǎn)速對(duì)不同位置滾珠公轉(zhuǎn)/自轉(zhuǎn)角速度的影響,如圖13所示。

        圖13 考慮熱膨脹的轉(zhuǎn)速對(duì)公轉(zhuǎn)/自轉(zhuǎn)角速度的影響

        由圖13可知:公轉(zhuǎn)/自轉(zhuǎn)角速度隨轉(zhuǎn)速的增加而增加,熱膨脹會(huì)降低公轉(zhuǎn)/自轉(zhuǎn)角速度。

        由圖13與圖12對(duì)比可知:轉(zhuǎn)速是公轉(zhuǎn)/自轉(zhuǎn)角速度的主要影響因素。

        3.5.2 自旋角速度

        軸向載荷和轉(zhuǎn)速對(duì)自旋角速度的影響如圖14所示。

        圖14 考慮熱膨脹的軸向載荷和轉(zhuǎn)速對(duì)自旋角速度的影響

        由圖14可知:自旋角速度隨角位置的變化呈“Ω”型,并隨軸向載荷的增大,變化幅度變小,隨轉(zhuǎn)速的增加而增加;熱膨脹會(huì)降低自旋角速度,且影響作用明顯。

        3.6 生熱量大小

        軸向載荷和轉(zhuǎn)速對(duì)軸承生熱量的影響情況如圖15所示。

        圖15 考慮熱膨脹的軸向載荷和轉(zhuǎn)速對(duì)生熱量的影響

        由圖15可知:軸承生熱量隨軸向載荷和轉(zhuǎn)速的增加而增加,考慮熱膨脹影響的生熱量數(shù)值更高,且隨載荷和轉(zhuǎn)速的增加,熱膨脹對(duì)于生熱量的影響越明顯。

        綜上所述,在高速重載工況下,軸承熱膨脹會(huì)對(duì)軸承的力學(xué)、運(yùn)動(dòng)特性和熱特性產(chǎn)生較大影響,徑向載荷會(huì)導(dǎo)致軸承內(nèi)部各滾珠的運(yùn)動(dòng)和受力產(chǎn)生差異。

        3.7 實(shí)驗(yàn)比對(duì)結(jié)果

        筆者將軸承實(shí)驗(yàn)相關(guān)數(shù)據(jù)代入到計(jì)算模型中,計(jì)算不同工況下外圈的理論溫度,進(jìn)而將其與實(shí)驗(yàn)溫度進(jìn)行對(duì)比。

        實(shí)驗(yàn)溫度與理論溫度的對(duì)比驗(yàn)證如圖16所示。

        圖16 實(shí)驗(yàn)溫度與理論溫度對(duì)比

        由圖16可知:不同工況條件下,筆者考慮熱膨脹的模型計(jì)算出的理論溫度更為準(zhǔn)確,其與實(shí)驗(yàn)溫度的最大溫差為5 ℃,誤差在7%左右。

        上述結(jié)果驗(yàn)證了該模型的正確性。

        4 結(jié)束語(yǔ)

        在考慮熱膨脹影響的情況下,筆者建立了高速運(yùn)轉(zhuǎn)下角接觸球軸承的動(dòng)態(tài)及熱特性分析模型,采用間接耦合的方法,將溫升引起的熱膨脹代入到模型中,進(jìn)行了循環(huán)修正計(jì)算,進(jìn)而對(duì)軸承的動(dòng)態(tài)參數(shù)及熱特性變化規(guī)律進(jìn)行了分析。

        研究結(jié)果表明:

        (1)比較實(shí)驗(yàn)結(jié)果與理論計(jì)算結(jié)果可知,在轉(zhuǎn)速為33 000 r/min,軸向載荷為4 000 N時(shí),其誤差最大;其中,在實(shí)驗(yàn)溫度為71.6 ℃,理論計(jì)算溫度為66.6 ℃,誤差為7%左右,模型計(jì)算較為準(zhǔn)確;

        (2)考慮熱膨脹因素的影響后,會(huì)使軸承接觸角、軸向/徑向位移和滾動(dòng)體角速度降低,滾動(dòng)體和滾道的接觸載荷以及軸承總生熱量增加;

        (3)在聯(lián)合載荷作用下,軸承內(nèi)部滾珠受力與運(yùn)動(dòng)趨于復(fù)雜,軸承穩(wěn)定性降低;然而,徑向載荷的存在使?jié)L珠與滾道間作用力呈周期性變化,一定程度上會(huì)避免重載下滾珠與滾道的持續(xù)高強(qiáng)度運(yùn)轉(zhuǎn),減輕軸承內(nèi)部的磨損,所以,合理的徑向載荷與軸向載荷之比,能使軸承更有效地運(yùn)行;

        (4)將溫升實(shí)驗(yàn)測(cè)得的高速角接觸球軸承外圈溫度,分別與考慮/未考慮熱膨脹影響的理論溫度進(jìn)行了對(duì)比,結(jié)果表明,考慮熱膨脹影響的結(jié)果更趨近于實(shí)驗(yàn)溫度,由此驗(yàn)證了模型的準(zhǔn)確性。

        在下一研究階段,筆者將考慮彈流潤(rùn)滑對(duì)軸承動(dòng)態(tài)特性的影響,通過(guò)優(yōu)化滾珠和內(nèi)圈受力平衡計(jì)算模型,修正其生熱和傳熱模型,從而提高其理論計(jì)算的準(zhǔn)確性。

        猜你喜歡
        滾珠內(nèi)圈功耗
        特種復(fù)合軸承內(nèi)圈推力滾道磨削用工裝設(shè)計(jì)
        哈爾濱軸承(2021年4期)2021-03-08 01:00:48
        滾珠絲杠的熱力耦合作用仿真
        主軸軸承內(nèi)圈鎖緊用臺(tái)階套的裝配
        揭開(kāi)GPU功耗的面紗
        數(shù)字電路功耗的分析及優(yōu)化
        電子制作(2016年19期)2016-08-24 07:49:54
        “功耗”說(shuō)了算 MCU Cortex-M系列占優(yōu)
        電子世界(2015年22期)2015-12-29 02:49:44
        滾珠絲杠的四軸加工
        內(nèi)圈帶缺陷中介軸承的動(dòng)力學(xué)建模與振動(dòng)響應(yīng)分析
        IGBT模型優(yōu)化及其在Buck變換器中的功耗分析
        精密滾珠絲杠副伺服加載試驗(yàn)臺(tái)設(shè)計(jì)
        杨幂二区三区免费视频| 中文字幕亚洲情99在线 | 男女视频网站免费精品播放| 精品粉嫩av一区二区三区| 少妇激情一区二区三区视频 | 中文字幕人妻少妇精品| 操风骚人妻沉沦中文字幕| 免费1级做爰片1000部视频| av在线色| 99熟妇人妻精品一区五一看片 | 76少妇精品导航| 色偷偷亚洲第一综合网| 尤物精品国产亚洲亚洲av麻豆| 免费欧洲毛片a级视频老妇女| 无码专区天天躁天天躁在线| 久久aⅴ无码av高潮AV喷| 风流熟女一区二区三区| 久久精品国产亚洲7777| 久久成人麻豆午夜电影| 久久人妻av不卡中文字幕| 国内嫩模自拍诱惑免费视频| 2018国产精华国产精品| 亚洲AV秘 无码一区二p区三区| 色婷婷av一区二区三区不卡| 午夜人妻久久久久久久久| 成全高清在线播放电视剧| 国产精品98视频全部国产| 日韩av在线亚洲女同| 国产精品无码v在线观看| 97无码人妻Va一区二区三区| 国产人妖一区二区av| 久久综网色亚洲美女亚洲av| 日本道精品一区二区三区| 中文字幕无码免费久久99| 国产夫妻自偷自拍第一页| 国产精品无码无卡无需播放器| 2019年92午夜视频福利| 亚洲中文字幕有码av| 中文字幕女优av在线| 国产熟女露脸大叫高潮| 久久天天躁狠狠躁夜夜中文字幕|