蘇永生,李亮,鐘相強
激光選區(qū)熔化鈦合金超聲輔助銑削性能研究
蘇永生1,李亮2,鐘相強1
(1.安徽工程大學 機械工程學院,安徽 蕪湖 241000;2.南京航空航天大學 機電學院,南京 210016)
針對激光選區(qū)熔化鈦合金開展超聲振動輔助銑削性能和作用機理研究,提高增材制造鈦合金表面加工質量、加工精度及加工效率,推動增材制造鈦合金構件在高端裝備業(yè)領域的廣泛應用。在傳統(tǒng)銑削和超聲振動輔助銑削下,采用聚晶金剛石刀具開展激光選區(qū)熔化鈦合金銑削試驗研究,分析不同條件下的表面硬度、切削力、表面形貌、表面粗糙度和切屑黏結的差異性。激光選區(qū)熔化鈦合金硬度單次測量及其平均值均高于傳統(tǒng)鈦合金。常規(guī)干銑削激光選區(qū)熔化鈦合金時,切削力隨著轉速的增大而呈現(xiàn)下降趨勢,隨著進給速度和切削深度的增加表現(xiàn)出逐漸增大的趨勢。在傳統(tǒng)銑削下,傳統(tǒng)鈦合金表面形貌存在明顯的刀具劃痕,而超聲振動銑削時,激光選區(qū)熔化鈦合金表面形貌總體表現(xiàn)出更加的光滑和平整。激光選區(qū)熔化鈦合金在常規(guī)銑削和超聲輔助銑削過程中,刀具前后刀面都出現(xiàn)了嚴重的鈦合金切屑黏結現(xiàn)象。激光選區(qū)熔化鈦合金常規(guī)干銑削時,增大轉速或降低進給速度和切削深度能夠降低切削力。在相同切削參數(shù)下,激光選區(qū)熔化鈦合金超聲銑削質量優(yōu)于傳統(tǒng)鈦合金常規(guī)銑削表面質量。激光選區(qū)熔化鈦合金表面質量改善的作用機理主要歸因于激光選區(qū)熔化鈦合金的金相組織特性及超聲振動時斷續(xù)切削特性的綜合效應。相對于傳統(tǒng)銑削方式,超聲振動輔助銑削對改善激光選區(qū)熔化鈦合金加工過程中的刀具抗黏結性效果有限。
激光選區(qū)熔化鈦合金;聚晶金剛石刀具;超聲輔助;表面質量;切屑黏結
激光選區(qū)熔化成形(Selective Laser Melting,SLM)是目前金屬增材制造成型最普遍的技術之一,激光選區(qū)熔化鈦合金(SLM Ti6Al4V)已經(jīng)廣泛應用于航空、航天、醫(yī)療器械及生物植入物等眾多領域的關鍵復雜構件,并具有極其重要的地位和應用前景[1]。由于SLM Ti6Al4V在致密度、力學性能及顯微結構等方面與傳統(tǒng)鈦合金(CAL Ti6Al4V)存在較大差異,且激光成形過程中因熱變形而造成的低尺寸精度、低形狀精度及低表面質量問題[2-3],通常難以滿足精密零部件的精度要求。因此,開展SLM Ti6Al4V鈦合金的高效切削加工,改善加工質量,降低刀具磨損、提高加工效率及其加工精度對推動金屬增材制造鈦合金在高端裝備業(yè)領域的應用具有重要的研究意義及應用價值。
目前,降低刀具磨損、提高切削性能及加工質量的方法包括:應用微量潤滑和低溫冷卻潤滑技術[4-7]、刀具涂層[8]、電火花和激光輔助加工[9-10]、仿生織構技術[11-14]。近些年,超聲輔助切削在提高刀具切削性能方面得到了國內外學者的廣泛關注[15-18],現(xiàn)有研究表明,與傳統(tǒng)的切削加工相比,超聲輔助加工可以獲得低切削力、低切削溫度、良好的切屑斷屑、低表面粗糙度及良好的加工質量,已成為有效改善表面質量、提高切削性能,延緩刀具磨損的重要方法之一。
綜上所述,針對SLM Ti6Al4V成形后存在的表面質量和形貌精度問題,開展SLM Ti6Al4V的超聲振動輔助切削加工,提高加工質量及切削性能,并已逐漸成為增材制造鈦合金高效優(yōu)質切削研究面臨的新挑戰(zhàn)和新熱點。本文選擇具有低摩擦和抗磨損性能優(yōu)異的聚晶金剛石(PCD)作為刀具材料,開展傳統(tǒng)銑削(CM)和超聲振動輔助銑削(UAM)下的SLM Ti6Al4V切削力、表面質量、表面黏結及其作用機理研究。
本次試驗加工如圖1所示,試驗選擇的工件為:傳統(tǒng)Ti6Al4V鈦合金(CAL Ti6Al4V)和激光選區(qū)熔化Ti6Al4V鈦合金(SLM Ti6Al4V);兩刃的PCD刀具,刀刃直徑為4 mm,刀具前后角分別為0°和15°;切削參數(shù)為:主軸轉速4 000~8 000 r/min,進給速度120~960 mm/min,切削深度0.1~0.8 mm,切削長度約612 mm。超聲參數(shù):超聲頻率30 kHz,振幅6 μm。本次試驗采用干切削方式,實驗設備涉及銑床HAAS OM-2A、測力儀(奇石樂Kistler9257B)、電荷放大器(Kistler 5080A)、掃描電子顯微鏡(Phenom XL)及MH-5LD顯微硬度計。
圖1 超聲輔助銑削SLM Ti6Al4V
針對SLM Ti6Al4V和CAL Ti6Al4V工件進行維氏(HV)硬度測量,每種工件的硬度測量重復3次,SLM Ti6Al4V的維氏硬度3次測量值分別為307.5、309.8和311.4,3次測量平均值為309.6。而CAL Ti6Al4V的維氏硬度3次測量值分別為257.1、235.8和274.4,3次測量平均值為255.8。圖2為SLM鈦合金和CAL鈦合金3次維氏硬度測量數(shù)值的比較和分析。因此,根據(jù)上述分析并結合圖2可以看出,激光選區(qū)熔化成形后的鈦合金表面3次重復測量的維氏硬度值及其平均維氏硬度值均高于傳統(tǒng)鈦合金。
圖3為轉速對銑削力的影響。從圖3知,當f= 360 mm/min,p= 0.3 mm,轉速從4 000 r/min增加到8 000 r/min的過程中,PCD刀具銑削過程中3個方向的力(F、F、F)均表現(xiàn)出逐步減小,且F、F和F分別降低了約37.7%,55.4%和36.0%。試驗表明,通過增大轉速能夠有效降低切削增材制造鈦合金過程中刀具的銑削力[19]。
圖2 SLM鈦合金和CAL鈦合金硬度
圖3 轉速對SLM鈦合金切削力的影響
圖4為進給速度對增材制造鈦合金銑削力的影響。從圖4知,當= 6 000 r/min,p= 0.3 mm,進給速度從120 mm/min增加到960 mm/min的過程中,F、F及F均表現(xiàn)出逐步增大,且F、F和F分別增大了約1.66、0.66、3.45倍。
圖4 進給速度對SLM鈦合金切削力的影響
圖5為切削深度對增材制造鈦合金銑削力的影響。從圖5知,當= 6 000 r/min,f= 360 mm/min,切削深度從0.1 mm增加到0.8 mm的過程中,PCD刀具銑削過程中3個方向的力也均表現(xiàn)出逐步增大,且F、F和F分別增大了約10.68、4.58、7.85倍。由圖4和圖5結果表明,通過降低進給速度和切削深度能夠有效降低切削力。這可能主要歸因于:進給速度和切削深度的增大會增加切削層截面積,從而導致了切削力的增加[20]。
圖6和圖7為CAL Ti6Al4V和SLM Ti6Al4V分別在傳統(tǒng)銑削(CM)和超聲振動輔助(UAM)銑削后表面質量的形貌對比。其中,圖6a和圖6b的切削參數(shù)為p= 0.3 mm,f= 360 mm/min,=6 000 r/min;圖6c和圖6d切削參數(shù)為p= 0.3 mm,f= 360 mm/min,=8 000 r/min。
圖5 切削深度對SLM鈦合金切削力的影響
圖6 不同條件下的加工表面
圖7 不同條件下的表面粗糙度比較
在傳統(tǒng)銑削下,CAL 鈦合金表面的SEM形貌如圖6a、圖6c所示,從SEM形貌可以看出,這4個工件表面存在明顯的刀具劃痕。而超聲輔助銑削下,SLM鈦合金工件表面SEM形貌,總體表現(xiàn)出更加的光滑和平整(如圖6b和圖6d所示)。圖7為不同條件下的表面粗糙度比較, 其中,圖6a和圖6b參數(shù)對應于圖7中的condition1,圖6c和圖6d參數(shù)對應于圖7中的condition 2。從圖7可明顯看出,相同切削參數(shù)條件下,超聲輔助加工有助于降低工件表面粗糙度。因此,從圖6和圖7可以看出,在相同切削參數(shù)下,超聲輔助加工的SLM鈦合金表面(圖6b、圖6d)分別優(yōu)于對應的傳統(tǒng)銑削CM鈦合金表面質量(圖6a、圖6c)。
圖8為超聲輔助干銑削SLM鈦合金后,PCD刀具后刀面的SEM形貌及EDX分析。通過EDX面掃結果可以初步獲知,PCD后刀面區(qū)域分布的元素包括Titanium、Carbon、Aluminium、Cobalt、Tungsten及Vanadium。為了確定圖8h靠近切削刃附近覆蓋的一層黏結物,選取點4為對象進行分析,根據(jù)圖8i點4區(qū)域黏結物EDX成分分析結果可知,該黏結層的元素成分為Titanium、Aluminium及 Vanadium,其主要成分是Titanium,據(jù)此可基本判定該黏結層來自SLM鈦合金超聲切削過程中產(chǎn)生的切屑黏結物,同樣的黏結現(xiàn)象在刀具前刀面也非常明顯。
圖9為超聲輔助和傳統(tǒng)干銑削SLM鈦合金約612 mm后,PCD刀具表面切屑黏結SEM形貌。常規(guī)銑削后,后刀面和前刀面黏結情況分別如圖9a和圖9b所示。同樣,超聲輔助銑削后,后刀面和前刀面黏結情況分別如圖9c和圖9d所示。根據(jù)圖8和圖9可以看出,無論是常規(guī)銑削還是超聲輔助銑削后,PCD刀具前后刀面,特別是靠近切削刃附件的區(qū)域明顯覆蓋一層切屑黏結物,這嚴重影響了刀具切削性能及表面加工質量的提升。此外,從圖9可以看出,相比較常規(guī)銑削來說,超聲輔助似乎對切屑黏結抑制沒有改善效果。
圖8 PCD刀具后刀面黏結物分析
圖9 SLM鈦合金超聲輔助和常規(guī)銑削下的刀具表面切屑黏結
由圖2結果顯示,SLM Ti6Al4V表面硬度單次測量和3次測量平均值,均比傳統(tǒng)Ti6Al4V略高,這主要由激光選區(qū)熔化鈦合金和傳統(tǒng)鈦合金自身金相組織結構差異性引起的[21-23],由于制備工藝的不同,前者具有比后者更加精細的顯微組織結構,從而導致激光選區(qū)熔化鈦合金往往具有更高的硬度和脆性等。
根據(jù)圖6和圖7可知,對同一組切削參數(shù)下,超聲振動輔助下SLM Ti6Al4V加工表面質量優(yōu)于傳統(tǒng)銑削CAL Ti6Al4V表面質量,其作用機理可能歸因于:首先,相對于傳統(tǒng)鍛造鈦合金來說,金屬增材制造鈦合金具有更細密的顯微組織,從而導致了其具有相對較高的硬度,提升了工件的脆性,一定程度上降低了鈦合金切削過程的塑性流動特性,對切削加工質量起到了積極的改善作用[22];其次,相對于傳統(tǒng)銑削方式來說,借助于超聲振動輔助銑削,能夠有效增加刀具/工件分離時間,減少實際切削時間,也有助于改善切削摩擦、降低切削力、降低切削溫度、表面粗糙度,從而最終改善了加工質量[24-25]。
根據(jù)文中圖8和圖9試驗結果可以明顯看出,在超聲干銑削條件,PCD銑刀表面黏結現(xiàn)象十分嚴重,超聲輔助對SLM鈦合金銑削過程抗黏結效果改善不佳。一方面,本次試驗是在干切削條件下,鈦合金本身很強的黏結性和塑性流動性;其次,盡管SLM鈦合金金相顯微組織比傳統(tǒng)鈦合金精細,具有更高的脆性,在一定能夠程度上有助于降低銑削過程中材料的塑性流動性,可能它們金相顯微組織的差異性不大,從而對黏結流動性能的改善效果有限;最后,由于PCD刀具的低摩擦系數(shù),也使得切屑在刀具表面易于流動和黏結區(qū)域的擴張。在上述3種可能的因素綜合效應下,導致了超聲輔助下刀具表面抗黏結效果不佳。
1)在常規(guī)干銑削SLM鈦合金時,切削力隨著轉速的增大而呈現(xiàn)下降趨勢,隨著進給速度和切削深度的增加表現(xiàn)出逐漸增大的趨勢。
2)在相同切削參數(shù)下,SLM Ti6Al4V超聲銑削加工質量優(yōu)于CAL Ti6Al4V傳統(tǒng)銑削加工質量,其作用機理可能歸因于:SLM Ti6Al4V精細的金相組織和更高的硬度,導致更高的脆性和較低的塑性流動;與傳統(tǒng)銑削相比,超聲振動的斷續(xù)切削特性,導致了刀具-工件分離時間增加和實際切削時間減少,有助于斷屑、降低切削摩擦、降低表面粗糙度。
3)在常規(guī)銑削和超聲輔助銑削下,PCD刀具前后刀面均產(chǎn)生嚴重的切屑黏結,這可能歸因于SLM Ti6Al4V自身很強的黏結和塑性流動性、PCD刀具較低的摩擦系數(shù)及SLM鈦合金金和傳統(tǒng)鈦合金脆性差異小等綜合因素造成的。
[1] GU Dong-dong, SHI Xin-yu, POPRAWE R, et al. Material- Structure-Performance Integrated Laser-Metal Additive Manufacturing[J]. Science, 2021, 372(6545): 1487.
[2] AL-RUBAIE K S, MELOTTI S, RABELO A, et al. Ma-chinability of SLM-Produced Ti6Al4V Titanium Alloy Parts[J]. Journal of Manufacturing Processes, 2020, 57: 768-786.
[3] 高航, 彭燦, 王宣平. 航空增材制造復雜結構件表面光整加工技術研究及進展[J]. 航空制造技術, 2019, 62(9): 14-22.
GAO Hang, PENG Can, WANG Xuan-ping. Research Pro-gress on Surface Finishing Technology of Aeronautical Complex Structural Parts Manufactured by Additive Manufacturing[J]. Aeronautical Manufacturing Techno-logy, 2019, 62(9): 14-22.
[4] OSMAN K A, üNVER H ?, ?EKER U. Application of Minimum Quantity Lubrication Techniques in Machining Process of Titanium Alloy for Sustainability: A Review [J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(9): 2311-2332.
[5] SHOKRANI A, AL-SAMARRAI I, NEWMAN S T. Hybrid Cryogenic MQL for Improving Tool Life in Machining of Ti-6Al-4V Titanium Alloy[J]. Journal of Manufacturing Processes, 2019, 43: 229-243.
[6] AGRAWAL C, WADHWA J, PITRODA A, et al. Com-pre-hensive Analysis of Tool Wear, Tool Life, Surface Rou-ghness, Costing and Carbon Emissions in Turning Ti-6Al- 4V Titanium Alloy: Cryogenic Versus Wet Machining[J]. Tribology International, 2021, 153: 106597.
[7] HA S J, LIM D W, KIM J H, et al. Economic Evaluation and Machining Performance in Ti-6Al-4V Titanium Alloy Milling by Integrated CO2& MQL Injection System[J]. Journal of Mechanical Science and Technology, 2021, 35(9): 4135-4142.
[8] LIAN Yun-song, LONG Yang-yang, ZHAO Guo-long, et al. Performance of CRCN-WS2Hard/Soft Composite Coated Tools in Dry Cutting of Titanium Alloys[J]. Journal of Manufacturing Processes, 2020, 54: 201-209.
[9] XU Mo-ran, LI Chang-ping, KURNIAWAN R, et al. Study on Surface Integrity of Titanium Alloy Machined by Electrical Discharge-Assisted Milling[J]. Journal of Materials Processing Technology, 2022, 299: 117334.
[10] EL AOUD B, BOUJELBENE M, BOUDJEMLINE A, et al. Investigation of Cut Edge Microstructure and Surface Rou-gh-ness Obtained by Laser Cutting of Titanium Alloy Ti-6Al- 4V[J]. Materials Today: Proceedings, 2021, 44: 2775-2780.
[11] ZHANG Ke-dong, DENG Jian-xin, MENG Rong, et al. Effect of Nano-Scale Textures on Cutting Performance of WC/Co-Based Ti55Al45N Coated Tools in Dry Cutting[J]. International Journal of Refractory Metals and Hard Materials, 2015, 51: 35-49.
[12] CHANG Wen-long, SUN Ji-ning, LUO Xi-chun, et al. Investigation of Microstructured Milling Tool for Defer-ring Tool Wear[J]. Wear, 2011, 271(9-10): 2433-2437.
[13] SU Yong-sheng, LI Liang, WANG Gang, et al. Cutting Mechanism and Performance of High-Speed Machining of a Titanium Alloy Using a Super-Hard Textured Tool[J]. Journal of Manufacturing Processes, 2018, 34: 706-712.
[14] SU Yong-sheng, LI Zhen, LI Liang, et al. Cutting Perfor-mance of Micro-Textured Polycrystalline Diamond Tool in Dry Cutting[J]. Journal of Manufacturing Processes, 2017, 27: 1-7.
[15] 高澤, 張德遠, 李哲, 等. 高速超聲橢圓振動銑削腹板表面質量研究[J]. 機械工程學報, 2019, 55(7): 249-256.
GAO Ze, ZHANG De-yuan, LI Zhe, et al. Research on Surface Quality of Titanium Alloy Webs via High-Speed Ultrasonic Elliptical Vibration Milling[J]. Journal of Mechanical Engineering, 2019, 55(7): 249-256.
[16] 張翔宇, 路正惠, 彭振龍, 等. 鈦合金的高質高效超聲振動切削加工[J]. 機械工程學報, 2021, 57(5): 133-147.
ZHANG Xiang-yu, LU Zheng-hui, PENG Zhen-long, et al. High Quality and Efficient Ultrasonic Vibration Cutting of Titanium Alloys[J]. Journal of Mechanical Engineering, 2021, 57(5): 133-147.
[17] TAN Rong-kai, ZHAO Xue-sen, GUO Shu-sen, et al. Sustainable Production of Dry-Ultra-Precision Machining of Ti-6Al-4V Alloy Using PCD Tool under Ultrasonic Elliptical Vibration-Assisted Cutting[J]. Journal of Clea-ner Production, 2020, 248: 119254.
[18] SORGATO M, BERTOLINI R, GHIOTTI A, et al. Tool Wear Analysis in High-Frequency Vibration-Assisted Dril-ling of Additive Manufactured Ti6Al4V Alloy[J]. Wear, 2021, 477: 203814.
[19] BONAITI G, PARENTI P, ANNONI M, et al. Micro- Milling Machinability of DED Additive Titanium Ti-6Al- 4V[J]. Procedia Manufacturing, 2017, 10: 497-509.
[20] SHI Qi, LI Liang, HE Ning, et al. Experimental Study in High Speed Milling of Titanium Alloy TC21[J]. The Inter-national Journal of Advanced Manufacturing Tech-nology, 2013, 64(1): 49-54.
[21] DE OLIVEIRA CAMPOS F, ARAUJO A C, JARDINI MUN-HOZ A L, et al. The Influence of Additive Manu-facturing on the Micromilling Machinability of Ti6Al4V: A Comparison of SLM and Commercial Workpieces[J]. Journal of Manufacturing Processes, 2020, 60: 299-307.
[22] HOJATI F, DANESHI A, SOLTANI B, et al. Study on Machinability of Additively Manufactured and Conven-tional Titanium Alloys in Micro-Milling Process[J]. Preci-sion Engineering, 2020, 62: 1-9.
[23] KHANNA N, ZADAFIYA K, PATEL T, et al. Review on Machining of Additively Manufactured Nickel and Tita-nium Alloys[J]. Journal of Materials Research and Tech-nology, 2021, 15: 3192-3221.
[24] VERMA G C, PANDEY P M. Machining Forces in Ultrasonic-Vibration Assisted End Milling[J]. Ultrasonics, 2019, 94: 350-363.
[25] PENG Zhen-long, ZHANG Xiang-yu, ZHANG De-yuan. Effect of Radial High-Speed Ultrasonic Vibration Cutting on Machining Performance during Finish Turning of Hardened Steel[J]. Ultrasonics, 2021, 111: 106340.
Machining Performance of Ultrasonic Assisted Milling of Titanium Alloy Fabricated by Laser Selective Melting
1,2,1
(1. School of Mechanical Engineering, Anhui Polytechnic University, Anhui Wuhu 241000, China; 2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics &Astronautics, Nanjing 210016, China)
The work aims to study performance and mechanism of action of ultrasonic vibration assisted milling of laser-selective melting titanium alloy, to improve the surface machining quality, machining accuracy and machining efficiency of additive manufacturing titanium alloy, and to promote the extensive application of additive manufacturing titanium alloy components in high-end equipment industry. Methods of conventional milling and ultrasonic vibration assisted milling were employed in milling of laser-selective melting titanium alloy by using polycrystalline diamond tools, and the differences of surface hardness, cutting force, surface morphology, surface roughness and chip adhesion were analyzed under different conditions. The surface hardness of laser-selective melting titanium alloy is higher than that of conventional titanium alloy by single measurement value and its average value. During the process of dry milling of the laser-selective melting titanium alloy using conventional milling way, the cutting forces decreased with the increase of rotational speed, and they increased with the increase of feed speed and cutting depth. Under the condition of conventional milling, there were some obvious tool scratches on the surface morphology of the conventional titanium alloy. However, more smooth and flat surface morphology of laser-selective melting titanium alloy were successfully achieved under the method of ultrasonic vibration assisted milling. In addition, it was found that there were serious chip adhesion on the surface of rake face and flank face using the conventional titanium alloy or the ultrasonic vibration assisted milling. Cutting forces can be reduced by the methods of increasing rotation speed, decreasing feed speed and cutting depth in conventional dry milling of the laser-selective melting titanium alloy. In addition, the experiments indicate that the machining quality of the laser-selective melting titanium alloy using ultrasonic vibration assisted milling is is better than that of the conventional titanium alloy. Compared with the machined quality of conventional milling of the conventional titanium alloy, the better surface quality of the laser-selective melting titanium alloy can be obtained by using the ultrasonic vibration assisted milling under the same cutting parameters. The action mechanism in improving surface quality of laser-selective melting titanium alloy is mainly attributed to several aspects. On one hand, the fine microstructure and higher hardness of laser-selective melting titanium alloy leads to its higher brittleness and lower plastic flow. On the other hand, compared with conventional milling way, the discontinuous cutting characteristics of ultrasonic vibration machining, which can contribute to increasing the tool-workpiece separation time and decreasing the actual cutting time, thus further improving chip breaking, reducing cutting friction of tool-workpiece or tool-chip and surface roughness of machined workpiece. The results demonstrates that the ultrasound-assisted milling has hardly effect in improving the chip adhesion on the tool surface. This may be caused by a combination of factors including the characteristics of strong adhesion and plastic fluidity of the laser-selective melting titanium alloy, the low friction coefficient of polycrystalline diamond cutter and the small brittleness difference between the laser-selective melting titanium alloy and the traditional titanium alloy.
laser-selective melting titanium alloy; polycrystalline diamond tools; ultrasonic vibration assisted milling; surface quality; chip adhesion
TG506;TG663
A
1001-3660(2022)10-0321-07
10.16490/j.cnki.issn.1001-3660.2022.10.034
2022–01–24;
2022–05–26
2022-01-24;
2022-05-26
安徽省重點研究與開發(fā)計劃項目(2022a05020006);高校優(yōu)秀拔尖人才培育資助項目(gxgnfx2019013);安徽工程大學中青年拔尖人才培養(yǎng)計劃;基于SLM的新材料制備及打印工藝開發(fā)(2020ybxm03);安徽工程大學-鳩江區(qū)產(chǎn)業(yè)協(xié)同創(chuàng)新專項基金項目(2021cyxtb10)
Key Research and Development Plan of Anhui Province (2022a05020006); Funding Project for Cultivation of Outstanding Top-Notch Talents in Universities (gxgnfx2019013);Young and Middle-aged Top Talent Project of Anhui Polytechnic University, New Material Preparation and Printing Process Development Based on SLM (2020ybxm03); Industrial Collaborative Innovation Special Fund Project of Anhui Polytechnic University-Jiujiang District (2021cyxtb10)
蘇永生(1982—),男,博士,副教授,主要研究方向為高性能切削、摩擦學與表面技術及先進加工技術。
SU Yong-sheng (1982-), Male, Doctor, Associate professor, Research focus: high performance cutting, tribology and surface technology and advanced machining technology.
蘇永生, 李亮, 鐘相強. 激光選區(qū)熔化鈦合金超聲輔助銑削性能研究[J]. 表面技術, 2022, 51(10): 321-327.
SU Yong-sheng, LI Liang, ZHONG Xiang-qiang. Machining Performance of Ultrasonic Assisted Milling of Titanium Alloy Fabricated by Laser Selective Melting[J]. Surface Technology, 2022, 51(10): 321-327.