李明睿,王榮橋,1b,2,田騰躍,毛建興,胡殿印
專題—面向航空航天部件服役安全的表面處理技術(shù)
噴丸強(qiáng)化DD6單晶合金低周疲勞壽命預(yù)測
李明睿1a,王榮橋1a,1b,2,田騰躍1a,毛建興1b,1c,2,胡殿印1b,1c,2
(1.北京航空航天大學(xué) a.能源與動力工程學(xué)院 b.航空發(fā)動機(jī)結(jié)構(gòu)強(qiáng)度北京市重點實驗室 c.航空發(fā)動機(jī)研究院,北京 100191;2.中小型航空發(fā)動機(jī)聯(lián)合研究中心,北京 100191)
實現(xiàn)噴丸強(qiáng)化后DD6單晶合金低周疲勞壽命的準(zhǔn)確預(yù)測。開展了噴丸強(qiáng)化后DD6圓棒件低周疲勞試驗,分析了噴丸強(qiáng)化對單晶合金疲勞壽命的影響機(jī)理。在此基礎(chǔ)上,建立了各向異性材料噴丸強(qiáng)化工藝有限元模型,獲取了噴丸強(qiáng)化所致殘余應(yīng)力分布與粗糙度。基于連續(xù)介質(zhì)損傷力學(xué),考慮殘余應(yīng)力與粗糙度對低周疲勞壽命的影響,建立了噴丸強(qiáng)化DD6單晶合金低周疲勞壽命預(yù)測模型。噴丸強(qiáng)化后不同載荷下DD6單晶合金的低周疲勞壽命均得到提高,最大可提高108%;高溫環(huán)境下殘余應(yīng)力松弛導(dǎo)致強(qiáng)化效果與試驗溫度成反比。噴丸強(qiáng)化工藝有限元模擬得到殘余應(yīng)力分布在試件表面深約130 μm的區(qū)域,表層殘余應(yīng)力為–380.16 MPa,應(yīng)力集中系數(shù)為1.193,殘余應(yīng)力影響下的八面體Schmid應(yīng)力幅值降低了10%左右。DD6低周疲勞試驗結(jié)果在預(yù)測結(jié)果的2倍分散帶以內(nèi)。噴丸強(qiáng)化可以有效提高DD6低周疲勞壽命,對低周疲勞壽命的影響機(jī)制為殘余應(yīng)力的引入與粗糙度的改變。所建立的噴丸強(qiáng)化單晶合金DD6低周疲勞壽命預(yù)測模型具有較好的準(zhǔn)確性。
噴丸強(qiáng)化;單晶合金;低周疲勞;壽命預(yù)測;殘余應(yīng)力;應(yīng)力集中
渦輪葉片作為航空發(fā)動機(jī)的重要部件之一,在工作中承受循環(huán)載荷作用,不可避免地產(chǎn)生低周疲勞失效,制約其使用壽命[1]。單晶合金由于消除了高溫下易發(fā)生破壞的晶界,其高溫綜合性能得到了明顯提升,是先進(jìn)航空發(fā)動機(jī)渦輪葉片的首選材料[2]。噴丸強(qiáng)化是一種傳統(tǒng)表面處理技術(shù),利用高速彈丸流噴射材料表面,使彈丸與材料表層發(fā)生碰撞,改變表面形貌的同時引入一定深度的殘余應(yīng)力,是提高金屬材料低周疲勞壽命的有效手段[3]。因此開展噴丸強(qiáng)化后單晶合金低周疲勞壽命預(yù)測研究,具有重要的工程意義。
目前,國內(nèi)外學(xué)者對噴丸強(qiáng)化后疲勞問題的研究主要集中在多晶材料[4-6],針對單晶合金的研究相對較少。高玉魁[7]、王欣等[8-10]、吳慶輝等[11]針對單晶合金開展不同溫度下的疲勞試驗和缺口疲勞試驗,并與未噴丸結(jié)果進(jìn)行對比,指出噴丸強(qiáng)化后單晶疲勞壽命得到較大的提高,強(qiáng)化機(jī)制主要在于表面形貌優(yōu)化、形變強(qiáng)化以及表面孔洞優(yōu)化三方面。Bogachev等[12]、楊清等[13]、楊紅超等[14]開展不同噴丸工藝下的單晶合金疲勞試驗,研究了彈丸種類、噴丸強(qiáng)度、覆蓋率等工藝參數(shù)對單晶合金疲勞壽命和表面完整性的影響??偟膩碚f,上述研究有效論證了噴丸強(qiáng)化在單晶合金低周疲勞壽命延壽方面的有效性,但是研究主要集中于試驗,針對噴丸強(qiáng)化后單晶合金低周疲勞壽命仍缺乏有效的量化手段。基于此,本文以國產(chǎn)第二代鎳基單晶高溫合金DD6為研究對象,開展噴丸強(qiáng)化后DD6單晶合金的低周疲勞試驗;進(jìn)一步發(fā)展了噴丸強(qiáng)化數(shù)值模擬方法,建立了噴丸強(qiáng)化單晶合金低周疲勞壽命預(yù)測模型并進(jìn)行了試驗驗證。
本文所研究的材料是國產(chǎn)第二代鎳基單晶高溫合金DD6,生長方向為[001],該材料的熱處理過程為:1 290 ℃× 1 h + 1 300 ℃ × 2 h + 1 315 ℃ × 4 h/空冷+ 1 120 ℃ × 4 h/空冷+ 870 ℃ × 32 h/空冷。[001]取向力學(xué)性能如表1所示。試驗件為主軸方向與[001]取向偏差在10°以內(nèi)的圓棒,考核截面直徑為6 mm,如圖1所示。
表1 鎳基單晶高溫合金DD6[001]取向的力學(xué)性能[15]
Tab.1 [001] oriented mechanical properties of nick-based single crystal superalloy DD6[15]
圖1 DD6單晶合金試驗件尺寸
在常溫下,使用氣動噴丸機(jī)對圖1所示試驗件的考核段表面進(jìn)行噴丸處理,工藝參數(shù)包括:噴丸機(jī)氣壓為0.3 MPa,Z300陶瓷丸的直徑為0.3 mm,噴丸強(qiáng)度利用A型阿門試片采用弧高測量法測得,為0.2~0.25 mmA,表面覆蓋率為200%。
同時,使用Taylor型針掃描式粗糙度儀測量噴丸前、后試件的表面粗糙度,如表2所示??梢园l(fā)現(xiàn),噴丸強(qiáng)化處理后試件的表面粗糙度增大,噴丸后試樣的平均表面粗糙度是未強(qiáng)化前的5.10倍。
采用金相顯微鏡觀測噴丸前、后試樣表面的微觀組織,如圖2所示。從圖2a可以看出,噴丸強(qiáng)化處理前DD6單晶合金基體相的原始狀態(tài)良好,強(qiáng)化相呈現(xiàn)較好的立方結(jié)構(gòu);然而,經(jīng)過噴丸強(qiáng)化后由于試件表面劇烈的塑性變形,兩相的界限逐漸消失。
參照標(biāo)準(zhǔn)ASTM–E466–07[16],對噴丸強(qiáng)化后的DD6單晶合金試驗件開展760、980 ℃ 2種溫度下的低周疲勞試驗,應(yīng)變控制(應(yīng)變比= –1),每種溫度下設(shè)置1.2%、1.0%、0.8% 3種應(yīng)變,頻率為1.0 Hz。與未強(qiáng)化處理的DD6單晶合金低周疲勞壽命試驗數(shù)據(jù)對比如表3所示。表中疲勞壽命增益系數(shù)(LIP)定義為同樣的試驗條件下,表面強(qiáng)化試樣的疲勞壽命增加幅值與未表面強(qiáng)化試樣的疲勞壽命之比[7],如公式(1)所示??梢园l(fā)現(xiàn),經(jīng)過噴丸強(qiáng)化后,不同載荷下DD6單晶合金的低周疲勞壽命均得到提高,最大可提高108%;且壽命增益程度與試驗溫度成反比,這主要歸因于高溫環(huán)境下噴丸殘余應(yīng)力的松弛行為更顯著。
表2 DD6單晶合金噴丸前后表面粗糙度
Tab.2 Surface roughness of DD6 single crystal superalloy before and after shot peening μm
圖2 DD6單晶合金表層微觀組織
表3 低周疲勞試驗結(jié)果
Tab.3 Experiment result of low cycle fatigue
式中:LIP為疲勞壽命增益系數(shù),為未強(qiáng)化DD6單晶合金低周疲勞壽命,sp為噴丸后DD6單晶合金低周疲勞壽命。
隨后,利用掃描電子顯微鏡對噴丸強(qiáng)化后的DD6單晶合金試驗件斷口進(jìn)行觀察。如圖3a所示,大部分裂紋萌生于試樣的次表面,這是由于噴丸強(qiáng)化后殘余應(yīng)力層和硬化層的影響(一般為試樣表面至內(nèi)部幾百微米的區(qū)域內(nèi)),疲勞裂紋源由表面轉(zhuǎn)移到次表層區(qū)域。文獻(xiàn)[13]對DD5單晶合金噴丸強(qiáng)化的研究也印證了這一點。此外,部分疲勞裂紋萌生于試樣表面較深彈坑的位置,如圖3b所示。雖然噴丸強(qiáng)化可以將試件表面尖銳的加工刀痕沖擊成開口大且圓滑的彈坑,從而降低應(yīng)力集中程度,提高疲勞壽命[9],但噴丸后的試樣表面較深的彈坑位置仍存在一定的應(yīng)力集中,因此有少量的裂紋源產(chǎn)生于此。
圖3 噴丸強(qiáng)化DD6單晶合金的低周疲勞裂紋萌生位置
為了量化噴丸強(qiáng)化后的殘余應(yīng)力和表面粗糙度,利用Abaqus/Explicit對DD6單晶合金噴丸過程進(jìn)行有限元仿真模擬。靶材模型為20 mm×20 mm×5 mm的長方體,被劃分成為3個區(qū)域:過渡區(qū)域(Region 1)、影響區(qū)域(Region 2)和評估區(qū)域(Region 3),如圖4所示。區(qū)域1采用梯形網(wǎng)格,同時在邊界上設(shè)置一致的節(jié)點編號,以實現(xiàn)六面體網(wǎng)格劃分;區(qū)域2和區(qū)域3網(wǎng)格大小加密,以確保表面完整性參數(shù)結(jié)果的準(zhǔn)確性。彈丸與靶材之間的法向接觸屬性定義為硬接觸,切向接觸屬性定義為摩擦因數(shù)=0.3的罰函數(shù)。彈丸被設(shè)置成剛體,采用陶瓷材料,密度為3 800 kg/m3,彈性模量為350 GPa。彈丸模型為半球形,同時將彈丸材料的密度提高2倍,從而減少模型總體網(wǎng)格數(shù)量,提高計算效率。彈丸數(shù)量根據(jù)真實噴丸工藝覆蓋率確定,具體方法參考文獻(xiàn)[19]。噴丸強(qiáng)化工藝三維有限元模型如圖5所示。
不同于多晶材料,DD6單晶合金本構(gòu)行為具有正交各向異性,因此噴丸強(qiáng)化有限元模擬需采用各向異性屈服準(zhǔn)則[20]。采用工程上廣泛應(yīng)用的Hill各向異性屈服準(zhǔn)則[21]描述單晶材料的各向異性屈服行為,其表達(dá)式為:
圖4 靶材區(qū)域劃分
圖5 DD6單晶合金噴丸有限元模型(僅顯示部分彈丸)
式中:、、、、、為與材料晶體取向相關(guān)的參數(shù)。單晶合金沿[001]、[011]和[111] 3種取向具有相同的屈服特性,由對稱性可知===1、==,于是公式(2)變?yōu)椋?/p>
參考文獻(xiàn)[22]確定不同晶體取向的屈服應(yīng)力求解參數(shù)。第一種方法利用[001]取向屈服應(yīng)力[001]和[011]取向屈服應(yīng)力[011],則表示為:
第二種方法用[001]和[111]方向的屈服應(yīng)力確定參數(shù),則:
經(jīng)查閱材料手冊[15]可知,DD6單晶合金常溫下[001]取向屈服應(yīng)力[001]為930 MPa,[010]取向屈服應(yīng)力[010]為865 MPa,[111]取向屈服應(yīng)力[111]為1 180 MPa。本文根據(jù)DD6單晶3種取向的屈服應(yīng)力求解得到材料參數(shù)1和2,對其取平均值作為屈服準(zhǔn)則中參數(shù)、、的輸入,如表4所示。
表4 DD6單晶合金Hill各向異性屈服準(zhǔn)則相關(guān)參數(shù)
Tab.4 Parameters of Hill anisotropic yield criterion for DD6 single crystal superalloy
DD6單晶合金噴丸后殘余應(yīng)力模擬結(jié)果如圖6所示。噴丸強(qiáng)化產(chǎn)生的殘余壓應(yīng)力位于受噴靶材的表面及亞表面,由于受噴表面不均勻的彈塑性變形,局部區(qū)域產(chǎn)生殘余拉應(yīng)力。殘余應(yīng)力層的定義為從試件表面到殘余應(yīng)力減小為0的區(qū)域,由沿試件深度方向的殘余應(yīng)力(如圖6b所示)分布可知,殘余應(yīng)力層達(dá)130 μm,表層殘余應(yīng)力為–380.16 MPa,最大殘余壓應(yīng)力位于深度41.9 μm處,達(dá)–780.46 MPa。
噴丸強(qiáng)化后的表面形貌如圖7所示。彈丸撞擊靶材表面會留下凹凸不平的彈坑,從而容易產(chǎn)生應(yīng)力集中,加速疲勞裂紋萌生。目前,通常將其等效成表面半圓形缺口,進(jìn)而確定缺口產(chǎn)生的局部應(yīng)力集中系數(shù)t-[23]:
參式中:R-m是表面峰谷值的平均值,Sm為凹凸的平均間隔。根據(jù)靶材表層Z向位移分布,得到R-m= 0.004 3 mm,Sm=0.046 9 mm,Kt=1.193。
圖7 DD6單晶合金噴丸后表面形貌模擬結(jié)果
研究表明:鎳基單晶高溫合金循環(huán)相關(guān)損傷與晶體滑移密切相關(guān)[24],因此為描述疲勞壽命的晶體取向相關(guān)性,選擇滑移面參量(如最大Schmid應(yīng)力幅值等)表征鎳基單晶高溫合金循環(huán)相關(guān)損傷。在建立鎳基單晶高溫合金的本構(gòu)模型和壽命預(yù)測模型時,通常考慮12個八面體主滑移系<110>{111}和6個六面體滑移系<110>{100}[25]。根據(jù)晶體塑性力學(xué)理論,當(dāng)載荷沿[001]取向施加時,只有八面體滑移面被激活,且由于八面體次滑移系開動受到一些條件的限制,通常只考慮八面體主滑移系[26]。鑒于此,本文選取八面體滑移面最大Schmid應(yīng)力幅值作為表征滑移面循環(huán)相關(guān)損傷的參量。此外,溫度和當(dāng)前損傷也是表征滑移面循環(huán)相關(guān)損傷的重要參量。此時,八面體滑移面上的循環(huán)相關(guān)損傷可以表示為:
式中:oct、oct、oct為八面體滑移面上溫度相關(guān)的材料常數(shù)。
通常,隨著損傷的不斷累積,材料的有效承載面積不斷減小,實際載荷不斷增加;當(dāng)累積的損傷達(dá)到臨界值時,材料會發(fā)生斷裂。本文假設(shè)使材料所承受的真實應(yīng)力達(dá)到極限拉伸強(qiáng)度的損傷為臨界損傷。此時,臨界損傷cri與宏觀應(yīng)力的關(guān)系如下:
式中:b為極限拉伸強(qiáng)度?;诠剑?0),臨界損傷cri可以表示為:
以0和cri作為d的積分上下限對公式(9)進(jìn)行積分,便可獲得[001]取向鎳基單晶高溫合金低周疲勞壽命的表達(dá)式:
文獻(xiàn)[15,17-18]中給出了[001]取向鎳基單晶高溫合金DD6在760 ℃和980 ℃下的應(yīng)變控制低周疲勞試驗壽命和循環(huán)應(yīng)力響應(yīng)。通過擬合應(yīng)變控制低周疲勞試驗壽命,可以確定760 ℃和980 ℃時描述應(yīng)變控制下循環(huán)相關(guān)損傷的材料常數(shù)。DD6單晶合金[001]取向的疲勞損傷參數(shù)如表5所示,預(yù)測結(jié)果(圖8)與試驗數(shù)據(jù)相比,在2倍分散帶內(nèi)。
表5 不同溫度下DD6單晶合金低周疲勞損傷參數(shù)
Tab.5 Low cycle fatigue damage parameters for DD6 single crystal superalloy under different temperatures
由1.3節(jié)可知,噴丸強(qiáng)化對DD6單晶合金疲勞壽命的影響機(jī)理主要體現(xiàn)在兩方面:(1)產(chǎn)生殘余壓應(yīng)力抵消拉伸正應(yīng)力;(2)形成彈坑導(dǎo)致應(yīng)力集中。因此基于2.2節(jié)建立的基于損傷演化的鎳基單晶高溫合金低周疲勞壽命預(yù)測模型,修正應(yīng)力項并引入應(yīng)力集中系數(shù),建立考慮噴丸強(qiáng)化的鎳基單晶高溫合金壽命預(yù)測模型,可以進(jìn)一步表示為:
圖8 DD6單晶合金低周疲勞壽命預(yù)測結(jié)果
圖9 本征應(yīng)變法引入的殘余應(yīng)力場
圖10 殘余應(yīng)力影響下的八面體Schmid應(yīng)力幅值分布(760 ℃,Δε=1.2%)
圖11 噴丸強(qiáng)化DD6單晶合金低周疲勞壽命預(yù)測結(jié)果
1)開展了應(yīng)變控制噴丸強(qiáng)化DD6單晶合金低周疲勞試驗,不同載荷下DD6單晶合金的低周疲勞壽命均得到提高,最大可提高108%;噴丸對疲勞壽命的影響機(jī)理在于:靶材表層和次表層產(chǎn)生的殘余應(yīng)力可以阻礙裂紋在表層的萌生和擴(kuò)展,提高疲勞壽命;彈丸沖擊靶材產(chǎn)生的彈坑會導(dǎo)致一定程度的應(yīng)力集中,降低疲勞壽命。
2)基于DD6單晶合金的噴丸工藝,建立了各向異性單晶材料噴丸有限元模型,對噴丸強(qiáng)化過程進(jìn)行了數(shù)值模擬,可以較好地模擬殘余應(yīng)力分布和表面應(yīng)力集中系數(shù)。
3)基于Lemaitre循環(huán)損傷演化模型,考慮殘余應(yīng)力和表面粗糙度的影響,建立了噴丸強(qiáng)化DD6單晶合金低周疲勞壽命模型,預(yù)測結(jié)果與試驗數(shù)據(jù)相比在2倍分散帶以內(nèi),說明模型具有較高的精度。
[1] 史振學(xué), 胡穎濤, 劉世忠. 不同溫度下鎳基單晶高溫合金的低周疲勞性能[J]. 機(jī)械工程材料, 2021, 45(3): 16-20, 28.
SHI Zhen-xue, HU Ying-tao, LIU Shi-zhong. Low Cycle Fatigue Properties of Nickel Base Single Crystal Superal-loy at Different Temperatures[J]. Materials for Mechanical Engineering, 2021, 45(3): 16-20, 28.
[2] MISRA A K, GREENBAUER-SENG L A. Aerospace Propulsion and Power Materials and Structures Research at NASA Glenn Research Center[J]. Journal of Aerospace Engineering, 2013, 26(2): 459-490.
[3] TOSHA K. History and Future of Shot Peening[J]. Bulle-tin of the Japan Institute of Metals, 2008, 47: 134-139.
[4] EHRL J, POLANETZKI H, HESSERT R, et al. Influence of Mechanical Surface Strengthening on Nickel-base Su-peralloy DA718[C]//Proceedings of the 11th International Conference on Shot Peening. 2011: 213-218.
[5] KHADHRAOUI M, CAO W, CASTEX L, et al. Ex-perimental Investigations and Modelling of Relaxation Behaviour of Shot Peening Residual Stresses at High Temperature for Nickel Base Superalloys[J]. Materials Science and Technology, 1997, 13(4): 360-367.
[6] GIBSON G J, PERKINS K M, GRAY S, et al. Influence of Shot Peening on High-Temperature Corrosion and Cor-rosion-Fatigue of Nickel Based Superalloy 720Li[J]. Ma-terials at High Temperatures, 2016, 33(3): 225-233.
[7] 高玉魁. 噴丸強(qiáng)化對DD6單晶高溫合金高溫旋轉(zhuǎn)彎曲疲勞性能的影響[J]. 金屬熱處理, 2009, 34(8): 60-61.
GAO Yu-kui. Influence of Shot Peening on High Tempe-ra-ture Rotating Bending Fatigue Property of DD6 Single Crystal Superalloy[J]. Heat Treatment of Metals, 2009, 34(8): 60-61.
[8] 王欣, 尤宏德, 趙金乾, 等. 噴丸對DD6單晶合金高溫疲勞性能的影響[J]. 中國表面工程, 2013, 26(3): 21-24.
WANG Xin, YOU Hong-de, ZHAO Jin-qian, et al. Inf-luence of Shot-Peening on the High-Temperature Fatigue Property of DD6 Single Crystal Superalloy[J]. China Sur-face Engineering, 2013, 26(3): 21-24.
[9] 王欣, 許春玲, 劉晨光, 等. 噴丸對單晶合金中溫疲勞性能的強(qiáng)化機(jī)制[J]. 航空制造技術(shù), 2020, 63(12): 46-52.
WANG Xin, XU Chun-ling, LIU Chen-guang, et al. Streng-thening Mechanism of Shot-Peening on Medium- Temperature Fatigue Property of Single-Crystal Superal-loy[J]. Aeronautical Manufacturing Technology, 2020, 63(12): 46-52.
[10] WANG Xin, ZHANG Tao, HUANG Zhao-hui, et al. Effect of Shot Peening on the Surface Integrity and Notched Fatigue Properties of a Single-Crystal Superalloy at Ele-va-ted Temperature[J]. Rare Metal Materials and Engi-neering, 2018, 47(6): 1668-1676.
[11] 吳慶輝, 王欣, 方向, 等. 噴丸處理對DD6合金表面狀態(tài)和中溫疲勞性能的影響[J]. 熱加工工藝, 2017, 46(12): 158-161.
WU Qing-hui, WANG Xin, FANG Xiang, et al. Influence of Shot Peening Treatment on Surface State and Middle-Temperature Fatigue Property of DD6 Alloy[J]. Hot Working Technology, 2017, 46(12): 158-161.
[12] BOGACHEV I, KNOWLES K M, GIBSON G J. Electron Backscattered Diffraction Analysis of Cold Work in a Shot Peened Single Crystal Nickel Superalloy[J]. Materialia, 2020, 14: 100860.
[13] 楊清, 何杉, 孟震威. 噴丸強(qiáng)化對DD5單晶材料疲勞性能的影響[J]. 金屬加工(熱加工), 2014(23): 89-91.
YANG Qing, HE Shan, MENG Zhen-wei. Effect of Shot Peening on Fatigue Properties of DD5 Single Crystal Materials[J]. MW Metal Forming, 2014(23): 89-91.
[14] 楊紅超, 于洋, 劉德林, 等. 噴丸對DD6單晶合金表層狀態(tài)及低周疲勞性能的影響[J]. 失效分析與預(yù)防, 2021, 16(3): 155-160, 172.
YANG Hong-chao, YU Yang, LIU De-lin, et al. Influence of Shot Peening on Surface State and Low-Cycle Fatigue Performance of DD6 Single Crystal Superalloy[J]. Failure Analysis and Prevention, 2021, 16(3): 155-160, 172.
[15] 中國金屬學(xué)會高溫材料分會. 中國高溫合金手冊(下卷)[M]. 北京: 中國標(biāo)準(zhǔn)出版社, 2012.
High Temperature Materials Branch of Chinese Society of Metals. China Superalloys Handbook[M]. Beijing: China Standard Press, 2012.
[16] ASTM-e466-07, Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials[s].
[17] SHI Duo-qi, HUANG Jia, YANG Xiao-guang, et al. Effects of Crystallographic Orientations and Dwell Types on Low Cycle Fatigue and Life Modeling of a SC Superalloy[J]. International Journal of Fatigue, 2013, 49: 31-39.
[18] ZHANG Zhi-hua, YU Hui-chen, DONG Cheng-li. LCF Behavior and Life Prediction Method of a Single Crystal Nickel-Based Superalloy at High Temperature[J]. Frontiers of Mechanical Engineering, 2015, 10(4): 418-423.
[19] HU Dian-yin, TIAN Teng-yue, WANG Xin, et al. Surface Hardening Analysis for Shot Peened GH4720Li Superalloy Using a DEM-FEM Coupling RV Simulation Method[J]. International Journal of Mechanical Sciences, 2021, 209: 106689.
[20] 須慶, 姜傳海, 陳艷華. DD3鎳基單晶高溫合金噴丸強(qiáng)化后殘余應(yīng)力的有限元模擬[J]. 機(jī)械工程材料, 2012, 36(4): 80-83.
XU Qing, JIANG Chuan-hai, CHEN Yan-hua. Finite Element Simulation of Residual Stress for DD3 Nickel- Based Single Crystal High Temperature Alloy after Shot Peening Strengthening[J]. Materials for Mechanical Engi-neering, 2012, 36(4): 80-83.
[21] HILL R. The mathematical theory of plasticity[M]. Oxford: Clarendon Press, 1998
[22] 趙萍, 何清華, 李維, 等. DD3單晶的Hill屈服準(zhǔn)則應(yīng)用研究[J]. 航空材料學(xué)報, 2010, 30(3): 70-73.
ZHAO Ping, HE Qing-hua, LI Wei, et al. Study of Hill's Yield Criterion Application for DD3 Single Crystal[J]. Journal of Aeronautical Materials, 2010, 30(3): 70-73.
[23] XIANG Y, LIU Y. Mechanism Modelling of Shot Peening Effect on Fatigue Life Prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(2): 116-125.
[24] LEIDERMARK D, MOVERARE J, SIMONSSON K, et al. A Combined Critical Plane and Critical Distance Approach for Predicting Fatigue Crack Initiation in Notched Single-Crystal Superalloy Components[J]. International Journal of Fatigue, 2011, 33(10): 1351-1359.
[25] FINDLEY W N. A Theory for the Effect of Mean Stress on Fatigue of Metals under Combined Torsion and Axial Load or Bending[J]. Journal of Engineering for Industry, 1959, 81(4): 301-305.
[26] LEVKOVITCH V, SIEVERT R, SVENDSEN B. Simula-tion of Deformation and Lifetime Behavior of a Fcc Single Crystal Superalloy at High Temperature under Low-Cycle Fatigue Loading[J]. International Journal of Fatigue, 2006, 28(12): 1791-1802.
[27] LEMA?TRE J, CHABOCHE J L. Mechanics of solid ma-terials[M]. Cambridge: Cambridge University Press, 1990
[28] KORSUNSKY A M, REGINO G M, NOWELL D. Varia-tional Eigenstrain Analysis of Residual Stresses in a Welded Plate[J]. International Journal of Solids and Structures, 2007, 44(13): 4574-4591.
[29] CHAISE T, LI Jun, NéLIAS D, et al. Modelling of Multiple Impacts for the Prediction of Distortions and Residual Stresses Induced by Ultrasonic Shot Peening (USP)[J]. Journal of Materials Processing Technology, 2012, 212(10): 2080-2090.
[30] MUSINSKI W D, MCDOWELL D L. On the Eigenstrain Application of Shot-Peened Residual Stresses within a Crystal Plasticity Framework: Application to Ni-Base Su-peralloy Specimens[J]. International Journal of Mecha-ni-cal Sciences, 2015, 100: 195-208.
[31] 李影, 蘇彬. 760 ℃下DD6單晶高溫合金的循環(huán)形變[J]. 材料工程, 2002, 30(5): 7-10.
LI Ying, SU Bin. Cyclic Deformation of Single Crystal Nickel Base Superalloy DD6 at 760 ℃[J]. Journal of Materials Engineering, 2002, 30(5): 7-10.
[32] 李影, 吳學(xué)仁, 于慧臣, 等. 不同取向鎳基單晶高溫合金在980 ℃下的低周循環(huán)變形行為[J]. 機(jī)械工程材料, 2014, 38(2): 15-18, 23.
LI Ying, WU Xue-ren, YU Hui-chen, et al. Low Cyclic Deformation Behaviour of Single Crystal Nickel Base Superalloys with Different Orientations at 980 ℃[J]. Ma-terials for Mechanical Engineering, 2014, 38(2): 15-18, 23.
[33] HUANG Y. A User-material Subroutine Incroporating Single Crystal Plasticity in the ABAQUS Finite Element Program[M]. Cambridge: Harvard Univ., 1991.
Low Cycle Fatigue Life Prediction of DD6 Single Crystal Superalloy by Shot Peening
1a,1a,1b,2,1a,1b,1c,2,1b,1c,2
(1. a. School of Energy and Power Engineering, b. Beijing Key Laboratory of Aero-Engine Structure and Strength, c. Research Institute of Aero-Engine, Beihang University, Beijing 100191, China; 2. United Research Center of Mid-Small Aero-Engine, Beijing 100191, China)
In order to achieve accurate prediction of low cycle fatigue life of nickel-based single crystal superalloy DD6 after shot peening, low cycle fatigue experiments on DD6 round bar parts after shot peening were carried out, and the mechanism of the effect of shot peening on fatigue life of single crystal superalloy was analyzed. On this basis, a finite element model of the shot peening process for anisotropic materials was established to obtain the residual stress distribution and roughness due to shot peening. Based on the damage mechanics of continuous media, the low cycle fatigue life prediction model of shot peening nickel-based single crystal superalloy DD6 was established considering the influence of residual stress and roughness on the low cycle fatigue life, which was used to predict the low cycle fatigue experiment results. The surface roughness of the specimens increased after shot peening, and the average surface roughness after shot peening was 5.10 times of that before shot peening. The original matrix phase of DD6 single crystal alloy before shot peening was good, and the strengthened phase showed a good cubic structure; however, the boundary of the two phases gradually disappeared after shot peening due to the violent plastic deformation of the specimen surface. The low cycle fatigue life of DD6 single crystal alloy under different loads was improved after shot peening, and the maximum increase was 108%. The residual stress relaxation in the high-temperature environment caused the peening effect to be inversely proportional to the experiment temperature. Due to the effect of residual stress, most of the fatigue cracks initiated on the subsurface of the specimens, while a few initiated at the location of deeper craters on the surface. Considering that the single crystal alloys are anisotropic materials, Hill anisotropic yielding criterion was used to simulate the process of the single crystal superalloy shot peening. The finite element simulation of the shot peening process yielded residual stress distribution in a region 130 μm deep on the surface of the specimen. The surface residual stress was ?380.16 MPa, and the maximum residual compressive stress was located at the depth of 41.9 μm, reaching ?780.46 MPa. The stress concentration factor was calculated as 1.193 by equating the uneven craters to semicircular notches. The residual stress introduced by the eigenstrain method in the finite element model was generally the same as the simulation result. The residual stress mainly affected the stress conditions in the surface layer of the specimens, resulting in an about 10% decrease of the surface octahedral Schmid stress amplitude. The DD6 low-cycle fatigue experiment results were within twice of the predicted life. Conclusions indicate that the shot peening can effectively improve the low cycle fatigue life of DD6, and the mechanism of influence on the low cycle fatigue life is the introduction of residual stress and the change of roughness. The finite element model can accurately simulate the single crystal alloy shot peening process. The developed model for predicting the low-cycle fatigue life of shot peening nickel-based single crystal superalloy DD6 has good accuracy.
shot peening; single crystal superalloy; low cycle fatigue; life prediction; residual stress; stress distribution
TG668
A
1001-3660(2022)10-0001-09
10.16490/j.cnki.issn.1001-3660.2022.10.001
2022–07–12;
2022–09–21
2022-07-12;
2022-09-21
國家自然科學(xué)基金(51875020、52022007);國家科技重大專項(J2019–IV–0016–0084)
National Natural Science Foundation of China (51875020, 52022007); the National Science and Technology Major Special Project (J2019-IV-0016-0084)
李明睿(1999—),男,博士研究生,主要研究方向為鎳基單晶高溫合金強(qiáng)度性能。
LI Ming-rui (1999-), Male, Doctoral student, Research focus: strength properties of nickel-based single crystal superalloys.
胡殿?。?980—),女,博士,教授,主要研究方向為航空發(fā)動機(jī)結(jié)構(gòu)強(qiáng)度與可靠性。
HU Dian-yin (1980-), Female, Ph. D., Professor, Research focus: structural strength and reliability of aero-engine.
李明睿, 王榮橋, 田騰躍, 等.噴丸強(qiáng)化DD6單晶合金低周疲勞壽命預(yù)測[J]. 表面技術(shù), 2022, 51(10): 1-9.
LI Ming-rui, WANG Rong-qiao, TIAN Teng-yue, et al. Low Cycle Fatigue Life Prediction of DD6 Single Crystal Superalloy by Shot Peening[J]. Surface Technology, 2022, 51(10): 1-9.
責(zé)任編輯:萬長清