亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        GLEASON’S PROBLEM ON THE SPACE Fp,q,s(B) IN Cn*

        2022-11-04 09:06:40PengchengTANG唐鵬程XuejunZHANG張學(xué)軍
        關(guān)鍵詞:鵬程

        Pengcheng TANG (唐鵬程) Xuejun ZHANG (張學(xué)軍)

        College of Mathematics and Statistics,Hunan Normal University,Changsha 410081,China

        E-mail: 1228928716@qq.com;xuejunttt@263.net

        Abstract Let Ω be a domain in Cn and let Y be a function space on Ω.If a ∈Ω and g ∈Y with g(a)=0,do there exist functions f1,f2,···,fn ∈Y such that This is Gleason’s problem.In this paper,we prove that Gleason’s problem is solvable on the boundary general function space Fp,q,s(B) in the unit ball B of Cn.

        Key words boundary general function space;Gleason’s problem;solvability;unit ball

        1 Introduction

        Letα=(α1,α2,···,αn) be a multi-index,where eachαlis a nonnegative integer.In this paper,the following abbreviated notations will be used: |α|=α1+α2+··· +αn,α!=

        For any pointz∈B-{0},the involution automorphisms ofBare defined by

        such thatφz(0)=z,φz(z)=0 andOtherwise,we defineφ0(w)=-w.

        In this paper,the notation “EF” means that there exist two constantsa >0 andb >0 such thataF≤E≤bF.If there exists a constanta >0 such thatG≤aH(G≥aH),then we denote it by “GH” (“G?H”).

        Fors≥0,p >0,q+n >-1 andq+s >-1,the spaceF(p,q,s),which we call the general function space,consists off∈H(B) and

        where the complex gradient offis defined by

        In [1],we proved that

        In [2],Zhao Ruhan first introduced theF(p,q,s) space on the unit disk.Later,many function spaces associated withF(p,q,s) were studied in various domains;see,for example,[1,3–11].In the definition of theF(p,q,s) space,the integral is on the unit ballBor the other domain Ω,for example,a bounded symmetric domain.In this paper,we will consider the corresponding function space of an integral on the unit sphere?B,which we write asFp,q,s(B).

        Definition 1.1Fors≥0,p >0,q+s≥0 andq+n≥0,the functionf∈H(B) is said to belong to the boundary general function spaceFp,q,s(B) if

        It is easy to prove thatFp,q,s(B) is a Banach space under the norm ||.||p,q,swhenp≥1,and theFp,q,s(B) is also a complete distance space under the distanced(a,b)=||a-b||pp,q,swhen 0<p <1.We may also consider many properties ofFp,q,s(B).Gleason’s problem is one of these properties.

        LetYbe a holomorphic function space on the domain Ω ?Cn.Gleason’s problem onYis the following: ifa∈Ω andg∈Ywithg(a)=0,are there functionsf1,···,fn∈Ysuch that

        There have been many works addressing Gleason’s problem,for example [12–26].We know that Gleason’s problem is solvable onF(p,q,s) (see [26]).Is this problem also solvable onFp,q,s(B) ? In this paper,we seek to solve this problem.

        The following function spaces are also used in this paper:

        Definition 1.2For 0<β≤1,the functionfis in the Lipschitz space Lipβ(B) if

        The space Λβ(B)=Lipβ(B) ∩H(B) is called a holomorphic Lipschitz space.By Theorem 7.9 in [27],if 0<β <1,thenf∈Λβ(B) if and only iff∈H(B) and

        Definition 1.3Forα >-1 andp >0,the functionf∈H(B) is said to belong to the weighted Bergman space(B) if

        where dvα(w)=cα(1 -|w|2)αdv(w),with the constant

        2 Some Lemmas

        Lemma 2.1(see [14]) Forδ >-1,the integrals

        have the following properties:

        Lemma 2.2(see [28,29]) Letwandabe two points inB.Forl >0 andt >0,let

        Then the following results hold:

        Lemma 2.3Fors≥0,p >0,q+n≥0,q+s≥0,ifh∈Fp,q,s(B),then

        Moreover,the exponent (q+n)/pis the best possible.

        ProofFor anya∈B,let=E*(a,1/3) (see [30]) be the Bergman ball.If,then Lemma 2.20 in [27] shows that

        By the proof process of Lemma 2.1 in [30],we may get that

        For anyl∈{1,2,···,n},letDlhdenote the partial derivative ofhwith respect to thel-th component.By Lemma 2.24 and Lemma 1.8 in [27],we have that

        In what follows,we prove that this exponent (q+n)/pis the best possible.

        For fixedξ∈?B,we take

        wherew∈B.

        Whens=q=0,it follows from Lemma 2.1 that

        On the other hand,for anyδ <n/p,Lemma 2.1 means that

        This shows that this exponent (q+n)/pis the best possible whenq=s=0.

        In what follows,we consider the other cases.

        For the case (i)s≥nandq+n≥0 or (ii)s=0<q,it is easy to prove that ||hξ||p,q,s?1,by Lemma 2.1.If 0<s <nandq+s >0,thenn(q+n)/(n-s)>nandn/s >1.By Lemma 2.1 and Hlder’s inequality,we have that

        Next,we consider the case 0<s <nandq+s=0.

        Ifn <2s,then Lemma 2.2(3) shows that

        Ifn=2s,then Lemma 2.2(2) and

        Ifn >2s >0,then Lemma 2.2(1) means that

        Therefore,(2.1)–(2.4) show that ||hξ||p,q,s?1.

        If there exists someδ <(q+n)/psuch that

        This contradiction shows that the exponent (n+q)/pis the best possible.

        This proof is complete. □

        Lemma 2.4(see [29]) Forδ >-1 and 0 ≤ρ <1,the integral

        has the following asymptotic properties:

        (1)J(ρ) ?(1 -ρ)-twhent >0.

        (2)J(ρ) ?1 whent <0.

        (3)J(ρ) ?logwhent=0.

        3 Main Results

        In order to consider the solvability of Gleason’s problem onFp,q,s(B),we first prove the following result:

        Theorem 3.1Lets≥0,p >0,q+n≥0,q+s≥0,0<β <1,α >β/2+max{1/p-1,0}n-1 andα >max{1/p,1} max{q+s,q+n}+max{1/p-1,0}n-1,l∈{1,2,···,n}.Ifφ∈Lipβ(B),then

        for allh∈Fp,q,s(B),where

        ProofWhenφ∈Lipβ(B),it is clear that

        Otherwise,ifz,w∈B,then we have that

        We first consider the operator

        By (3.2) andφ∈Lipβ(B),we have that

        For any 0 ≤ρ <1 anda∈B,let

        (i) Casep >1.

        This means that

        When 2s <n,by (3.4) andn+α+1 -β/2>n,Lemma 2.2(3),Lemma 1.8 in [27],α-q-s >-1 and Lemma 2.4,,we may obtain that

        When 2s >n,by (3.4) andn+α+1 -β/2>n,Lemma 2.2(4),Lemma 1.8 in [27],α-q-s >-1 and Lemmas 2.3–2.4,,s+(q+s)-(2s-n)=q+n≥0,α-q-n >-1,Lemma 2.1,s+(q+s)-(2s-n)-(n+α+1-β/2)+(α-q-n)+n+1=β/2>0,

        we can get that

        When 2s=n,the conditionsq+s≥0 andα >q+n-1 mean that we may chooseδ0=min{(n-β)/4,(α-q-n+1)/2} such thatα-q-n-δ0>-1,q+2s-δ0≥(α+n+1 -β/2 -2δ0) -(α-q-n-δ0) -n-1=q+2s-β/2 -δ0>0.By (3.4),Lemma 2.2(5),Lemma 2.3 and Lemma 2.1,we have that

        (ii) Case 0<p≤1.

        Forw∈B,we take(z∈B).Applying Lemma 2.15 in [27] toHw,we can obtain that

        The above inequality and (3.3) mean that

        Therefore,by (3.8) and Fubini’s theorem,we may get that

        Using (3.9),as long as we usepβ/2 andα′to replaceβ/2 andαin (3.4),respectively,the rest of the proof is similar to the proof of casep >1.

        The above result and (3.5)–(3.7) mean that we have proved that

        Lemma 2.3 means thatDlh∈(B) whenα >(q+n)/p-1 andh∈Fp,q,s(B).It follows from Theorem 2.2 in [27] that

        Therefore,Tφh(w)=φ(w)Dlh(w) -Gφh(w).By (a+b)p?ap+bpfor alla≥0 andb≥0,φ∈Lipβ(B) ?C(),we can get that

        This means that (3.1) holds.This proof is complete. □

        Next,we discuss the solvability of Gleason’s problem onFp,q,s(B).

        Theorem 3.2Lets≥0,p >0,q+n≥0 andq+s≥0.For any integerγ≥1 anda∈B,there exist bounded linear operatorsWm(|m|=γ) onFp,q,s(B) such that

        for anyh∈Fp,q,s(B) andw∈BwithDλh(a)=0 (|λ|=0,1,···,γ-1),wheremandλare multi-index.

        ProofWe mainly consider the caseγ=1.

        For fixeda∈Bandl∈{1,2,···,n},we take that

        ThenWlis a linear operator and

        In what follows,we prove thatWlis bounded onFp,q,s(B) for everyl∈{1,2,···,n}.

        We take a positive integerα >max{1/p-1,0}n-1/2 andα >max{1/p,1} max{q+s,q+n}+max{1/p-1,0}n-1.By (3.10)–(3.11),Fubini’s theorem and a simple calculation,we have that

        For anyk∈{1,2,···,n},it is clear that

        We consider the operator

        Forγ≥2,the proof is similar to that of Theorem 5 in [25].The main difference is that the calculation is more difficult.We omit the details here.

        The proof of Theorem 3.2 is complete. □

        猜你喜歡
        鵬程
        閆鵬程作品
        大眾文藝(2023年11期)2023-06-16 11:49:14
        Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube
        A PRIORI BOUNDS AND THE EXISTENCE OF POSITIVE SOLUTIONS FOR WEIGHTED FRACTIONAL SYSTEMS?
        在傳統(tǒng)與創(chuàng)新中尋求制衡點(diǎn)
        Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma?
        THE CAUCHY PROBLEM FOR THE TWO LAYER VISOUS SHALLOW WATER EQUATIONS*
        郭鵬程教授
        審計(jì)意見(jiàn)、真實(shí)盈余管理與股價(jià)崩盤(pán)
        The influence of nonlinear shear stress on partially averaged Navier-Stokes (PANS) method*
        幸福社區(qū)之歌
        久久国产免费观看精品| 国产精品免费_区二区三区观看 | 人人添人人澡人人澡人人人人| 精品国产三级a| 日韩午夜三级在线视频| 久久综合伊人77777麻豆| 全球中文成人在线| 无码av在线a∨天堂毛片| 久久综合久中文字幕青草| 亚洲精品1区2区在线观看| av一区二区三区综合网站| 男女肉粗暴进来动态图| 国产香蕉尹人在线观看视频| 91国在线啪精品一区| a级三级三级三级在线视频| 老妇高潮潮喷到猛进猛出| 成全高清在线播放电视剧| 日本a级大片免费观看| 美利坚合众国亚洲视频 | 四虎精品影视| 精品自拍偷拍一区二区三区| 欧美精品无码一区二区三区| 亚洲熟女乱色综合亚洲图片| 99久久超碰中文字幕伊人| 免费看黄片视频在线观看| 国产一区二区精品久久岳| 国产自国产在线观看免费观看| АⅤ天堂中文在线网| 国产精品人妻熟女男人的天堂 | 一边做一边喷17p亚洲乱妇50p| 伊人色综合视频一区二区三区 | 亚洲综合在线一区二区三区| 国产人成无码中文字幕| 女女同性av一区二区三区| 成人无码av免费网站| 亚洲av永久无码一区| 国产精品国产三级国产三不| 国产亚洲精品品视频在线 | 欧美成人精品第一区二区三区| 亚洲av网一区天堂福利| 大陆老熟女自拍自偷露脸|