付鵬宇, 于晶晶, 龔麗景2,△
叉頭框蛋白O1介導(dǎo)的自噬途徑在抗阻訓(xùn)練緩解低氧誘導(dǎo)大鼠肌萎縮中的作用*
付鵬宇1,2, 于晶晶3, 龔麗景2,3△
(1西北工業(yè)大學(xué)體育部,陜西 西安 710072;2北京體育大學(xué)中國運(yùn)動(dòng)與健康研究院,北京 100084;3北京體育大學(xué)運(yùn)動(dòng)與體質(zhì)健康教育部重點(diǎn)實(shí)驗(yàn)室,北京 100084)
探究抗阻訓(xùn)練對(duì)緩解低氧誘導(dǎo)大鼠肌萎縮的作用,以及該過程中叉頭框蛋白O1(forkhead box protein O1, FoxO1)介導(dǎo)的自噬途徑的調(diào)節(jié)機(jī)制。40只SD大鼠隨機(jī)分為常氧安靜(normoxic control, N)組、常氧訓(xùn)練(normoxic resistance training, R)組、低氧安靜(hypoxic control, H)組和低氧訓(xùn)練(hypoxic resistance training, HR)組,每組10只。低氧各組生活在氧濃度為12.4%的低氧房中,訓(xùn)練各組隔天進(jìn)行遞增負(fù)重爬梯訓(xùn)練,干預(yù)4周。期間記錄大鼠的攝食量與體重;干預(yù)結(jié)束后,測(cè)量大鼠體成分;稱量趾長(zhǎng)伸肌(extensor digitorum longus, EDL)濕重;HE染色觀察肌纖維形態(tài)并測(cè)量纖維橫截面積(fiber cross-sectional area, FCSA);自噬PCR芯片檢測(cè)自噬相關(guān)基因(autophagy-related genes, ATGs)的表達(dá),分析差異基因的功能富集,并與FoxO1進(jìn)行互作分析,篩選差異基因進(jìn)行芯片準(zhǔn)確性驗(yàn)證;Western blot測(cè)試轉(zhuǎn)錄因子FoxO1和乙?;疐oxO1(acetylated FoxO1, Ac-FoxO1)的相對(duì)蛋白表達(dá)。(1)各組攝食量在干預(yù)后期趨于接近;干預(yù)4周后,HR組體重高于H組;與N組相比,R組大鼠瘦體重百分率和EDL濕重百分率顯著升高,H組顯著降低,而HR組的都顯著高于H組(<0.05)。H組FCSA較N組顯著降低(<0.05)。(2)與N組相比,H組自噬差異基因表達(dá)以上調(diào)為主,功能主要富集于自噬囊泡形成等過程;與H組相比,HR組自噬差異基因表達(dá)下調(diào),功能富集于自噬與凋亡共調(diào)節(jié)過程;將差異基因與FoxO1進(jìn)行互作分析,結(jié)果顯示與有一級(jí)調(diào)控關(guān)系的基因主要富集于自噬與凋亡共調(diào)節(jié)過程。篩選在R/N組和HR/H組均下調(diào)的差異基因組蛋白脫乙酰酶1(histone deacetylase 1,),在R/N組和HR/H組均上調(diào)、在H/N組下調(diào)的差異基因哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,),和H/N組上調(diào)的一級(jí)調(diào)控關(guān)系的差異基因微管相關(guān)蛋白1輕鏈3A(microtubule-associated protein 1 light chain 3A,)進(jìn)行蛋白表達(dá)驗(yàn)證,結(jié)果與芯片基本一致;(3)H組FoxO1和Ac-FoxO1蛋白水平及HDAC1/Ac-FoxO1比值顯著高于N組,HR組FoxO1蛋白水平和HDAC1/Ac-FoxO1比值顯著低于H組(<0.05)。抗阻訓(xùn)練可通過抑制自噬過程而緩解低氧誘導(dǎo)的大鼠EDL萎縮,F(xiàn)oxO1及其乙酰化修飾在該過程中可能發(fā)揮重要作用。
抗阻訓(xùn)練;低氧暴露;骨骼肌萎縮;自噬;叉頭框蛋白O1
在多種運(yùn)動(dòng)形式中,抗阻訓(xùn)練對(duì)骨骼肌的刺激最為強(qiáng)烈,可以有效地增加骨骼肌質(zhì)量,且這種作用具有肌纖維選擇性,快肌纖維比慢肌纖維發(fā)生肥大的可能性高約50%[1]。抗阻訓(xùn)練已被證明是抵抗或緩解增齡性、廢用性、胰島素抵抗或糖尿病等所致肌萎縮的非藥物治療手段[2-3]。
競(jìng)技體育中高原/低氧訓(xùn)練,大眾健身中的高原徒步旅行或低氧減肥使得更多世居平原者進(jìn)入低氧環(huán)境,這會(huì)對(duì)代謝系統(tǒng)產(chǎn)生一系列不良影響,其中之一是骨骼肌萎縮[4]。實(shí)驗(yàn)室前期研究顯示,在海拔高度3 650 m的拉薩暴露10天,可顯著降低男性大學(xué)生體重、全身和腿部瘦體重、肌纖維橫截面積(fiber cross-sectional area, FCSA)。而采用負(fù)重深蹲練習(xí)及其他輔助性抗阻練習(xí)則可有效緩解上述指標(biāo)的下降[5],證明抗阻訓(xùn)練是緩解低氧誘導(dǎo)肌萎縮的有效措施。但該過程中的具體分子生物學(xué)機(jī)制尚不清楚。
抗阻訓(xùn)練促進(jìn)肌肉肥大的作用機(jī)制通常被認(rèn)為與增加骨骼肌蛋白質(zhì)的合成有關(guān)。但在肌萎縮模型中,抗阻訓(xùn)練對(duì)蛋白分解的抑制效果可能在維持或增加骨骼肌質(zhì)量中發(fā)揮著更關(guān)鍵的作用[6]。自噬是蛋白質(zhì)分解的重要途徑。在多種肌萎縮和肌營(yíng)養(yǎng)不良癥等肌病皆出現(xiàn)自噬的積累[7]。許多自噬相關(guān)基因(autophagy associated genes, ATGs)及其復(fù)合物參與自噬過程的各步驟[8]。轉(zhuǎn)錄因子叉頭框蛋白O1(forkhead box protein O1, FoxO1)是FoxOs家族中一個(gè)重要的誘導(dǎo)自噬的成員,可參與自噬起始、囊泡成核和囊泡延伸等過程。siRNA基因敲除或抑制FoxO1的表達(dá),可明顯阻斷自噬過程[9]。因此,我們推測(cè)FoxO1所介導(dǎo)的自噬途徑可能在抗阻訓(xùn)練緩解低氧誘導(dǎo)的肌萎縮中起重要作用。
鑒于自噬過程是一個(gè)復(fù)雜的蛋白網(wǎng)絡(luò)協(xié)同工作的過程,涉及眾多ATGs。我們應(yīng)用包含84個(gè)ATGs的PCR芯片作為自噬的研究工具[10],探討抗阻訓(xùn)練緩解低氧誘導(dǎo)大鼠趾長(zhǎng)伸?。╡xtensor digitorum longus, EDL;屬于快肌)萎縮過程中所涉及的自噬階段,及FoxO1的調(diào)節(jié)作用。
哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)抗體、組蛋白脫乙酰酶1(histone deacetylase 1, HDAC1)抗體和FoxO1抗體購于Abcam;微管相關(guān)蛋白1輕鏈3(microtubule-associated protein 1 light chain 3, LC3)抗體購于Novusbio;乙酰化FoxO1(acetylated FoxO1, Ac-FoxO1)抗體購于Biorbyt;α-tubulin抗體購于Sigma;熒光標(biāo)記山羊抗鼠IgG、熒光標(biāo)記山羊抗兔IgG和封閉液購自LI-COR;FITC標(biāo)記山羊抗鼠IgG(GB22301)購于賽維爾公司;4%~12% Bis-Tris梯度膠、MES電泳緩沖液、NC膜等均購自Invitrogen。RNA提取、純化所用試劑由沃吉基因提供并完成自噬PCR芯片(WC-MRNA0268-R)測(cè)試。
40只健康8周齡SPF級(jí)的雄性SD大鼠[起始體重為(236.40±10.69) g]購自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,許可證號(hào)為SCXK(京)2015-0001。將大鼠隨機(jī)分為4組(=10):常氧安靜組(N組)、常氧訓(xùn)練組(R組)、低氧安靜組(H組)和低氧訓(xùn)練組(HR組)。N組和R組大鼠置于常氧環(huán)境中,H組和HR組大鼠置于氧濃度為12.4%的低氧環(huán)境中(相當(dāng)于海拔4 000 m高度)。低氧設(shè)備:制氮機(jī)(北京創(chuàng)文氣體有限公司)、凍干機(jī)(杭州超濾凈化設(shè)備有限公司)和空氣壓縮機(jī)(Ingersoll-Rand)。R組和HR組大鼠進(jìn)行隔天一次遞增負(fù)重的抗阻爬梯訓(xùn)練,具體方案為:爬梯長(zhǎng)度為1.2 m,與地面呈85°放置,有效攀爬高度為1 m,將大鼠置于梯子底部,在其尾部給予適當(dāng)?shù)拇碳?,使大鼠從梯子底部爬到頂部,即為一次?xùn)練,控制每次攀爬時(shí)間在10 s內(nèi)完成。負(fù)重通過調(diào)節(jié)大鼠尾部懸掛的離心管中鋼珠數(shù)量來調(diào)整(以50%體重的負(fù)重適應(yīng)性訓(xùn)練1周,正式訓(xùn)練開始從50%體重開始遞增負(fù)重,每次增加10%,直至增加至130%體重,而后保持該負(fù)重,直至訓(xùn)練結(jié)束[11]),所有干預(yù)共持續(xù)4周。動(dòng)物飼養(yǎng)和訓(xùn)練均在北京體育大學(xué)動(dòng)物實(shí)驗(yàn)室進(jìn)行,許可證號(hào)為SYXK(京)2016-0034。所有實(shí)驗(yàn)操作過程符合北京體育大學(xué)運(yùn)動(dòng)科學(xué)倫理委員會(huì)實(shí)驗(yàn)動(dòng)物倫理要求。
干預(yù)期間每天記錄各組大鼠的攝食量和體重,最后一次干預(yù)24 h后,3%戊巴比妥鈉麻醉,雙能X射線吸收測(cè)量法體成分儀(XR-46,Norland)測(cè)試體成分計(jì)算瘦體重百分率(肌肉質(zhì)量/體重×100%)。麻醉后腹主動(dòng)脈取血處死,分離大鼠兩側(cè)的EDL,一側(cè)稱量濕重,計(jì)算EDL濕重百分率(EDL濕重/肌肉總量×100%),后置于4%多聚甲醛固定液中固定;另一側(cè)分為兩份,一份置于RNAstore中保存,另一份置于-80 ℃冰箱保存。
3.1蘇木精-伊紅(hematoxylin?eosin, HE)染色固定24 h后,經(jīng)過浸蠟、包埋、切片后,進(jìn)行二甲苯脫蠟、梯度乙醇浸泡、Harris蘇木素和0.5%伊紅分別染色、梯度乙醇浸泡、封片,顯微鏡下觀察并拍照。采用Image-Pro Plus 6.0軟件統(tǒng)計(jì)FCSA。
3.2自噬PCR芯片Trizol法提取RNA,紫外吸收測(cè)定法質(zhì)檢后,進(jìn)行瓊脂糖凝膠電泳,合成cDNA,高通量熒光定量qPCR檢測(cè)84個(gè)ATGs表達(dá)。篩選差異表達(dá)基因,對(duì)差異基因進(jìn)行相互作用網(wǎng)絡(luò)和功能分析。
3.3Western blot檢測(cè)蛋白相對(duì)含量組織中加入裂解液,勻漿儀研磨,離心取上清液得到蛋白原液。BCA法檢測(cè)蛋白濃度,制備樣品。梯度膠電泳分離蛋白,轉(zhuǎn)膜后根據(jù)Marker條帶及目的蛋白的分子量裁膜,封閉,4 °C孵育Ⅰ抗過夜,TBST洗滌,室溫孵育Ⅱ抗1 h,用近紅外光譜檢測(cè)系統(tǒng)(Odyssey CLX,LI-COR)檢測(cè)條帶信號(hào)值,Image Studio 5.2軟件進(jìn)行相對(duì)定量分析。
PCR芯片結(jié)果用2-ΔΔCt法計(jì)算基因的差異表達(dá)倍數(shù),檢驗(yàn)計(jì)算值,以<0.05為差異有統(tǒng)計(jì)學(xué)意義,以差異倍數(shù)(fold change)>1.5為差異判斷標(biāo)準(zhǔn)。其他結(jié)果使用SPSS 19.0軟件分析,數(shù)據(jù)以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。各組間比較使用雙因素方差分析,若兩因素間有交互作用,使用簡(jiǎn)單效應(yīng)檢驗(yàn);若無則采用最小顯著性差異法(LSD法)進(jìn)行組間檢驗(yàn)。<0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
干預(yù)初期低氧組較常氧組攝食量顯著下降,干預(yù)后期各組攝食量趨于接近,見圖1A。干預(yù)期間,低氧各組大鼠平均體重顯著低于常氧組;干預(yù)結(jié)束后,HR組體重高于H組,見圖1B。4周干預(yù)后,R組瘦體重百分率顯著高于N組,H組顯著低于N組,HR組顯著高于H組(<0.05),見圖1C。
Figure 1. The changes of food intake (A) and weight (B) of rats during intervention, and the percentage of lean body mass after intervention (C). N: normoxic control group; R:normoxic resistance training group; H: hypoxic control group; HR: hypoxic resistance training group. Mean±SD. n=10. *P<0.05 vs Ngroup; #P<0.05 vs H hroup.
4周干預(yù)后,R組EDL濕重百分率顯著高于N組,H組顯著低于N組,HR組顯著高于H組(<0.05),見圖2A、B;HE染色可見,H組肌纖維的肌間隔增加,呈現(xiàn)不規(guī)則的多邊形,同一視野的肌纖維形狀大小不一,肌纖維開始出現(xiàn)分裂,且細(xì)胞核出現(xiàn)內(nèi)移(異常處如圖2A中黃色箭頭所示),H組FCSA較N組顯著降低(<0.05),見圖2C。
Figure 2. The percentage of wet weight and FCSA of EDL in rats after intervention. A: the macroscopic observation (scale bar=1 cm) and HE staining (scale bar=50 μm) of EDL; B: the ratio of EDL wet weight to lean body mass; C: the FCSA of EDL. Abnormal myofibers and nuclear inward migration were indicated by yellow arrows. N: normoxic control group; R: normoxic resistance training group; H: hypoxic control group; HR: hypoxic resistance training group. Mean±SD. n=10. *P<0.05 vs N group; #P<0.05 vs H group.
3.1自噬差異基因的表達(dá)R組與N組相比,自噬差異表達(dá)基因共有32個(gè),其中上調(diào)基因有11個(gè),下調(diào)21個(gè),差異基因表達(dá)以下調(diào)為主,見圖3A;H組與N組相比,差異基因共有29個(gè),上調(diào)基因21個(gè),下調(diào)基因8個(gè),以上調(diào)為主,見圖3B;HR組與H組相比,差異基因共有55個(gè),上調(diào)基因5個(gè),下調(diào)基因50個(gè),以下調(diào)為主,見圖3C。
Figure 3. The number of EDL differential genes and their differential multiples in groups R/N (A), H/N (B) and HR/H (C) after intervention. The gray dots indicate genes whose fold difference is less than 1.5 or 0.67 (the same below). A: the blue dots indicate the down-regulated genes of group R/N, and the red ones indicate the up-regulated genes; B: the light green dots indicate the down-regulated genes of group H/N, and the pink ones indicate the up-regulated genes; C: the green dots indicate the down-regulated genes of group HR/H, and the orange ones indicate the up-regulated genes. n=3.
3.2各組共同差異基因韋恩圖分析R/N組上調(diào)和HR/H組上調(diào)、R/N組下調(diào)和HR/H組下調(diào)、H/N組上調(diào)和HR/H組上調(diào)、H/N組上調(diào)和HR/H組下調(diào)、H/N組下調(diào)和HR/H組下調(diào)、H/N組下調(diào)和HR/H組上調(diào)之間的共同差異基因,基因數(shù)目見圖4,詳細(xì)信息見表1。
Figure 4. The number of common differential genes of EDL in groups R/N, H/N and HR/H after intervention. n=3.
表1 R/N組、H/N組和HR/N組EDL共同差異基因
↑ indicates up-regulated genes; ↓ indicates down-regulated genes.
3.3各組差異基因數(shù)目及其所富集的自噬功能R/N組下調(diào)基因的功能主要集中在自噬囊泡的形成、自噬和凋亡共調(diào)節(jié)因子及自噬對(duì)其他細(xì)胞內(nèi)信號(hào)的應(yīng)答;H/N組上調(diào)基因的功能與R/N組下調(diào)基因功能一致;HR/H組下調(diào)基因的功能主要集中在自噬囊泡的形成、蛋白轉(zhuǎn)運(yùn)、自噬和凋亡共調(diào)節(jié)因子(自噬調(diào)節(jié)組分)、自噬和細(xì)胞周期共調(diào)節(jié)因子和自噬對(duì)其他細(xì)胞內(nèi)信號(hào)的應(yīng)答,見表2。
表2 R/N組、H/N組和HR/N組EDL差異基因所富集的自噬功能及基因數(shù)目
↑ indicates up-regulated genes; ↓ indicates down-regulated genes.
3.4各組差異基因與FoxO1相互作用網(wǎng)絡(luò)分析STRING數(shù)據(jù)庫分析R/N組下調(diào)(圖5A)、H/N組上調(diào)(圖5B)和HR/H組下調(diào)(圖5C)差異基因與間的相互作用網(wǎng)絡(luò);表3為與存在一級(jí)互作關(guān)系的基因(的直接調(diào)控基因)。
Figure 5. The network diagram of interaction between differential genes and FoxO1 in EDL of groups R/N (A), H/N (B) and HR/H (C) after intervention. The yellow circles are the primary interacting genes with FoxO1. n=3.
表3 R/N組、H/N組和HR/H組與FoxO1的一級(jí)互作基因及其功能
↑ indicates up-regulated genes; ↓ indicates down-regulated genes.
3.5差異基因蛋白表達(dá)的驗(yàn)證選擇(R/N組上調(diào)、H/N組下調(diào)、HR/H組上調(diào)的差異基因),(R/N組下調(diào)和HR/H組下調(diào)的差異基因),(LC3; H/N組上調(diào)的差異基因)進(jìn)行自噬PCR芯片結(jié)果的蛋白表達(dá)驗(yàn)證。R組mTOR蛋白相對(duì)表達(dá)量和LC3-II/LC3-I比值顯著高于N組(<0.05);H組mTOR表達(dá)量顯著低于N組,HDAC1表達(dá)量和LC3-II/LC3-I比值顯著高于N組;HR組mTOR表達(dá)量顯著高于H組,HDAC1表達(dá)量和LC3-II/LC3-I比值顯著低于H組(<0.05),見圖6。以上結(jié)果與芯片結(jié)果基本符合,證明了芯片結(jié)果的可靠性。
Figure 6. The relative protein expression levels of mTOR (A), HDAC1 (B) and LC3 (C) in EDL after intervention. N: normoxic control group; R: normoxic resistance training group; H: hypoxic control group; HR: hypoxic resistance training group. Mean±SD. n=10. *P<0.05 vs N group; #P<0.05 vs H group.
H組FoxO1和Ac-FoxO1蛋白水平顯著高于N組,HR組FoxO1表達(dá)水平顯著低于H組(<0.05);結(jié)合圖6中HDAC1蛋白表達(dá)的結(jié)果,用HDAC1/Ac-FoxO1比值反映脫乙酰酶活性[12],H組HDAC1/Ac-FoxO1比值顯著高于N組,HR組HDAC1/Ac-FoxO1比值顯著低于H組(<0.05),見圖7。
Figure 7. The relative protein levels of FoxO1 and Ac-FoxO1 in EDL after intervention. N: normoxic control group; R: normoxic resistance training group; H: hypoxic control group; HR: hypoxic resistance training group. Mean±SD. n=10. *P<0.05 vs N group; #P<0.05 vs H group.
為了進(jìn)一步探究抗阻訓(xùn)練緩解低氧誘導(dǎo)肌萎縮的機(jī)制,本研究對(duì)低氧環(huán)境下大鼠施加負(fù)重爬梯訓(xùn)練干預(yù),觀察肌萎縮程度;以EDL作為快肌的典型代表,采用自噬PCR芯片,檢測(cè)ATGs的變化,與FoxO1進(jìn)行互作分析,并檢測(cè)FoxO1及重要ATGs的相互關(guān)系,以探究FoxO1介導(dǎo)的自噬途徑在其中的作用。負(fù)重爬梯訓(xùn)練是一種通過誘導(dǎo)刺激使大鼠在尾部負(fù)重的情況下,自覺完成爬梯以促進(jìn)骨骼肌肥大的訓(xùn)練模型,是目前所知的與人類抗阻運(yùn)動(dòng)最接近的訓(xùn)練方式[13]。本研究結(jié)果顯示,低氧下進(jìn)行抗阻訓(xùn)練可提高大鼠體重,增加瘦體重百分含量和EDL濕重。證明已成功建立抗阻訓(xùn)練環(huán)境低氧誘導(dǎo)肌萎縮的動(dòng)物模型。
在低氧環(huán)境下,骨骼肌蛋白質(zhì)代謝增加,表現(xiàn)為合成代謝和分解代謝均增加,但分解代謝率遠(yuǎn)高于合成,是誘導(dǎo)肌萎縮的關(guān)鍵。作為重要的蛋白質(zhì)分解途徑,自噬過程受到許多細(xì)胞途徑和進(jìn)化保守的ATGs調(diào)控,主要過程包括:自噬的啟動(dòng)、自噬體的形成、自噬體和溶酶體的融合與降解[14]。本研究PCR芯片結(jié)果顯示,低氧暴露下,EDL中的自噬差異基因表達(dá)以上調(diào)為主,說明低氧可激活自噬過程;分析差異基因功能可知,上調(diào)基因的功能主要富集于ALP前期的自噬囊泡形成階段。LC3前體可被加工為可溶性的LC3-I,而后在Atg3和Atg7的作用下與磷脂酰乙醇胺(phosphatidylethanolamine, PE)結(jié)合形成脂溶性的LC3-II-PE,調(diào)節(jié)自噬過程,LC3-II/LC3-I是衡量自噬通量的關(guān)鍵指標(biāo)。本研究中低氧暴露增加了LC3-II/LC3-I比值。以上結(jié)果均提示低氧可能通過激活自噬前期過程而促進(jìn)蛋白質(zhì)分解,以降低骨骼肌質(zhì)量。
研究指出規(guī)律性的重復(fù)運(yùn)動(dòng)可提高自噬的基線水平,從而降低應(yīng)激刺激對(duì)自噬的激活的閾值,使機(jī)體免受自噬的負(fù)面影響[15]。常氧環(huán)境下,8周的抗阻爬梯訓(xùn)練可顯著降低LC3-II/LC3-I比值,增加p62蛋白表達(dá),提示長(zhǎng)期規(guī)律性的抗阻訓(xùn)練具有調(diào)節(jié)骨骼肌自噬水平的作用[16]。本研究中,低氧下進(jìn)行抗阻訓(xùn)練,EDL中的差異基因以下調(diào)為主,差異基因的功能主要富集于自噬調(diào)節(jié)組分中的自噬與凋亡的共調(diào)節(jié)過程,且降低LC3-II/LC3-I比值。提示抗阻訓(xùn)練可通過降低自噬與凋亡的共調(diào)節(jié)作用而抑制低氧誘導(dǎo)肌萎縮。在應(yīng)激條件下,細(xì)胞自噬和細(xì)胞凋亡之間存在交叉抑制和激活的相互作用,但某些特定的應(yīng)激也會(huì)共同激活自噬和凋亡,兩種機(jī)制的相互關(guān)系在調(diào)節(jié)蛋白穩(wěn)態(tài)、骨骼肌萎縮細(xì)胞死亡中起重要作用[17-18]。
FoxO1在骨骼肌質(zhì)量的調(diào)控中處于中心位置,也是FoxOs家族中重要的誘導(dǎo)細(xì)胞自噬成員,F(xiàn)oxO1可參與自噬起始、囊泡成核和囊泡延伸的過程。作為自噬的重要媒介,F(xiàn)oxO1可以直接上調(diào)ATGs的表達(dá);還可以通過調(diào)節(jié)sestrin 3 (SESN3),以刺激結(jié)節(jié)性硬化癥蛋白1-2(tuberous sclerosis 1-2,TSC1-2)復(fù)合物抑制mTOR途徑,促進(jìn)自噬過程[19]。本研究結(jié)果中與各組自噬差異基因間均存在相互作用,說明FoxO1可能在自噬介導(dǎo)的肌肉質(zhì)量調(diào)節(jié)中發(fā)揮著重要作用。常氧環(huán)境下的抗阻訓(xùn)練可以通過抑制骨骼肌中FoxO1表達(dá)以抵抗增齡性肌萎縮的發(fā)生[20]。本研究中,HR/H組下調(diào)的差異基因中約26%與存在一級(jí)互作關(guān)系。我們對(duì)在R/N組和HR/H組均上調(diào)、在H/N組下調(diào)的差異基因進(jìn)行了蛋白表達(dá)的驗(yàn)證,結(jié)果顯示低氧下抗阻訓(xùn)練可增加mTOR的蛋白表達(dá),mTOR表達(dá)增加可抑制自噬過程。說明抗阻訓(xùn)練可能通過FoxO1對(duì)自噬過程的直接和間接調(diào)節(jié)過程而緩解低氧所誘導(dǎo)的肌萎縮過程。
分析各組的差異基因結(jié)果顯示,在R/N組和HR/H組均下調(diào)表達(dá)。HDAC1不僅是可促進(jìn)自噬囊泡的形成以增加自噬通量[21],還可增加FoxO1在mRNA和蛋白質(zhì)水平上的表達(dá),且可增強(qiáng)FoxO1的轉(zhuǎn)錄活性[19]。因此,我們檢測(cè)了FoxO1及其乙酰化水平,以及HDAC1的活性,結(jié)果顯示,低氧暴露下,F(xiàn)oxO1和Ac-FoxO1蛋白水平及HDAC1/Ac-FoxO1比值均顯著增加,而低氧下抗阻訓(xùn)練可降低FoxO1表達(dá)量和HDAC1/Ac-FoxO1比值。這提示抗阻訓(xùn)練介導(dǎo)的FoxO1及其乙?;揎椏赡茉谡{(diào)控低氧誘導(dǎo)骨骼肌萎縮中發(fā)揮了重要的作用。
綜上所述,低氧暴露4周可導(dǎo)致大鼠瘦體重下降,EDL發(fā)生萎縮,自噬囊泡形成階段基因表達(dá)增加,該過程伴隨著FoxO1表達(dá)及其乙酰化水平升高;遞增負(fù)重的爬梯抗阻訓(xùn)練可有效緩解低氧所致的大鼠肌萎縮,其作用機(jī)制可能為:FoxO1調(diào)控下自噬與凋亡共調(diào)節(jié)過程相關(guān)基因表達(dá)降低,抑制骨骼肌蛋白質(zhì)的分解。
[1] Ogborn D, Schoenfeld BJ. The role of fiber types in muscle hypertrophy: implications for loading strategies[J]. StrengthCondJ, 2014, 36(2):20-25.
[2] Alcendor RR, Gao S, Zhai P, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart[J]. Circ Res, 2007, 100(10):1512-1521.
[3] Mark R, Hannah L, Lawrence H, et al. Potential cellular and biochemical mechanisms of exercise and physical activity on the ageing process[J]. Subcell Biochem, 2019, 91:311-338.
[4] Edwards LM, Murray AJ, Tyler DJ, et al. The effect of high-altitude on human skeletal muscle energetics:31P-MRS results from the caudwell xtreme everest expedition[J]. PloS One, 2010, 5(5):e10681.
[5]王寧琦, 包大鵬, 龔麗景, 等. 短期高原抗阻練習(xí)對(duì)人骨骼肌的影響及基因芯片分析[J]. 中國運(yùn)動(dòng)醫(yī)學(xué)雜志, 2021, 40(2):98-108.
Wang NQ, Bao DP, Gong LJ, et al. The effect of short-term high-altitude resistance exercise on skeletal muscle and its mRNA microarray analysis[J]. Chin J Sports Med, 2021, 40(2):98-108.
[6] Yoo SZ, No MH, Heo JW, et al. Role of exercise in age-related sarcopenia[J]. J Exerc Rehabil, 2018, 14(4):551-558.
[7] Dikic I. Proteasomal and autophagic degradation systems[J]. Annu Rev Biochem, 2017, 86:193-224.
[8] Klionsky DJ, Codogno P. The mechanism and physiological function of macroautophagy[J]. JInnate Immun, 2013, 5(5):427-433.
[9] He W, Zhang A, Qi L, et al. FoxO1, a potential therapeutic target, regulates autophagic flux, oxidative stress, mitochondrial dysfunction, and apoptosis in human cholangiocarcinoma QBC939 cells[J]. CellPhysiolBiochem, 2018, 45(4):1506-1514.
[10] Chen X, Chen X, Huang Y, et al. TCP1 increases drug resistance in acute myeloid leukemia by suppressing autophagy via activating AKT/mTOR signaling[J]. Cell Death Dis, 2021, 12(11):1-11.
[11] Lee S, Kim K, Lambrecht N J, et al. Interaction of resistance training, electroacupuncture and Huang Qi supplementation on skeletal muscle function and GLUT4 protein concentration in rats[J]. AcupunctMed, 2016, 34(5):380-385.
[12] 舒晴. 電針調(diào)控下丘腦弓狀核SIRT1/FoxO1抑制攝食改善胰島素抵抗肥胖的機(jī)制研究[D]. 武漢: 湖北中醫(yī)藥大學(xué), 2017:20-22.
Shu Q. The mechanism of electroacupuncture inhibiting feeding to improve obesity with insulin resistance via regulating SIRT/FoxO1 signaling pathway in hypothalamic arcuate nucleus[D]. Wuhan: Hubei University of Chinese Medicine, 2017:20-22.
[13] Hellyer NJ, Nokleby JJ, Thicke BM, et al. Reduced ribosomal protein s6 phosphorylation after progressive resistance exercise in growing adolescent rats[J]. J Strength Cond Res, 2012, 26(6):1657-1666.
[14] Neel BA, Lin Y, Pessin JE. Skeletal muscle autophagy: a new metabolic regulator[J]. Trends Endocrin Met, 2013, 24(12):635-643.
[15] Lira VA, Okutsu M, Zhang M, et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance[J]. FASEB J, 2013, 27(10):4184-4193.
[16] Kwon I, Jang YC, Cho JY, et al. Autophagy is inhibited in hypertrophied skeletal muscle in response to 8 weeks of progressive resistance exercise[J]. FASEB J, 2016, 30(Suppl 1):1245.30.
[17] Bargiela A, Cerro-Herreros E, Fernandez-Costa JM, et al. Increased autophagy and apoptosis contribute to muscle atrophy in a myotonic dystrophy type 1 Drosophila model[J]. Dis Model Mech, 2015, 8(7):679-690.
[18]龔麗景, 賈杰, 孫民康, 等. 短期間歇和急性低氧對(duì)大鼠快慢肌萎縮的影響及其作用機(jī)制[J]. 中國病理生理雜志, 2022, 38(2):238-249.
Gong LJ, Jia J, Sun MK, et al. Effects of short-term intermittent and acute hypoxia on fast- and slowtwitch muscle atrophy in rats and its mechanism[J]. Clin J Pathophysiol, 2022, 38(2):238-249.
[19] Zhang J, Ng S, Wang J, et al. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways[J]. Autophagy, 2015, 11(4):629-642.
[20] Mbt R, Guzzoni V, Hord JM, et al. Resistance training regulates gene expression of molecules associated with intramyocellular lipids, glucose signaling and fiber size in old rats[J]. Sci Rep, 2017, 7(1):8593.
[21] K?rholz K, Ridinger J, Krunic D, et al. Broad-spectrum HDAC inhibitors promote autophagy through FOXO transcription factors in neuroblastoma[J]. Cells, 2021, 10(5):1001.
Effects of forkhead box protein O1-mediated autophagy pathway on resistance training alleviating hypoxia-induced muscle atrophy in rats
FU Peng-yu1,2, YU Jing-jing3, GONG Li-jing2,3△
(1,,710072,;2,,100084,;3,,,100084,)
To explore the effects of resistance training on alleviating hypoxia-induced muscle atrophy in rats, and the regulatory mechanism of forkhead box protein O1 (FoxO1)-mediated autophagy pathway during this process.Forty SD rats were randomly divided into 4 groups: normoxic control group (N group), normoxic resistance training group (R group), hypoxic control group (H group) and hypoxic resistance training group (HR group). The rats in the H and HR groups were placed in 12.4% O2chamber, and the rats in the R and HR groups
incremental weight-bearing ladder training every other day. In 4 weeks, the food intake and body weight were recorded every day. The body composition and the wet weight of the extensor digitorum longus (EDL) of rats in four groups were measured after intervention. The morphological changes of muscle fibers were observed by HE staining and the fiber cross-sectional area (FCSA) of EDL was measured. The expression level of autophagy-related genes (ATGs) was tested by autophagy PCR array, and the functional enrichment and the interactions between differentially expressed ATGs and FoxO1 were analyzed. To validate the accuracy of PCR array, the protein expression of several differential genes were detected. And the expression of FoxO1 and acetylated FoxO1 (Ac-FoxO1) were detected by Western blot.(1) The body weight of rats in the HR group was higher than that in the H group after intervention. The food intake of rats in four groups showed no significant difference in the late period of intervention. Compared with the N group, the percentages of lean body mass and EDL wet weight of rats in the R group increased significantly, and decreased in the H group significantly (<0.05), while the percentages of lean body mass and EDL wet weight of rats in the HR group were both significantly higher than the H group after intervention (<0.05). The FCSA of rat EDL in the H group was significantly lower than that in the N group (<0.05). (2) Compared with the N group, the expression of autophagy differential genes in EDL was mainly up-regulated in the H group, and the function was mainly enriched in the process of autophagic vacuole formation. Compared with the H group, the expression of autophagy differential genes in EDL was mainly down-regulated in the HR group, and the function was mainly enriched in the co-regulators of autophagy and apoptosis. The interaction within the primary regulatory relationship showed that, the differential genes were mainly enriched in the co-regulators process of autophagy and apoptosis. The differential gene histone deacetylase 1 () was both down-regulated in groups R/N and HR/H, mammalian target of rapamycin () was both up-regulated in groups R/N and HR/H, but down-regulated in groups H/N, and microtubule-associated protein 1 light chain 3A () was down-regulated in group H/N. The expression levels of these proteins were basically consistent with the results of PCR array. (3) The protein levels of FoxO1 and Ac-FoxO1 and the ratio of HDAC1/Ac-FoxO1 in the H group were significantly higher than those in the N group, while the protein expression of FoxO1 and the ratio of HDAC1/Ac-FoxO1 in the HR group were significantly lower than those in the H group (<0.05).Resistance training alleviates EDL atrophy in rats caused by hypoxiainhibiting autophagy, and FoxO1 and its acetylation may play an important role in this process.
Resistance training; Hypoxic exposure; Skeletal muscle atrophy; Autophagy; Forkhead box protein O1
1000-4718(2022)09-1667-10
2022-05-06
2022-08-05
010-62989303; E-mail: lijing.gong@bsu.edu.cn
Q445; R363.2+1
A
10.3969/j.issn.1000-4718.2022.09.017
[基金項(xiàng)目]中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助課題(No. D5000220377; No. 2021TD012)
(責(zé)任編輯:李淑媛,羅森)