亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        人類胎盤enEVTs通過(guò)NCAM1募集白細(xì)胞并抑制Th1細(xì)胞分化*

        2022-10-13 05:31:56馬燁靈張巧英鄭長(zhǎng)武冉娜方丹娜
        中國(guó)病理生理雜志 2022年9期
        關(guān)鍵詞:實(shí)驗(yàn)

        馬燁靈, 張巧英, 鄭長(zhǎng)武, 冉娜, 方丹娜

        人類胎盤enEVTs通過(guò)NCAM1募集白細(xì)胞并抑制Th1細(xì)胞分化*

        馬燁靈△, 張巧英, 鄭長(zhǎng)武, 冉娜, 方丹娜

        (紹興文理學(xué)院醫(yī)學(xué)院,浙江 紹興 312000)

        探討血管內(nèi)絨毛外滋養(yǎng)層細(xì)胞(endovascular extravillous trophoblasts, enEVTs)調(diào)控妊娠免疫耐受的機(jī)制。通過(guò)磁珠分選技術(shù)獲得人工流產(chǎn)早孕蛻膜中的原代enEVTs和間質(zhì)絨毛外滋養(yǎng)層細(xì)胞(interstitial extravillous trophoblasts, iEVTs),再將enEVTs和iEVTs培養(yǎng)上清分別處理Na?ve CD4+T細(xì)胞,并將enEVTs培養(yǎng)上清處理組定義為實(shí)驗(yàn)組,iEVTs培養(yǎng)上清處理組定義為對(duì)照組。通過(guò)流式細(xì)胞術(shù)比較實(shí)驗(yàn)組和對(duì)照組誘導(dǎo)CD4+IFNγ+1型輔助性T細(xì)胞(type 1 T helper cells, Th1細(xì)胞)分化比例;通過(guò)免疫熒光實(shí)驗(yàn)比較enEVTs和iEVTs中神經(jīng)細(xì)胞黏附分子1(neural cell adhesion molecule 1, NCAM1)的表達(dá)情況;通過(guò)enEVTs和iEVTs分別與白細(xì)胞共培養(yǎng),比較enEVTs對(duì)白細(xì)胞的黏附作用;進(jìn)一步對(duì)37例人類胎盤進(jìn)行絨毛間隙的蘇木精-伊紅(hematoxylin-eosin, HE)染色,進(jìn)行白細(xì)胞募集的統(tǒng)計(jì)和檢測(cè)。流式細(xì)胞術(shù)結(jié)果顯示,在細(xì)胞體外共培養(yǎng)實(shí)驗(yàn)中enEVTs相比于iEVTs顯著抑制CD4+IFNγ+Th1細(xì)胞的分化(<0.05);免疫熒光結(jié)果表明,enEVTs相比于iEVTs特異高表達(dá)NCAM1;原代細(xì)胞共培養(yǎng)結(jié)果證明,enEVTs可黏附母血中的白細(xì)胞;HE染色結(jié)果顯示,enEVTs可富集母血白細(xì)胞。(1)enEVTs特異表達(dá)NCAM1并募集母血的白細(xì)胞于enEVTs周圍;(2)enEVTs抑制Th1細(xì)胞的分化,進(jìn)而促進(jìn)妊娠過(guò)程中的免疫耐受。

        血管內(nèi)絨毛外滋養(yǎng)層細(xì)胞;神經(jīng)細(xì)胞黏附分子1;Th1細(xì)胞;白細(xì)胞

        在人類妊娠過(guò)程中,由于胎兒對(duì)營(yíng)養(yǎng)物質(zhì)的需求增加,子宮螺旋動(dòng)脈發(fā)生改建,使螺旋動(dòng)脈管徑擴(kuò)大,以確保母體對(duì)胎兒氧氣和養(yǎng)料的供給,進(jìn)而維持正常妊娠[1-3]。在螺旋動(dòng)脈改建過(guò)程中,胎兒來(lái)源的胎盤血管內(nèi)絨毛外滋養(yǎng)層細(xì)胞(endovascular extravillous trophoblasts, enEVTs)取代母體螺旋動(dòng)脈血管內(nèi)皮細(xì)胞,并與母血白細(xì)胞直接接觸[4]。本研究團(tuán)隊(duì)前期細(xì)胞體外實(shí)驗(yàn)結(jié)果顯示,enEVTs可能參與母胎界面妊娠免疫耐受的調(diào)控[5]。

        正常妊娠依賴于母體和胎兒免疫耐受的維持[6]。正常妊娠過(guò)程中,由螺旋動(dòng)脈和絨毛間隙組成的胎盤-母體血流路徑也同樣經(jīng)歷免疫耐受調(diào)控[5]。母體-胎盤血流路徑中,母血從子宮動(dòng)脈流入改建完全的螺旋動(dòng)脈,再流經(jīng)胎盤絨毛間隙進(jìn)行母胎之間充分的物質(zhì)交換,以確保母體對(duì)胎兒氧氣養(yǎng)料的供給以維持正常妊娠[1-2]。該路徑中,胎兒來(lái)源的enEVTs與母血中的白細(xì)胞直接接觸,且未受到免疫排斥[5]。因此,本研究的目的是通過(guò)細(xì)胞體外培養(yǎng)實(shí)驗(yàn)研究enEVTs調(diào)控妊娠免疫耐受的機(jī)制。

        在妊娠過(guò)程中,母胎-胎盤血流路徑中的白細(xì)胞包含T細(xì)胞。CD4+T細(xì)胞多為輔助性T細(xì)胞(T helper cells, Th細(xì)胞),其中Th1細(xì)胞主要指CD4+IFNγ+的細(xì)胞,可以分泌IL-2和IFN-γ等因子并加劇免疫反應(yīng)[7]。在正常妊娠過(guò)程中,Th1細(xì)胞呈現(xiàn)低比例的狀態(tài)以維持妊娠免疫耐受,若比例出現(xiàn)異常上升,可能導(dǎo)致妊娠疾?。?-10]。在母體-胎盤血流路徑中,與enEVTs直接接觸的母血快速流過(guò),受血流速度影響,enEVTs與母血白細(xì)胞之間缺少相互作用的機(jī)會(huì),基于此我們提出假設(shè):enEVTs在細(xì)胞體外培養(yǎng)實(shí)驗(yàn)中可以表達(dá)黏附分子并黏附白細(xì)胞,以實(shí)現(xiàn)對(duì)Th1細(xì)胞分化的調(diào)控。

        enEVTs研究存在瓶頸:細(xì)胞數(shù)量極少,且在人和小鼠、大鼠等動(dòng)物中差異巨大,無(wú)法利用動(dòng)物模型對(duì)enEVTs進(jìn)行深入研究。根據(jù)細(xì)胞特性,enEVTs取代螺旋動(dòng)脈的血管內(nèi)皮細(xì)胞,在生理環(huán)境中位于螺旋動(dòng)脈壁中[5],間質(zhì)絨毛外滋養(yǎng)層細(xì)胞(interstitial extravillous trophoblasts, iEVTs)位于蛻膜內(nèi),iEVTs和enEVTs都表達(dá)免疫耐受分子HLA-G[11]。神經(jīng)細(xì)胞黏附分子1(neural cell adhesion molecule 1, NCAM1)是一種膜糖蛋白,并通過(guò)細(xì)胞之間的識(shí)別和黏附參與多種生理過(guò)程,且在恒河猴中檢測(cè)enEVTs可能特異表達(dá)NCAM1[12]。妊娠期免疫失衡將導(dǎo)致妊娠疾?。?]?;诖?,我們進(jìn)一步細(xì)化假設(shè):enEVTs在細(xì)胞體外培養(yǎng)實(shí)驗(yàn)中可以表達(dá)NCAM1并黏附白細(xì)胞,以實(shí)現(xiàn)對(duì)Th1細(xì)胞分化的調(diào)控,維持妊娠過(guò)程中的免疫耐受。

        材料和方法

        1 材料

        實(shí)驗(yàn)標(biāo)本涉及的人早孕蛻膜組織取自2019年3月~2020年6月的10例人工流產(chǎn)的婦女;人胎盤組織取自2019年3月~2021年3月分娩的7例28周剖宮產(chǎn)孕婦、8例32周剖宮產(chǎn)孕婦、9例36周剖宮產(chǎn)孕婦、13例40周剖宮產(chǎn)孕婦,以上孕婦排除腎病、心血管疾病、妊娠期高血壓、妊娠期糖尿病、宮內(nèi)死胎、自然流產(chǎn)、胎兒染色體或先天異常及輔助生殖下懷孕等情況。這些胎盤組織來(lái)源于在未足月的情況下進(jìn)行剖宮產(chǎn)手術(shù)的孕婦,多為社會(huì)因素要求放棄,如家庭因素,或有多次既往剖宮產(chǎn)史而擔(dān)心子宮破裂風(fēng)險(xiǎn)等,繼而在孕期提早剖宮產(chǎn)。母體外周血取自2019年3月~2020年6月10例非孕女性外周血。標(biāo)本與本人及家屬簽署知情同意且通過(guò)單位倫理審核。蛻膜組織、胎盤組織和血樣放置冰盒內(nèi),并于1 h內(nèi)進(jìn)行后續(xù)實(shí)驗(yàn)。

        2 主要試劑

        用于免疫熒光染色的NCAM1和HLA-G抗體購(gòu)于Abcam;用于流式細(xì)胞術(shù)的NCAM1、HLA-G、CD4和IFNγ抗體購(gòu)于eBioscience和BioLegend;PBS和牛血清白蛋白購(gòu)于Solarbio;用于免疫熒光的Ⅱ抗購(gòu)于ZSGB-BIO;用于蘇木精-伊紅(hematoxylin-eosin, HE)染色的蘇木精和伊紅染料購(gòu)自Baso;用于組織固定和包埋的多聚甲醛(paraformaldehyde, PFA)購(gòu)自Sigma;冰凍切片包埋劑(optimal cutting temperature compound, OCT)購(gòu)自Sakura Finetek;用于細(xì)胞培養(yǎng)的培養(yǎng)液和胎牛血清購(gòu)自Invitrogen。

        3 主要方法

        3.1原代細(xì)胞的分離enEVTs、iEVTs、Na?ve CD4+T細(xì)胞和白細(xì)胞按照本研究工作人員前期發(fā)表的工作中詳述的方法,在人工流產(chǎn)的早孕蛻膜中進(jìn)行分離[5]。簡(jiǎn)言之,enEVTs和iEVTs通過(guò)磁珠分選和差異貼壁的方法分離;白細(xì)胞通過(guò)裂解紅細(xì)胞的方法分離;Na?ve CD4+T細(xì)胞通過(guò)磁珠分選的方法分離。

        3.2原代細(xì)胞的培養(yǎng)與處理獲取來(lái)自10例人工流產(chǎn)的早孕蛻膜的enEVTs和iEVTs,用含10%胎牛血清的RPMI-1640培養(yǎng)液培養(yǎng)。由于enEVTs和iEVTs數(shù)量極少,從每例人工流產(chǎn)早孕蛻膜中分離的細(xì)胞不足以獲取足夠的細(xì)胞培養(yǎng)上清,故將來(lái)自10例患者的原代細(xì)胞先進(jìn)行24 h培養(yǎng),再各自混合成enEVTs培養(yǎng)上清混合液和iEVTs培養(yǎng)上清混合液。50% enEVTs培養(yǎng)上清是指enEVTs培養(yǎng)上清與含10%胎牛血清的RPMI-1640培養(yǎng)液按照1∶1比例混合,50% iEVTs培養(yǎng)上清是指iEVTs培養(yǎng)上清與含10%胎牛血清的RPMI-1640培養(yǎng)液按照1∶1比例混合。50% enEVTs培養(yǎng)上清處理Na?ve CD4+T細(xì)胞為實(shí)驗(yàn)組,50% iEVTs培養(yǎng)上清處理Na?ve CD4+T細(xì)胞為對(duì)照組,實(shí)驗(yàn)共重復(fù)3次。為進(jìn)一步證明enEVTs對(duì)白細(xì)胞發(fā)揮黏附作用,我們將iEVTs、enEVTs原代細(xì)胞分別與白細(xì)胞按照2∶1的比例進(jìn)行共培養(yǎng),24 h后對(duì)共培養(yǎng)體系進(jìn)行清洗,去除懸浮細(xì)胞,并在清洗前和清洗后進(jìn)行拍照記錄。

        3.3組織直凍、包埋、冰凍切片制備和HE染色胎盤取回后用剪刀分別在子面和母面剪取1 cm3體積的組織,并按照是否包含enEVTs分為兩個(gè)切面:不包含enEVTs的胎盤子面(靠近胎兒面)和包含enEVTs的胎盤母面(靠近母體面)。放在預(yù)冷的包埋盒中,用OCT包埋劑浸沒(méi)組織后迅速放置在液氮上凝固,將組織塊放于-80 ℃冰箱待用。白細(xì)胞在母血中呈現(xiàn)為有細(xì)胞核的細(xì)胞[13-14],故能通過(guò)蘇木精染色與無(wú)核的紅細(xì)胞等進(jìn)行區(qū)分,將預(yù)冷的冰凍組織放入調(diào)節(jié)好溫度的冰凍切片機(jī)內(nèi),調(diào)節(jié)切片機(jī)的切片厚度設(shè)定為10 μm進(jìn)行切片,將切片黏附在載玻片上,切片結(jié)束后放置于-80 ℃冰箱保存待后續(xù)行HE染色實(shí)驗(yàn)。冰凍切片從-80 ℃冰箱取出后于55 ℃熱臺(tái)中將水汽烘干,在4% PFA試劑中室溫固定10 min。用自來(lái)水將PFA洗凈后,用蘇木精染核3 min,并用梯度乙醇脫水。事先準(zhǔn)備好新的95%乙醇,將組織切片取出,滴加伊紅醇溶液5~10 s后于100%乙醇中繼續(xù)脫水,用50%甘油封片。

        3.4免疫熒光染色組織塊在取材固定后需要經(jīng)過(guò)10%蔗糖、20%蔗糖、50%蔗糖+50% OCT梯度后,再用OCT包埋劑包埋,在低溫下等包埋劑凝固,將組織塊放于-80 ℃冰箱待用。調(diào)節(jié)切片機(jī)的切片厚度設(shè)定為10 μm,進(jìn)行切片。將冰凍切片放在熱臺(tái)上10 min烘干,再放置于4%多聚甲醛中固定10 min。用PBS配制的0.1% Triton X-100室溫處理15 min。并在冰凍切片上滴加3%牛血清白蛋白溶液,室溫封閉1 h。用2%牛血清白蛋白溶液配制Ⅰ抗(NCAM1和HLA-G),4 ℃孵育過(guò)夜。按照Ⅰ抗屬性和熒光顏色的需求滴加熒光Ⅱ抗,室溫孵育1 h。DAPI細(xì)胞核染料復(fù)染,并封片,用指甲油涂抹蓋玻片邊緣,晾干后共聚焦顯微鏡拍照。

        3.5Th1細(xì)胞分化的流式分析將需要檢測(cè)的細(xì)胞計(jì)數(shù)后按照300×離心,并獲得細(xì)胞沉淀。按照每1×106個(gè)細(xì)胞加入100 μL PBS重懸的比例重懸細(xì)胞沉淀。按照抗體說(shuō)明書(shū)比例加入CD4和IFNγ的流式抗體,4 ℃冰箱避光孵育30 min。用適量的PBS緩沖液清洗細(xì)胞,將抗體洗凈,并在4 ℃離心機(jī)下按照不同細(xì)胞的轉(zhuǎn)速要求離心,并得到細(xì)胞沉淀。用200~500 μL緩沖液重懸細(xì)胞沉淀,在上機(jī)前通過(guò)細(xì)胞篩,將細(xì)胞轉(zhuǎn)移到流式管。用流式細(xì)胞儀進(jìn)行CD4+IFNγ+細(xì)胞的比例分析。

        3.6被黏附的白細(xì)胞的流式細(xì)胞術(shù)分析將0.25%胰酶稀釋35倍,在共培養(yǎng)體系中對(duì)黏附的白細(xì)胞在鏡下室溫輕柔消化約2 min,將黏附的白細(xì)胞從共培養(yǎng)體系中消化下來(lái),將細(xì)胞計(jì)數(shù)后按照300×離心,并獲得細(xì)胞沉淀。按照每1×106個(gè)細(xì)胞加入100 μL PBS重懸的比例重懸細(xì)胞沉淀。按照抗體說(shuō)明書(shū)比例加入CD45的流式抗體,4 ℃冰箱避光孵育30 min。用適量的PBS緩沖液清洗細(xì)胞,將抗體洗凈,并在4 ℃離心機(jī)下按照不同細(xì)胞的轉(zhuǎn)速要求離心,并得到細(xì)胞沉淀。用200~500 μL緩沖液重懸細(xì)胞沉淀,在上機(jī)前通過(guò)細(xì)胞篩,將細(xì)胞轉(zhuǎn)移到流式管。用流式細(xì)胞儀進(jìn)行CD45+細(xì)胞的比例分析。

        3.7胎盤絨毛間隙中母血白細(xì)胞數(shù)量分析胎盤絨毛結(jié)構(gòu)疏松且易破壞,在胎盤娩出體外后,無(wú)法直接獲得絨毛間隙中的母血,故通過(guò)冰凍切片結(jié)合HE染色的方法對(duì)胎盤絨毛間隙中的母血白細(xì)胞進(jìn)行分析。其中靠近母體面的胎盤組織包含enEVTs,即為母組織,靠近胎兒面的胎盤組織不包含enEVTs,為子面組織。將胎盤分為母面和子面后,分別進(jìn)行HE染色,并對(duì)HE染色結(jié)果進(jìn)行統(tǒng)計(jì)和分析。白細(xì)胞數(shù)量通過(guò)使用ImageJ軟件根據(jù)細(xì)胞核的分布進(jìn)行計(jì)數(shù)。血竇總面積用Photoshop軟件劃定血竇區(qū)域后通過(guò)Image-Pro Plus軟件進(jìn)行像素點(diǎn)數(shù)量的計(jì)算。再按照比例尺進(jìn)行像素和面積的換算,計(jì)算出單位像素點(diǎn)的面積為0.000 025 mm2,將該系數(shù)乘以血竇總像素點(diǎn)數(shù)量即可計(jì)算出血竇總面積。單位面積白細(xì)胞的數(shù)量即為白細(xì)胞數(shù)量/血竇總面積的比值。

        4 統(tǒng)計(jì)學(xué)處理

        本研究中使用到數(shù)量統(tǒng)計(jì)的實(shí)驗(yàn)結(jié)果均重復(fù)3次及以上。作圖軟件為GraphPad Prism,計(jì)量結(jié)果用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。組間統(tǒng)計(jì)學(xué)比較采用獨(dú)立檢驗(yàn)或至少三次獨(dú)立重復(fù)實(shí)驗(yàn)的單因素方差分析檢驗(yàn)進(jìn)行多重比較分析。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。

        結(jié)果

        1 enEVTs、iEVTs和Na?ve CD4+ T原代細(xì)胞分離純度的鑒定

        對(duì)人工流產(chǎn)早孕蛻膜中分離的enEVTs、iEVTs和Na?ve CD4+T細(xì)胞進(jìn)行純度分析,流式細(xì)胞術(shù)結(jié)果表明,HLA-G+Jagged1+enEVTs的純度高達(dá)90%(圖1A),HLA-G+Jagged1-iEVTs的純度高達(dá)90%(圖1B),CD4+CD45RA+Na?ve CD4+T細(xì)胞的純度高達(dá)95%(圖1C)。因此,分離獲得的enEVTs、iEVTs和Na?ve CD4+T原代細(xì)胞純度高,可用于后續(xù)研究。

        Figure 1. Flow cytometry analysis of the primary cells. A: flow cytometry analysis of HLA-G+ Jagged1+ enEVTs; B: flow cytometry analysis of HLA-G+ Jagged1- iEVTs; C: flow cytometry analysis of CD4+ CD45RA+ na?ve CD4+ T cells.

        2 enEVTs抑制CD4+ IFNγ+ Th1細(xì)胞分化

        對(duì)Th1細(xì)胞的分化程度進(jìn)行分析,流式細(xì)胞術(shù)結(jié)果表明,iEVTs促進(jìn)CD4+IFNγ+Th1細(xì)胞分化的比例高達(dá)12%左右,而enEVTs促進(jìn)CD4+IFNγ+Th1細(xì)胞分化的比例僅約為3%左右(圖2A~C),分化Th1細(xì)胞的3次實(shí)驗(yàn)結(jié)果的數(shù)據(jù)分析(表1)表明enEVTs相比于iEVTs顯著抑制CD4+IFNγ+Th1細(xì)胞的分化(<0.05),實(shí)驗(yàn)結(jié)果的柱狀統(tǒng)計(jì)圖如圖2D所示。

        Figure 2. Flow cytometry analysis of iEVTs- and enEVTs-induced CD4+ IFNγ+ Th1 cells. A: the flow cytometry analysis of the first experiment; B: the flow cytometry analysis of the second experiment; C: the flow cytometry analysis of the third experiment; D: the statistical results of the three experiments. Mean±SD. n=3. *P<0.05 vs iEVTs.

        3 enEVTs表達(dá)NCAM1蛋白并黏附白細(xì)胞

        對(duì)黏附分子NCAM1的表達(dá)情況進(jìn)行檢測(cè),免疫熒光染色結(jié)果表明,在人早孕蛻膜中,enEVTs為HLA-G+且位于螺旋動(dòng)脈壁中的細(xì)胞,且可以表達(dá)NCAM1蛋白(紅色箭頭所示);而iEVTs細(xì)胞為HLA-G+且位于蛻膜基質(zhì)中的細(xì)胞,且不表達(dá)NCAM1(黃色箭頭所示),見(jiàn)圖3。對(duì)enEVTs黏附白細(xì)胞的情況進(jìn)行檢測(cè),細(xì)胞共培養(yǎng)實(shí)驗(yàn)結(jié)果表明,enEVTs相比于iEVTs可大量黏附細(xì)胞,且經(jīng)過(guò)流式分析鑒定確定黏附的細(xì)胞為CD45+的白細(xì)胞,見(jiàn)圖4。

        Figure 3. Immunofluorescence staining of HLA-G (red) and NCAM1 (green) in human early pregnant decidua (scale bar=100 μm). A: immunofluorescence staining of HLA-G (red signal) and NCAM1 (green signal) in iEVTs (yellow arrow indicates iEVTs only expressing HLA-G (red signal) without expression of NCAM1 (green signal); B: immunofluorescence staining of HLA-G (red signal) and NCAM1 (green signal) in enEVTs (red arrow indicates enEVTs with both expression of HLA-G and NCAM1.

        Figure 4. The co-culture experiment of iEVTs or enEVTs with leukocytes. A: the microscopic images of iEVTs or enEVTs before washing the suspended cells (red arrows indicate the adherent leukocytes; scale bar=100 μm); B: the microscopic images of iEVTs or enEVTs after washing the suspended cells (red arrows indicate the adherent leukocytes; scale bar=100 μm); C and D: the CD45 flow cytometry result of the adherent cells with iEVTs and enEVTs, respectively.

        4 白細(xì)胞選擇性地在enEVTs周圍募集

        28周、32周、36周和40周胎盤絨毛間隙的HE染色結(jié)果如圖5所示。從HE染色結(jié)果中分析各孕齡胎盤絨毛間隙中單位面積白細(xì)胞的數(shù)量,統(tǒng)計(jì)結(jié)果表明,絨毛間隙中白細(xì)胞的數(shù)量伴隨孕齡增加呈現(xiàn)上升趨勢(shì),甚至呈現(xiàn)顯著差異(<0.05);而在同孕齡的胎盤絨毛間隙中,母面白細(xì)胞數(shù)量(含enEVTs)顯著高于子面(無(wú)enEVTs),差異有統(tǒng)計(jì)學(xué)意義(<0.05),見(jiàn)圖6。28周胎盤絨毛間隙白細(xì)胞的具體數(shù)值見(jiàn)表2;32周胎盤絨毛間隙白細(xì)胞的具體數(shù)值見(jiàn)表3;36周胎盤絨毛間隙白細(xì)胞的具體數(shù)值見(jiàn)表4;40周胎盤絨毛間隙白細(xì)胞的具體數(shù)值見(jiàn)表5。以上結(jié)果證明,白細(xì)胞選擇性地在enEVTs周圍募集。

        Figure 5. The typical results of leukocytes in placental intervillous space by HE staining. The leukocytes in placental intervillous space at 28, 32, 36 and 40 weeks were shown. Blue arrows indicate the leukocytes. Scale bar=100 μm.

        Figure 6. Statistical results of leukocytes in intervillous space of human placenta. A: the statistical results of leukocytes in intervillous space of basal and chorionic plates in human placenta; B: the statistical results of leukocytes in intervillous space during 28 to 40 weeks of human placenta. The statistical results are performed based on the results from at least seven independently repeated experiments. Mean±SD. 28 weeks: n=7; 32 weeks: n=8; 36 weeks: n=9; 40 weeks: n=13. *P<0.05 vs 28 weeks; #P<0.05 vs 32 weeks; △P<0.05 vs 36 weeks; ▲P<0.05 vs fetal.

        表2 28周胎盤絨毛間隙的白細(xì)胞

        FM: fetal membrane; MM: maternal membrane.

        表3 32周胎盤絨毛間隙的白細(xì)胞

        FM: fetal membrane; MM: maternal membrane.

        表4 36周胎盤絨毛間隙的白細(xì)胞

        FM: fetal membrane; MM: maternal membrane.

        表5 40周胎盤絨毛間隙的白細(xì)胞

        FM: fetal membrane; MM: maternal membrane.

        討論

        enEVTs是取代螺旋動(dòng)脈血管內(nèi)皮細(xì)胞的一群特殊的滋養(yǎng)層細(xì)胞,它可參與妊娠免疫耐受的調(diào)控[5]。我們推測(cè)enEVTs可能通過(guò)黏附白細(xì)胞以實(shí)現(xiàn)對(duì)Th1細(xì)胞分化的調(diào)控,進(jìn)而發(fā)揮其免疫耐受的功能,而本研究的體外培養(yǎng)實(shí)驗(yàn)也證明了此點(diǎn)。在細(xì)胞體外培養(yǎng)實(shí)驗(yàn)中,enEVTs細(xì)胞上清促進(jìn)Th1細(xì)胞分化,這與已報(bào)道的enEVTs具有免疫調(diào)控功能的研究相一致[5]。此外,免疫熒光實(shí)驗(yàn)證明enEVTs表達(dá)粘著分子NCAM1,該結(jié)果也與已報(bào)道的enEVTs表達(dá)模式一致[12]。細(xì)胞體外共培養(yǎng)實(shí)驗(yàn)結(jié)果進(jìn)一步表明,enEVTs原代細(xì)胞可以黏附白細(xì)胞。以上結(jié)果提示enEVTs可通過(guò)粘著分子NCAM1黏附白細(xì)胞實(shí)現(xiàn)對(duì)Th1細(xì)胞分化的調(diào)控,見(jiàn)圖7。本研究將enEVT原代細(xì)胞和細(xì)胞上清都應(yīng)用于體外共培養(yǎng)體系,相較于以往enEVTs研究[5]在共培養(yǎng)體系的設(shè)計(jì)上有所改進(jìn)。

        Figure 7. A schematic figure to illustrate the mechanism of endovascular extravillous trophoblasts (enEVTs) participating in immune tolerance during normal pregnancy. iEVTs: interstitial extravillous trophoblasts; Th1: type 1 T helper cells; NCAM1: neural cell adhesion molecule 1.

        本研究旨在通過(guò)細(xì)胞體外培養(yǎng)實(shí)驗(yàn)研究enEVTs調(diào)控妊娠免疫耐受的機(jī)制。胎兒來(lái)源的enEVTs與母血中的白細(xì)胞直接接觸,且參與妊娠免疫耐受的調(diào)控,但具體的調(diào)控機(jī)制尚不明確[5]。NCAM1是一種神經(jīng)細(xì)胞黏附分子,早期文獻(xiàn)表明enEVTs特異表達(dá)NCAM1[12],但未闡明其功能及意義,本研究在進(jìn)一步確定enEVTs特異表達(dá)NCAM1的基礎(chǔ)上,利用細(xì)胞體外共培養(yǎng)實(shí)驗(yàn)證明enEVTs具有黏附白細(xì)胞的功能。

        Th1細(xì)胞為輔助性T細(xì)胞,可分泌大量趨化因子并發(fā)揮免疫激活的功能[7]。在正常妊娠過(guò)程中,Th1細(xì)胞的比例降低以維持孕期免疫耐受,而孕期Th1細(xì)胞比例的異常升高會(huì)引發(fā)妊娠相關(guān)疾?。?-10]。目前尚未有研究將Th1細(xì)胞的分化情況與enEVTs的細(xì)胞功能聯(lián)系到一起,而本研究利用細(xì)胞體外共培養(yǎng)實(shí)驗(yàn)證明enEVTs可以抑制Th1細(xì)胞的分化。

        妊娠免疫耐受依賴于胎盤中母體和胎兒細(xì)胞之間復(fù)雜的相互作用,胎盤絨毛間隙的免疫微環(huán)境復(fù)雜且細(xì)胞分布不明確[15-17],本研究檢測(cè)并統(tǒng)計(jì)了胎盤絨毛間隙中的母體白細(xì)胞分布,并證明胎盤絨毛間隙中靠近胎兒側(cè)的母體白細(xì)胞數(shù)量減少,以維護(hù)孕期母胎免疫耐受。此外,胎盤的免疫炎性因素是分娩發(fā)動(dòng)的主要誘因[18-20],因此本實(shí)驗(yàn)所呈現(xiàn)的胎盤絨毛間隙母體白細(xì)胞的動(dòng)態(tài)變化,可成為分娩發(fā)動(dòng)的潛在誘因。

        子癇前期等妊娠疾病的發(fā)生伴隨螺旋動(dòng)脈改建不足[21-24]和全身性炎癥反應(yīng)[25-27],胎盤功能障礙乃至免疫失衡被認(rèn)為是子癇前期發(fā)病的重要原因[28-32]。正常妊娠胎盤中,enEVTs是螺旋動(dòng)脈改建及妊娠免疫調(diào)控的重要基礎(chǔ)。

        綜上所述,本研究通過(guò)細(xì)胞體外共培養(yǎng)實(shí)驗(yàn)證明:enEVTs作為可以取代螺旋動(dòng)脈血管內(nèi)皮的特殊滋養(yǎng)層細(xì)胞,可以表達(dá)粘著分子NCAM1,進(jìn)而黏附白細(xì)胞,抑制Th1細(xì)胞的分化,以促進(jìn)妊娠過(guò)程中的免疫耐受調(diào)控。本研究為子癇前期等妊娠疾病發(fā)病機(jī)制的探索提供了實(shí)驗(yàn)依據(jù)。

        [1] Craven CM, Morgan T, Ward K. Decidual spiral artery remodelling begins before cellular interaction with cytotrophoblasts[J]. Placenta, 1998, 19(4):241-252.

        [2] Burrows TD, King A, Loke YW. Trophoblast migration during human placental implantation[J]. Hum Reprod Update, 1996, 2(4):307-321.

        [3] Ji L, Brkic J, Liu M, et al. Placental trophoblast cell di-fferentiation: physiological regulation and pathological relevance to preeclampsia[J]. Mol Aspects Med, 2013, 34(5):981-1023.

        [4] Pijnenborg R, Vercruysse L, Hanssens A. The uterine spiral arteries in human pregnancy: facts and controversies[J]. Placenta, 2006, 27(9):939-958.

        [5] Ma Y, Yang Q, Fan M, et al.Placental endovascular extravillous trophoblasts (enEVTs) educate maternal T-cell differentiation along the maternal-placental circulation[J]. Cell Prolif, 2020, 53(5):802-813.

        [6] Trowsdale J, Betz AG. Mother' s little helpers: mechanisms of maternal-fetal tolerance[J]. Nat Immunol, 2006, 7(3):241-246.

        [7] Constant S, Bottomly K. Induction of Th1 and Th2 CD4+T cell responses: the alternative approaches[J]. Annu Rev Immunol, 1997, 15(10):297-322.

        [8] RaghupathyR. Pregnancy: success and failure within the Th1/Th2/Th3 paradigm[J]. Semin Immunol, 2001, 13(316):219-227.

        [9] Ramyar A, Majid A, Shahla D, et al. Cyclosporine A improves pregnancy outcomes in women with recurrent pregnancy loss and elevated Th1/Th2 ratio[J]. J Cell Physiol, 2019, 234(19):39-47.

        [10] Saito S, Nakashima A, Shima T, et al. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy[J]. Am J Reprod Immunol, 2010, 63(6):601-610.

        [11] Zhou Y, Fisher SJ, Janatpour M, et al.Human cytotrophoblasts adopt a vascular phenotype as they differen tiate. A strategy for successful endovascular invasion?[J]. J Clin Invest, 1997, 99(9):39-51.

        [12] Rutishauser U. Developmental biology of a neural cell adhesion molecule[J]. Nature, 1984, 310(5978):549-554.

        [13] Spanjers JM, Stadler B. Cell membrane coated particles[J]. Adv Biosyst, 2020, 4(11):174-185

        [14] Dausset J, Colombani J, Colombani M. Anti-leucocyte cytoplasm, anti-leucocyte nuclei and anti-platelets in disseminated lupus erythematosis[J]. Nature, 1961, 191:1209-1210.

        [15] Loke YW, King A, Burrows T, et al. Evaluation of trophoblast HLA-G antigen with a specific monoclonal antibody[J]. Tissue Antigens, 1997, 50(2):135-146.

        [16] Trowsdale J, Moffett A. NK receptor interactions with MHC class I molecules in pregnancy[J]. Semin Immunol, 2008, 20(6):317-320.

        [17] Hackmon R, Pinnaduwage L, Zhang J, et al.Definitive class I human leukocyte antigen expression in gestational placentation: HLA-F, HLA-E, HLA-C, and HLA-G in extravillous trophoblast invasion on placentation, pregnancy, and parturition[J]. Am J Reprod Immunol, 2017, 77(6):11-16.

        [18] Phillippe M. Cell-free fetal DNA, telomeres, and the spontaneous onset of parturition[J]. Reprod Sci, 2015, 22(10):1186-1201.

        [19] Menon R, Richardson LS, Lappas M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition[J]. Placenta, 2019, 79:40-45.

        [20] Gan XW, Wang WS, Lu JW, et al. De novo synthesis of SAA1 in the placenta participates in parturition[J]. Front Immunol, 2020, 11(3):10-38.

        [21] Albrecht ED, Pepe GJ. Regulation of uterine spiral artery remodeling: a review[J]. Reprod Sci, 2020, 27(10):1932-1942.

        [22] Hu X, Zhang L. Uteroplacental circulation in normal pregnancy and preeclampsia: functional adaptation and mala-daptation[J]. Int J Mol Sci, 2021, 22(16):8622.

        [23] Pankiewicz K, Fijalkowska A, Issat T, et al. Insight into the key points of preeclampsia pathophysiology: uterine artery remodeling and the role of microRNAs[J]. Int J Mol Sci, 2021, 22(6):3132.

        [24] Windsperger K, Dekan S, Pils S, et al. Extravillous trophoblast invasion of venous as well as lymphatic vessels is altered in idiopathic, recurrent, spontaneous abortions[J]. Hum Reprod, 2017, 32(6):1208-1217.

        [25] Tenorio MB, Ferreira RC, Moura FA, et al. Cross-talk between oxidative stress and inflammation in preeclampsia[J]. Oxid Med Cell Longev, 2019, 2019:8238727.

        [26] Rambaldi MP, Weiner E, Mecacci F, et al. Immunomo-dulation and preeclampsia[J]. Best Pract Res Clin Obstet Gynaecol, 2019, 60:87-96.

        [27] Li X, Zhou B, Han X, et al. Effect of nicotine on placental inflammation and apoptosis in preeclampsia-like model[J]. Life Sci, 2020, 261:118314.

        [28] Kim CJ, Romero R, Chaemsaithong P, et al. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance[J]. Am J Obstet Gynecol, 2015, 213(4 Suppl):S53-S69.

        [29] Cheng SB, Nakashima A, Huber WJ, et al.Pyroptosis is a critical inflammatory pathway in the placenta from early onset preeclampsia and in human trophoblasts exposed to hypoxia and endoplasmic reticulum stressors[J]. Cell Death Dis, 2019, 10(12):927-930.

        [30] Aggarwal R, Jain AK, Mittal P, et al. Association of pro- and anti-inflammatory cytokines in preeclampsia[J]. J Clin Lab Anal, 2019, 33(4):228-234.

        [31] 王江玲, 陳思思, 唐杰, 等. 子癇前期患者胎盤組織中visfatin蛋白與mRNA表達(dá)及意義[J]. 中國(guó)病理生理雜志, 2015, 31(2):337-342.

        Wang JL, Chen SS, Tang J, et al. Protein and mRNA expression of visfatin in placenta of patients with preeclampsia[J]. Chin J Pathophysiol, 2015, 31(2):337-342.

        [32] 毛東偉, 楊東霞, 段志宇, 等. 先兆子癇胎盤的基因表達(dá)譜研究[J]. 中國(guó)病理生理雜志, 2009, 25(9):1806-1809.

        Mao D, Yang D, Duan Z, et al. Microarray analysis of gene expression profiles in preeclamptic placenta[J].Chin J Pathophysiol, 2009, 25(9):1806-1809.

        Human placental enEVTs recruit leukocytes through NCAM1 and inhibit Th1 cell differentiation

        MA Ye-ling△, ZHANG Qiao-ying, ZHENG Chang-wu, RAN Na, FANG Dan-na

        (,,312000,)

        Study the mechanism of endovascular extravillous trophoblasts (enEVTs) in regulating immune tolerance during pregnancy.Interstitial extravillous trophoblasts (iEVTs), enEVTs and na?ve CD4+T were obtained from the decidua of early pregnancy by magnetic bead sorting. The na?ve CD4+T cells were treated with enEVTs or iEVTs supernatant. The enEVTs supernatant-treated group was defined as the experimental group, and the iEVTs supernatant-treated group was defined as the control group. The proportion of differentiated CD4+IFNγ+type 1 T helper cells (Th1 cells) was analyzed by flow cytometry analysis. The expression of neural cell adhesion molecule 1 (NCAM1) in iEVTs and enEVTs was analyzed. The adhesion of enEVTs to leukocytes was studied by co-culture experiment. Furthermore, in order to detect the recruitment of leukocytes, hematoxylin-eosin (HE) staining of the intervillous space was performed in 37 human placentas.Flow cytometry analysis revealed that enEVTs significantly inhibited the differentiation of CD4+IFNγ+Th1 cells compared with iEVTs. Immunofluorescence results showed that NCAM1 was highly expressed in enEVTs. Primary cell co-culture results showed that enEVTs could adhere to maternal leukocytes. The results of HE staining further revealed that maternal leukocytes were recruited by enEVTs.Human placental enEVTs recruit leukocytes through NCAM1. The enEVTs inhibit the differentiation of Th1 cells and promote immune tolerance during pregnancy.

        Endovascular extravillous trophoblasts; Neural cell adhesion molecule 1; Th1 cells; Leukocytes

        1000-4718(2022)09-1634-11

        2022-02-16

        2022-06-29

        13157573855; E-mail: mayelingsxu@163.com

        R329.21; R363.2+1

        A

        10.3969/j.issn.1000-4718.2022.09.013

        [基金項(xiàng)目]紹興文理學(xué)院科研啟動(dòng)基金(No. 20210022)

        (責(zé)任編輯:盧萍,李淑媛)

        猜你喜歡
        實(shí)驗(yàn)
        我做了一項(xiàng)小實(shí)驗(yàn)
        記住“三個(gè)字”,寫好小實(shí)驗(yàn)
        我做了一項(xiàng)小實(shí)驗(yàn)
        我做了一項(xiàng)小實(shí)驗(yàn)
        記一次有趣的實(shí)驗(yàn)
        有趣的實(shí)驗(yàn)
        微型實(shí)驗(yàn)里看“燃燒”
        做個(gè)怪怪長(zhǎng)實(shí)驗(yàn)
        NO與NO2相互轉(zhuǎn)化實(shí)驗(yàn)的改進(jìn)
        實(shí)踐十號(hào)上的19項(xiàng)實(shí)驗(yàn)
        太空探索(2016年5期)2016-07-12 15:17:55
        精品国产亚洲av麻豆尤物| 99久久人妻精品免费二区| 久久人妻公开中文字幕| 国产亚洲精选美女久久久久| av黄色大片久久免费| 亚洲av中文无码乱人伦在线咪咕 | 官网A级毛片| 青青草视频在线观看绿色| 成年性生交大片免费看| 色综合无码av网站| 中文字幕在线观看乱码一区| 久久一区二区三区老熟女| 日韩精品久久久久久免费| 精品亚洲aⅴ在线观看| 无码国产一区二区色欲| 一本久久精品久久综合| 天堂新版在线资源| 国产一区a| 国产一区二区三区porn| 日本在线视频www色| 国产无遮挡裸体免费视频| 国产精品系列亚洲第一| 久久精品国产在热亚洲不卡| 后入到高潮免费观看| 亚洲精品成人片在线观看| 日本一区不卡高清在线观看| 性av一区二区三区免费| 真人作爱免费视频| 999精品免费视频观看| 国产黄色一级大片一区二区| 在教室伦流澡到高潮hgl动漫| 婷婷亚洲综合五月天小说| 国产人妖一区二区在线| 开心五月天第四色婷婷| 国产精品老熟女露脸视频| 无码人妻中文中字幕一区二区| 日本少妇熟女一区二区| 米奇7777狠狠狠狠视频影院| 国产精品免费久久久免费| 综合久久一区二区三区| 天堂国产一区二区三区|