于婧文, 郭敏芳, 李蘇垚, 孟濤, 張海飛, 楊德斌,宋麗娟,3, 馬存根,△, 尉杰忠,,4△
黃芪甲苷通過(guò)調(diào)控線粒體功能抑制H2O2誘導(dǎo)的SH-SY5Y細(xì)胞凋亡*
于婧文1, 郭敏芳1, 李蘇垚2, 孟濤1, 張海飛1, 楊德斌1,宋麗娟2,3, 馬存根1,2△, 尉杰忠1,2,4△
(1山西大同大學(xué)腦科學(xué)研究所/附屬第一醫(yī)院神經(jīng)科,山西 大同 037009;2山西中醫(yī)藥大學(xué)國(guó)家中醫(yī)藥管理局多發(fā)性硬化益氣活血重點(diǎn)研究室/神經(jīng)生物學(xué)研究中心,山西 晉中 030619;3山西醫(yī)科大學(xué)生理學(xué)系,山西 太原 030001;4山西大同市第四人民醫(yī)院,山西 大同 037009)
探討黃芪甲苷(astragaloside IV, AST IV)對(duì)由氧化應(yīng)激損傷引起的線粒體功能障礙以及細(xì)胞凋亡的作用及機(jī)制。體外培養(yǎng)人神經(jīng)母細(xì)胞瘤SH-SY5Y細(xì)胞,用過(guò)氧化氫(hydrogen peroxide, H2O2)誘導(dǎo)建立氧化應(yīng)激模型,分為PBS組、模型組(H2O2組)和H2O2+AST IV組。應(yīng)用ATP檢測(cè)試劑盒檢測(cè)細(xì)胞內(nèi)ATP水平;用線粒體膜電位檢測(cè)試劑盒JC-1檢測(cè)細(xì)胞線粒體膜電位變化;應(yīng)用Western blot法檢測(cè)線粒體呼吸鏈上的complex I~V,分別為NADH:泛醌氧化還原酶亞基B8(NADH:ubiquinone oxidoreductase subunit B8, NDUFB8; complex I)、琥珀酸脫氫酶B(succinate dehydrogenase B, SDHB; complex II)、泛醇-細(xì)胞色素C還原酶核心蛋白2(ubiquinol-cytochrome C reductase core protein 2, UQCRC2; complex III)、細(xì)胞色素C氧化酶I(mitochondrially encoded cytochrome C oxidase I, MTCO1; complex IV)和ATP合酶F1亞基α(ATP synthase F1 subunit alpha, ATP5A; complex V),檢測(cè)線粒體動(dòng)力學(xué)分裂蛋白——磷酸化發(fā)動(dòng)蛋白相關(guān)蛋白1(phosporylated dynamin-related protein 1, p-Drp1)和線粒體分裂蛋白1(mitochondrial fission protein 1, Fis1),以及融合蛋白——線粒體融合蛋白1(mitofusin 1, Mfn1)、Mfn2和視神經(jīng)萎縮癥蛋白1(optic atrophy protein 1, OPA1),檢測(cè)凋亡相關(guān)蛋白Bcl-2、Bax和cleaved caspase-3;采用免疫熒光染色法檢測(cè)NDUFB8和MTCO1表達(dá);采用TUNEL染色檢測(cè)細(xì)胞凋亡。在200 μmol/L H2O2誘導(dǎo)的SY5Y細(xì)胞氧化應(yīng)激模型中,線粒體膜電位(<0.01)和ATP水平(<0.05)顯著下調(diào),呼吸鏈氧化磷酸化過(guò)程中NDUFB8、SDHB、ATP5A和MTCO1的表達(dá)均顯著減少(<0.05或<0.01),線粒體分裂蛋白Fis1(<0.05)和p-Drp1(<0.01)蛋白水平顯著升高,融合蛋白Mfn1、Mfn2和OPA1表達(dá)則顯著降低(<0.05或<0.01),促凋亡蛋白Bax和cleaved caspase-3蛋白水平顯著升高(<0.01),抗凋亡蛋白Bcl-2表達(dá)量顯著降低(<0.01)。AST IV能夠顯著提高細(xì)胞線粒體膜電位(<0.01)和ATP水平(<0.01),顯著促進(jìn)呼吸鏈氧化磷酸化過(guò)程中NDUFB8、SDHB、MTCO1、ATP5A及UQCRC2的表達(dá)(<0.05或<0.01),顯著降低p-Drp1和Fis1蛋白水平(<0.01),顯著增加OPA1、Mfn1和Mfn2的表達(dá)(<0.05或<0.01),顯著增加Bcl-2表達(dá)(<0.05),顯著降低Bax和cleaved caspase-3蛋白水平(<0.01)。AST IV能夠保護(hù)神經(jīng)元,其可能的機(jī)制是通過(guò)改善線粒體功能,調(diào)控線粒體動(dòng)力學(xué)分裂/融合平衡,從而減輕氧化應(yīng)激損傷導(dǎo)致的神經(jīng)元凋亡。
黃芪甲苷;氧化應(yīng)激;線粒體;SH-SY5Y細(xì)胞
線粒體是一個(gè)動(dòng)態(tài)的細(xì)胞器,不斷進(jìn)行分裂融合維持自身的形態(tài)、功能以及整個(gè)細(xì)胞的功能,分裂和融合的異常是導(dǎo)致線粒體功能障礙的重要因素。細(xì)胞氧化損傷和活性氧(reactive oxygen species, ROS)的增加,使線粒體成為容易被攻擊的靶點(diǎn)[1]。線粒體形態(tài)結(jié)構(gòu)和功能變化與內(nèi)源性的神經(jīng)元凋亡有密切的關(guān)系[2-4]。在神經(jīng)元受損時(shí),線粒體形態(tài)由管狀變?yōu)轭w粒狀, 線粒體外膜通透性發(fā)生改變,同時(shí)釋放凋亡因子,激活凋亡信號(hào)通路,促進(jìn)細(xì)胞凋亡[2],而在凋亡過(guò)程中會(huì)發(fā)生過(guò)度的線粒體分裂。在帕金森?。≒arkinson disease, PD)、阿爾茨海默?。ˋlzheimer dissease, AD)、肌萎縮側(cè)索硬化癥(amyotraphic lateral sclerosis, ALS)及亨廷頓?。℉untington disease, HD)等疾病的早期,會(huì)發(fā)生線粒體功能障礙[3-6]。通過(guò)各種細(xì)胞系中線粒體分裂和融合、氧化磷酸化和能量代謝的研究證實(shí),線粒體動(dòng)力學(xué)會(huì)影響神經(jīng)的可塑性,線粒體動(dòng)力學(xué)基因改變,能量代謝異??赡苁茿D和PD發(fā)病的病理機(jī)制[3-4]。如果能在疾病早期發(fā)現(xiàn)并改善線粒體功能障礙,則可以為治療提供時(shí)間窗,以推遲或逆轉(zhuǎn)癥狀[2]。
在祖國(guó)傳統(tǒng)醫(yī)學(xué)中,黃芪有“十方八芪”之美稱。黃芪甲苷(astragaloside IV, AST IV)是黃芪的主要活性成分之一,具有較強(qiáng)的抗氧化作用。研究表明,其可以有效減輕妊娠期糖尿病小鼠胎盤氧化應(yīng)激[7]和子癇前期大鼠氧化應(yīng)激[8],改善氧化應(yīng)激介導(dǎo)的心血管疾病內(nèi)皮功能障礙[9]和氨誘導(dǎo)的牛乳腺上皮細(xì)胞氧化應(yīng)激[10]等。我們的前期研究也證實(shí),AST IV可以通過(guò)抑制炎性小膠質(zhì)細(xì)胞極化抑制其介導(dǎo)的神經(jīng)元凋亡,但其是否可以通過(guò)調(diào)節(jié)線粒體功能、線粒體動(dòng)力學(xué)與氧化磷酸化來(lái)改善氧化應(yīng)激造成的神經(jīng)元損傷尚不清楚。
本研究應(yīng)用過(guò)氧化氫(hydrogen peroxide, H2O2)誘導(dǎo)的人神經(jīng)母細(xì)胞瘤SH-SY5Y細(xì)胞作為神經(jīng)細(xì)胞氧化應(yīng)激模型,研究AST IV對(duì)線粒體功能、代謝及動(dòng)力學(xué)的影響,探討其保護(hù)神經(jīng)元的作用機(jī)制,為AST IV保護(hù)線粒體提供參考資料。
SH-SY5Y細(xì)胞株購(gòu)自國(guó)家生物醫(yī)學(xué)實(shí)驗(yàn)細(xì)胞資源庫(kù)。AST IV(純度>98%)和羧甲纖維素鈉購(gòu)自上海阿拉丁生化公司;細(xì)胞蛋白提取試劑盒、ATP檢測(cè)試劑盒、線粒體膜電位檢測(cè)試劑盒JC-1、TUNEL細(xì)胞凋亡檢測(cè)試劑盒均購(gòu)自上海碧云天生物技術(shù)有限公司;兔抗磷酸化發(fā)動(dòng)蛋白相關(guān)蛋白1(phosporylated dynamin-related protein 1, p-Drp1)、線粒體分裂蛋白1(mitochondrial fission protein 1, Fis1)、線粒體融合蛋白1(mitofusin 1, Mfn1)、Mfn2和視神經(jīng)萎縮癥蛋白1(optic atrophy protein 1, OPA1)單克隆抗體,以及小鼠抗NADH:泛醌氧化還原酶亞基B8(NADH:ubiquinone oxidoreductase subunit B8, NDUFB8; complex I)、琥珀酸脫氫酶B(succinate dehydrogenase B, SDHB; complex II)、泛醇-細(xì)胞色素C還原酶核心蛋白2(ubiquinol-cytochrome C reductase core protein 2, UQCRC2; complex III)、細(xì)胞色素C氧化酶I(mitochondrially encoded cytochrome C oxidase I, MTCO1; complex IV)和ATP合酶F1亞基α(ATP synthase F1 subunit alpha, ATP5A; complex V)單克隆抗體均購(gòu)自Abcam;兔抗Bcl-2單克隆抗體、兔抗Bax單克隆抗體、兔抗cleaved caspase-3和兔抗GAPDH單克隆抗體均購(gòu)自Cell Signaling Technology;辣根過(guò)氧化物酶(horseradish peroxidase, HRP)標(biāo)記的山羊抗兔IgG、HRP標(biāo)記的山羊抗小鼠IgG和DyLight?594標(biāo)記的山羊抗小鼠IgG均購(gòu)自ArthOx;高糖DMEM培養(yǎng)液和胎牛血清(fetal bovine serum, FBS)購(gòu)自Gibco;青霉素、鏈霉素和谷氨酰胺均購(gòu)自HyClone;脫脂奶粉和牛血清白蛋白(bovine serum albumin, BSA)購(gòu)自Thermo。
2.1細(xì)胞培養(yǎng)將SH-SY5Y細(xì)胞培養(yǎng)于8 cm培養(yǎng)皿中,用含10% FBS、1×105U/L青霉素、100 mg/L鏈霉素和10 g/L谷氨酰胺的DMEM培養(yǎng)液培養(yǎng),置于37 ℃、5% CO2細(xì)胞培養(yǎng)箱中培養(yǎng)。細(xì)胞培養(yǎng)條件參照細(xì)胞資源庫(kù)培養(yǎng)說(shuō)明。隔天換液1次,細(xì)胞匯合度至約80%,用0.125%的胰蛋白酶消化并傳代,選取對(duì)數(shù)生長(zhǎng)期細(xì)胞進(jìn)行以下實(shí)驗(yàn)。
2.2細(xì)胞分組及給藥實(shí)驗(yàn)分為PBS組、模型組(H2O2組)和H2O2+AST IV組。H2O2組加入200 μmol/L H2O2刺激24 h[11-12],建立氧化應(yīng)激損傷模型,H2O2+AST IV組在加入H2O2之前2 h加入25 μmol/L AST IV共孵育24 h。
2.3線粒體膜電位檢測(cè)6孔板細(xì)胞加藥培養(yǎng)24 h后,吸除培養(yǎng)液,按照線粒體膜電位檢測(cè)產(chǎn)品說(shuō)明書(C2006),加入1 mL細(xì)胞培養(yǎng)液,再加入1 mL提前配制好的JC-1染色工作液,充分混勻,細(xì)胞培養(yǎng)箱中37 ℃孵育20 min。孵育結(jié)束后,吸除上清,用JC-1染色緩沖液洗滌2次。加入2 mL細(xì)胞培養(yǎng)液,在激光共聚焦顯微鏡下觀察。檢測(cè)JC-1單體時(shí),把激發(fā)光設(shè)置為488 nm;檢測(cè)JC-1聚合物時(shí),把激發(fā)光設(shè)置為594 nm。出現(xiàn)綠色熒光說(shuō)明線粒體膜電位下降,并且該細(xì)胞很可能處于細(xì)胞凋亡早期。出現(xiàn)紅色熒光說(shuō)明線粒體膜電位比較正常,細(xì)胞的狀態(tài)也比較正常。常用紅綠熒光的相對(duì)比例來(lái)衡量線粒體去極化的比例。
2.4細(xì)胞內(nèi)ATP水平的測(cè)定6孔板細(xì)胞加藥培養(yǎng)24 h后,吸除培養(yǎng)液,加入RIPA裂解液,使細(xì)胞充分裂解,4 ℃、12 000×離心5 min,取上清,用于ATP的測(cè)定。按試劑盒說(shuō)明書(S2006)配置ATP檢測(cè)工作液,同時(shí)用ATP標(biāo)準(zhǔn)溶液制備標(biāo)準(zhǔn)曲線。先在檢測(cè)孔內(nèi)加100 μL ATP檢測(cè)工作液,室溫放置3~5 min,消除本底影響。再分別加適量樣品或標(biāo)準(zhǔn)品,混勻,用化學(xué)發(fā)光儀測(cè)相對(duì)光單位RLU值。
2.5Western blot法檢測(cè)呼吸鏈氧化磷酸化復(fù)合體蛋白、線粒體分裂融合蛋白和細(xì)胞凋亡蛋白的表達(dá)6孔板細(xì)胞加藥培養(yǎng)24 h后,吸除培養(yǎng)液,加入RIPA裂解液,使細(xì)胞充分裂解,4 ℃、12 000×離心5 min,取上清液,用Nanodrop測(cè)定蛋白質(zhì)含量,并調(diào)整蛋白濃度。配制10%聚丙烯酰胺凝膠,上樣蛋白量為30 μg,電泳分離蛋白質(zhì)后,濕式轉(zhuǎn)移法轉(zhuǎn)移到PVDF膜。5%脫脂奶粉溶液封閉2 h,分別加入1∶1 000稀釋的兔抗p-Drp1、Fis1、Mfn1、Mfn2、OPA1、Bcl-2、Bax和cleaved caspase-3單克隆抗體,以及小鼠抗NDUFB8、SDHB、UQCRC2、MTCO1和ATP5A單克隆抗體,并選取兔抗GAPDH(內(nèi)參照)單克隆抗體(1∶5 000),4 ℃孵育過(guò)夜;洗滌后,加入HRP標(biāo)記的山羊抗兔IgG或HRP標(biāo)記的山羊抗小鼠IgG(1∶10 000),室溫孵育2 h。洗膜后進(jìn)行化學(xué)發(fā)光反應(yīng),用凝膠成像分析儀檢測(cè)條帶,用目的蛋白條帶吸光度與內(nèi)參照GAPDH吸光度的比值表示蛋白質(zhì)相對(duì)表達(dá)量。
2.6免疫熒光細(xì)胞染色法檢測(cè)呼吸鏈氧化磷酸化復(fù)合體蛋白NDUFB8和MTCO1的表達(dá)將SH-SY5Y細(xì)胞接種于放有爬片的24孔板,加藥培養(yǎng)24 h后,棄上清液,用冷的PBS洗細(xì)胞3次,每次5 min;用4%的多聚甲醛固定30 min,PBS洗3次,用含0.3% Triton X-100的PBS室溫孵育10 min。用0.1% BSA封閉30 min,分別加小鼠抗NDUFB8單克隆抗體(1∶1 000)和小鼠抗MTCO1單克隆抗體(1∶1 000),4 ℃孵育過(guò)夜;PBS洗3次,加DyLight?594標(biāo)記的山羊抗小鼠IgG(1∶500),室溫避光孵育2 h;PBS洗3次,用Hoechst 33342染料的抗熒光淬滅封片液封片。顯微鏡下觀察NDUFB8和MTCO1的表達(dá)。
2.7TUNEL法檢測(cè)SH-SY5Y細(xì)胞凋亡將SH-SY5Y細(xì)胞接種于放有細(xì)胞爬片的24孔板,加藥處理24 h 后,操作同2.6。含0.3% Triton X-100的PBS室溫孵育完成后,按照TUNEL試劑盒說(shuō)明書(C1089)配制TUNEL檢測(cè)工作液,每孔加入適量TUNEL工作液,37 ℃避光孵育60 min,PBS洗3次并用含Hoechst 33342染料的抗熒光淬滅封片液封片。在熒光顯微鏡下觀察,Cy3的激發(fā)波長(zhǎng)為550 nm,發(fā)射波長(zhǎng)為570 nm。統(tǒng)計(jì)視野下陽(yáng)性細(xì)胞的數(shù)量(紅色熒光)和細(xì)胞總數(shù)量(藍(lán)色熒光),計(jì)算細(xì)胞凋亡率,細(xì)胞凋亡率(%)=陽(yáng)性細(xì)胞數(shù)/細(xì)胞總數(shù)×100%。
采用GraphPad Prism 5.0軟件對(duì)實(shí)驗(yàn)數(shù)據(jù)進(jìn)行分析處理。計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示。多組比較采用單因素方差(one-way ANOVA)分析,組間兩兩比較用LSD-檢驗(yàn)。以<0.05為差異有統(tǒng)計(jì)學(xué)意義。
由圖1可見,三組中H2O2組綠色熒光最強(qiáng),說(shuō)明細(xì)胞處于細(xì)胞凋亡早期,線粒體膜電位下降;H2O2+AST IV組與H2O2組相比,綠色熒光減少而紅色熒光增加,說(shuō)明線粒體膜電上升。進(jìn)一步用線粒體檢測(cè)試劑盒進(jìn)行定量分析,結(jié)果顯示,H2O2組的線粒體膜電位顯著低于PBS組(<0.01);H2O2+AST IV組與H2O2組相比,線粒體膜電位顯著升高(<0.01)。
Figure 1. Astragaloside IV (AST IV) inhibited H2O2-induced decrease in mitochondrial membrane potential in SH-SY5Y cells. The SH-SY5Y cells were stained with JC-1 probe, and the staining was observed by confocal laser microscopy (scale bar=40 μm). Average single red/green fluorescence intensity was shown as normal/decreased mitochondrial membrane potential. The ratio of green fluorescence to red fluorescence was used to measure the degree of mitochondrial depolarization. Mean±SD. n=5. **P<0.01 vs PBS group; ##P<0.01 vs H2O2 group.
圖2A結(jié)果顯示,H2O2組的ATP水平與PBS組相比顯著降低(<0.05),而H2O2+AST IV組與H2O2組相比ATP水平顯著增加(<0.01)。因此,我們進(jìn)一步采用Western blot法檢測(cè)細(xì)胞線粒體呼吸鏈氧化磷酸化相關(guān)蛋白的表達(dá)水平。結(jié)果顯示,H2O2組NDUFB8(complex I)、SDHB(complex II)、MTCO1(complex IV)與ATP5A(complex V)蛋白水平較PBS組顯著降低(<0.05或<0.01),UQCRC2(complex III)與PBS組相比無(wú)顯著差異;H2O2+AST IV組與H2O2組相比,上述蛋白的表達(dá)均顯著增加(<0.01或<0.05),見圖2B。免疫熒光染色法檢測(cè)了NDUFB8和MTCO1,結(jié)果顯示:H2O2組NDUFB8和MTCO1的熒光強(qiáng)度與PBS組相比減弱,而H2O2+AST IV組NDUFB8和MTCO1熒光強(qiáng)度增加(圖2C)。
Figure 2. Astragaloside IV (AST IV) restored ATP levels by promoting oxidative phosphorylation of the respiratory chain in H2O2-induced SH-SY5Y cells. A: ATP level was detected by ATP assay kit (n=5); B: the expression of respiratory chain oxidative phosphorylation complex I~V proteins was detected by Western blot (n=3); C: the expression of NDUFB8 and MTCO1 (red) was detected by immunofluorescence staining (scale bar=200 μm). Mean±SD. *P<0.05, **P<0.01 vs PBS group; #P<0.05, ##P<0.01 vs H2O2 group.
為進(jìn)一步明確細(xì)胞線粒體動(dòng)力學(xué)機(jī)制,通過(guò)Western blot法檢測(cè)各組細(xì)胞線粒體分裂蛋白Fis1和p-DRP1,以及線粒體融合蛋白Mfn1、Mfn2和OPA1的表達(dá)水平。如圖3所示,與PBS組相比,H2O2組Fis1和p-Drp1蛋白水平均顯著升高(<0.05或<0.01),而Mfn1、Mfn2和OPA1表達(dá)水平均顯著降低(<0.05或<0.01);與H2O2組相比,H2O2+AST IV組Fis1和p-Drp1蛋白水平均顯著降低(<0.05或<0.01),而Mfn1、Mfn2和OPA1表達(dá)水平均顯著升高(<0.05或<0.01)。
Figure 3. Astragaloside IV (AST IV) inhibited mitochondrial fission and promoted fusion in H2O2-induced SH-SY5Y cells. The protein levels of p-Drp1, Fis1, OPA1, Mfn1 and Mfn2 were detected by Western blot (normalized to GAPDH). Mean±SD. n=3. *P<0.05, **P<0.01 vs PBS group; #P<0.05, ##P<0.01 vs H2O2 group.
Western blot法檢測(cè)細(xì)胞凋亡情況,圖4A顯示:與PBS組相比,H2O2組Bcl-2蛋白表達(dá)水平顯著降低(<0.01),而Bax和cleaved caspase-3蛋白水平顯著升高(<0.01);與H2O2處理組相比,H2O2+AST IV組Bcl-2蛋白表達(dá)水平顯著升高(<0.05),Bax和cleaved caspase-3蛋白水平顯著降低(<0.01)。
TUNEL法對(duì)凋亡細(xì)胞進(jìn)行檢測(cè),結(jié)果顯示:H2O2組細(xì)胞凋亡率顯著高于PBS組(<0.01),而H2O2+AST IV組細(xì)胞凋亡率則顯著低于H2O2組(<0.01),見圖4B。
Figure 4. Astragaloside IV (AST IV) inhibited apoptosis of H2O2-induced SH-SY5Y cells. A: the expression of apoptosis-related proteins Bcl-2, Bax and cleaved caspase-3 was detected by Western blot (n=3); B: the apoptosis of SH-SY5Y cells was detected by TUNEL (scale bar=40 μm; n=5). Positive cells (red) were observed by fluorescence microscope. The number of positive cells (red fluorescence) and total number of cells (blue fluorescence) were counted. Mean±SD. *P<0.05, **P<0.01 vs PBS group; #P<0.05, ##P<0.01 vs H2O2 group.
AD、PD和ALS的病理均涉及神經(jīng)組織的氧化損傷[13-15]。H2O2誘導(dǎo)的SH-SY5Y細(xì)胞是構(gòu)建神經(jīng)細(xì)胞氧化應(yīng)激損傷體外模型的常用方法[11-12]。本文探討了AST IV對(duì)H2O2誘導(dǎo)的SH-SY5Y細(xì)胞中線粒體相關(guān)功能的調(diào)控作用和機(jī)制,結(jié)果顯示,AST IV干預(yù)能顯著提高ATP水平,增加線粒體膜電位。已有研究表明,AST IV不僅可以調(diào)控線粒體動(dòng)態(tài)穩(wěn)定,保護(hù)缺氧復(fù)氧損傷大鼠的心肌細(xì)胞[16],而且可以改善腎血管性高血壓大鼠主動(dòng)脈內(nèi)皮線粒體損傷[17]。以上結(jié)論說(shuō)明,AST IV可以保護(hù)線粒體,與本文研究結(jié)果一致。
大部分ATP是通過(guò)氧化磷酸化產(chǎn)生的。研究表明,線粒體功能下降,線粒體DNA(mtDNA)點(diǎn)突變和缺失增加,會(huì)損傷氧化磷酸化復(fù)合物,增加ROS,導(dǎo)致進(jìn)一步破壞線粒體蛋白、脂質(zhì)和mtDNA的惡性循環(huán)[18]。在缺氧大鼠模型中,氧化苦參堿和人參皂苷均能提高氧化磷酸化效率,增加線粒體膜電位[19]。AST IV與人參皂苷均屬于四環(huán)三萜皂苷元,我們的研究結(jié)果表明,AST IV可以通過(guò)增加呼吸鏈氧化磷酸化過(guò)程中相關(guān)蛋白的表達(dá)來(lái)增加ATP的產(chǎn)生,從而逆轉(zhuǎn)氧化應(yīng)激造成的能量不足。TrkB1受體激動(dòng)劑R13可促進(jìn)線粒體氧化磷酸化,增加complex I、complex II、complex III和complex IV,增強(qiáng)線粒體的生物發(fā)生和代謝而用于治療AD[20]。依替福辛通過(guò)恢復(fù)腦外傷氧化磷酸化能力,發(fā)揮神經(jīng)保護(hù)作用,改善行為和認(rèn)知[21]。因此,恢復(fù)線粒體氧化磷酸化能力,維護(hù)線粒體功能正常,對(duì)防治神經(jīng)退行性疾病具有重要意義。
線粒體分裂/融合失衡是神經(jīng)退行性疾病的關(guān)鍵誘因[22]。研究表明,在AD患者的腦皮質(zhì)樣本研究中,線粒體分裂蛋白Drp1和Fis1的mRNA水平升高,融合蛋白Opa1、Mfn1和Mfn2的mRNA水平降低[23]。用Aβ25-35處理后的SH-SY5Y細(xì)胞,線粒體融合基因表達(dá)水平下調(diào),而分裂基因表達(dá)水平上調(diào)[24]。本實(shí)驗(yàn)結(jié)果也證實(shí),氧化應(yīng)激損傷后線粒體分裂蛋白p-Drp1和Fis1蛋白水平顯著升高,融合蛋白Mfn1、Mfn2和OPA1表達(dá)顯著減少;而AST IV處理抑制了線粒體分裂的同時(shí)促進(jìn)了融合,表明AST IV可以調(diào)節(jié)線粒體動(dòng)力學(xué),修復(fù)氧化應(yīng)激損傷后的線粒體功能。
線粒體分裂/融合可以調(diào)節(jié)細(xì)胞凋亡。研究表明,F(xiàn)is1過(guò)表達(dá)化引起細(xì)胞色素C的釋放和細(xì)胞凋亡[25]。Mfn1和Mfn2融合蛋白的過(guò)表達(dá),可以促進(jìn)線粒體之間的交流,延遲細(xì)胞色素C的釋放和凋亡通路中Bax和Bak的激活[26-27]。敲除、或的線粒體對(duì)凋亡刺激的敏感性增加[27-28]。本研究也證實(shí),AST IV可以通過(guò)調(diào)控線粒體動(dòng)力學(xué),抑制凋亡信號(hào)通路Bax/cleaved caspase-3的激活,從而減少神經(jīng)元的凋亡。
綜上所述,AST IV可以保護(hù)神經(jīng)元,其可能的機(jī)制是通過(guò)修復(fù)線粒體功能,調(diào)控線粒體動(dòng)力學(xué)來(lái)減輕氧化應(yīng)激損傷導(dǎo)致的神經(jīng)元凋亡。
[1] Peoples JN, Saraf A, Ghazal N, et al. Mitochondrial dysfunction and oxidative stress in heart disease[J]. Exp Mol Med, 2019, 51(12):1-13.
[2] Bertholet AM, Delerue T, Millet AM, et al. Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal?plasticity[J]. Neurobiol Dis, 2016, 90:3-19.
[3] Swerdlow RH. Mitochondria and mitochondrial cascades in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 62(3):1403-1416.
[4] Bose A, Beal MF. Mitochondrial dysfunction in Parkinson's disease[J]. J Neurochem, 2016, 139(Suppl 1):216-231.
[5] Zuo X, Zhou J, Li Y, et al. TDP-43 aggregation induced by oxidative stress causes global?mitochondrial?imbalance in?ALS[J]. Nat Struct Mol Biol, 2021, 28(2):132-142.
[6] F?o L, Rego AC. Mitochondrial?and redox-based therapeutic strategies in Huntington's disease[J]. Antioxid Redox Signal, 2021, 34(8):650-673.
[7] Zhou L, Zhang R, Yang S, et al. Astragaloside IV alleviates placental oxidative stress and inflammation in GDM mice[J]. Endocr Connect, 2020, 9(9):939-945.
[8] Yang S, Zhang R, Xing B, et al. Astragaloside IV ameliorates preeclampsia-induced oxidative stress through the Nrf2/HO-1 pathway in a rat model[J]. Am J Physiol Endocrinol Metab, 2020, 319(5):E904-E911.
[9] Meng P, Yang R, Jiang F, et al. Molecular mechanism of Astragaloside IV in improving endothelial dysfunction of cardiovascular diseases mediated by oxidative stress[J].Oxid Med Cell Longev, 2021, 2021:1481236.
[10] Wang F, Zhao Y, Chen S, et al. Astragaloside?IV?alleviates ammonia-induced apoptosis?and oxidative stress in bovine mammary epithelial cells[J]. Int J Mol Sci, 2019, 20(3):600.
[11] 宋哲, 薛超, 張小曼等. 脂聯(lián)素通過(guò)激活PP2A減輕H2O2誘導(dǎo)的SH-SY5Y細(xì)胞損傷及tau蛋白過(guò)度磷酸化[J]. 中國(guó)病理生理雜志, 2015, 31(2):207-212.
Song Z, Xue C, Zhang X, et al. Adiponectin alleviates H2O2-induced SH-SY5Y cell injury and tau hyperphosphorylation via activating PP2A[J]. Chin J Pathophysiol, 2015, 31(2):207-212.
[12] 顏明, 劉潔婷, 李洪志, 等. 黃芩苷對(duì)H2O2誘導(dǎo)的SH-SY5Y細(xì)胞損傷的保護(hù)作用及其對(duì)Trx表達(dá)的影響[J]. 中國(guó)生化藥物雜志, 2012, 33(5):574-577.
Yan M, Liu J, Li H, et al. Effect of baicalin on H2O2-induced SH-SY5Y cell injury and its influence on Trx expression[J]. Chin J Biochem Pharm, 2012, 33(5):574-577.
[13] Simunkova M, Alwasel SH, Alhazza IM, et al. Management of oxidative stress and other pathologies in Alzheimer's disease[J]. Arch Toxicol, 2019, 93(9):2491-2513.
[14] Baroli B, Loi E, Solari P, et al. Evaluation of oxidative stress mechanisms and the effects of phytotherapic extracts on Parkinson's diseasePINK1B9 model[J]. FASEB J, 2019, 33(10):11028-11034.
[15] Pollari E, GoldsteinsG, Bart G, et al. The role of oxidative stress in degeneration of the neuromuscular junction in amyotrophic lateral sclerosis[J]. Front Cell Neurosci, 2014, 8:131.
[16] 劉啊敏, 牟幼靈, 徐紫薇, 等. 黃芪甲苷通過(guò)調(diào)節(jié)線粒體穩(wěn)態(tài)減輕大鼠心肌細(xì)胞缺氧復(fù)氧損傷[J]. 藥學(xué)學(xué)報(bào), 2020, 55(10):2398-2404.
Liu A, Mou Y, Xu Z, et al. Astragaloside IVameliorates hypoxia/reoxygenation injury viaregulating mitochondrial homeostasis in rat cardiomyocytes[J]. Acta Pharm Sin, 2020, 55(10):2398-2404.
[17] 張少君, 吳恒芳, 陳相健, 等. 黃芪甲苷對(duì)腎血管性高血壓大鼠主動(dòng)脈內(nèi)皮細(xì)胞線粒體損傷的保護(hù)作用[J]. 南京醫(yī)科大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 34(7):889-893.
Zhang S, Wu H, Chen X, et al. Effect of astragaloside IV on mitochondrial injury of aortic endothelial cells from renovascular hypertensive rats[J]. J Nanjing Med Univ (Nat Sci), 2014, 34(7):889-893.
[18] Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease[J]. FEBS Lett, 2018, 592(5):728-742.
[19] Mazat J, Devin A, Ransac S. Modelling?mitochondrial?ROS production by the respiratory chain[J]. Cell Mol Life Sci, 2020, 77(3):455-465.
[20] LiT, LiX, HuangX, et al. Mitochondriomics reveals the underlying neuroprotective mechanism of TrkB receptor agonist R13 in the 5×FAD mice[J]. Neuropharmacology, 2022, 204:108899.
[21] Palzur E, Edelman D, Sakas R, et al. Etifoxine restores mitochondrial oxidative phosphorylation?and improves cognitive recovery following traumatic brain injury[J]. Int J Mol Sci, 2021, 22(23):12881.
[22] Chan D. Mitochondrial?dynamics?and its involvement in disease[J]. Annu Rev Pathol, 2020, 15:235-259.
[23] Reddy P. Inhibitors of mitochondrial fisson as a therapetutic strategy for diseases with oxidative stress and mitochondria dysfunction[J]. J Alzhelmers Dis, 2014, 40(2):245-256.
[24] Manczak M, Mao P, Calkins M, et al. Mitochondria targeted antioxidants protect against amyloid-beta toxicity in Alzheimer's disease neurons[J]. J Alzhelmers Dis, 2010, 20(Suppl 2):S609-S631.
[25] Horbay R, Bilyy R. Mitochondrial dynamics during cell cycling[J]. Apoptosis, 2016, 21(12):1327-1335.
[26] Neuspiel M, Zunino R, Gangaraju S, et al. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization[J]. J Biol Chem, 2005, 280(26):25060-25070.
[27] Sugioka R, Shimizu S, Tsujimoto Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis[J]. J Biol Chem, 2004, 279(50):52726-52734.
[28] Yapa N, Lisnyak V, Reljic B, et al. Mitochondrial?dynamics?in health and disease[J]. FEBS Lett, 2021, 595(8):1184-1204.
Astragaloside IV inhibits H2O2-induced apoptosis of SH-SY5Y cells by regulating mitochondrial function
YU Jing-wen1, GUO Min-fang1, LI Su-yao2, MENG Tao1, ZHANG Hai-fei1, YANG De-bin1, SONG Li-juan2,3, MA Cun-gen1,2△, YU Jie-zhong1,2,4△
(1,,037009,;2,,,030619,;3,,030001,;4,037009,)
To investigate the effects of astragaloside IV (AST IV) on mitochondrial damage and cell apoptosis in human neuroblastoma SH-SY5Y cells induced by hydrogen peroxide (H2O2).The SH-SY5Y cells were treated with PBS, H2O2or H2O2+AST IV. Intracellular ATP level was measured by ATP detection kit. Mitochondrial membrane potential was measured by mitochondrial membrane potential assay kit with JC-1. Mitochondrial respiratory chain-related proteins NADH:ubiquinone oxidoreductase subunit B8 (NDUFB8; complex I), succinate dehydrogenase B (SDHB; complex II), ubiquinol-cytochrome C reductase core protein 2 (UQCRC2; complex III), mitochondrially encoded cytochrome C oxidase I (MTCO1; complex IV) and ATP synthase F1 subunit alpha (ATP5A; complex V), mitochondrial dynamic fission proteins phosphorylated dynamin-related protein 1 (p-Drp1) and mitochondrial fission protein 1 (Fis1), fusion proteins mitofusin 1 (Mfn1), Mfn2 and optic atrophy protein 1 (OPA1), and apoptosis-related proteins cleaved caspase-3, Bcl-2 and Bax were detected by Western blot. The expression of NDUFB8 and MTCO1 was detected by immunofluorescence staining. TUNEL staining was applied to observe SH-SY5Y cell apoptosis.The SH-SY5Y cells were treated with H2O2at the dose of 200 μmol/L to establish the oxidative stress cell model. In oxidative stress model, mitochondrial membrane potential (<0.01) and ATP level (<0.05) were down-regulated significantly, and the expression of NDUFB8, SDHB, ATP5A and MTCO1 were significantly decreased (<0.05 or<0.01). Mitochondrial fission proteins Fis1 (<0.05) and p-Drp1 (<0.01) were significantly increased, fusion proteins Mfn1, Mfn2 and OPA1 were significantly decreased, the expression levels of pro-apoptotic proteins Bax and cleaved caspase-3 were significantly increased (<0.01), and Bcl-2 was significantly decreased (<0.01) after treatment with H2O2. Treatment with AST IV significantly increased mitochondrial membrane potential (<0.01) and ATP level (<0.01), significantly up-regulated the complex proteins NDUFB8, SDHB, MTCO1, ATP5A and UQCRC2 (<0.05 or<0.01), significantly down-regulated the expression of mitochondrial fission proteins p-DRP1 and Fis1 (<0.01), and remarkably up-regulated the expression of mitochondrial fusion proteins OPA1, Mfn1 and Mfn2 (<0.05 or<0.01). Meanwhile, AST IV significantly increased the expression of Bcl-2 (<0.05), significantly decreased the expression of Bax and cleaved caspase-3 (<0.01), and inhibited SH-SY5Y cell apoptosis.Astragaloside IV attenuates the apoptosis of SH-SY5Y cells induced by H2O2through regulating mitochondrial function.
Astragaloside IV; Oxidative stress; Mitochondria; SH-SY5Y cells
1000-4718(2022)09-1553-08
2022-04-01
2022-07-07
馬存根 Tel: 18203515288; E-mail: macungen@sxtcm.edu.cn; 尉杰忠 Tel: 13834129435; E-mail: sxdtyjz@qq.com
R338.2; R741.02
A
10.3969/j.issn.1000-4718.2022.09.003
[基金項(xiàng)目]山西省基礎(chǔ)研究計(jì)劃資助項(xiàng)目(No. 20210302123337); 大同市應(yīng)用基礎(chǔ)研究計(jì)劃項(xiàng)目資助(No. 2020145); 國(guó)家中醫(yī)藥管理局多發(fā)性硬化益氣活血重點(diǎn)研究室開放課題(No. 2021-KF-08T); 山西省教育廳高等學(xué)??萍紕?chuàng)新項(xiàng)目(No. 2019L0734); 神經(jīng)炎癥和變性疾病基礎(chǔ)與應(yīng)用研究山西省重點(diǎn)實(shí)驗(yàn)室開放課題(No. KF-2019002)
(責(zé)任編輯:李淑媛,羅森)