湖北省武漢市教育科學(xué)研究院 (430032) 孔 峰湖北省武漢市黃陂區(qū)第一中學(xué)盤龍校區(qū) (430312) 李紅春
解析幾何中有一些美妙的結(jié)論,背景深刻,結(jié)論簡潔,極具應(yīng)用價(jià)值,深受教師喜愛,不少考題在命制時(shí),也只是這些結(jié)論的具體化.筆者在一線教學(xué)中發(fā)現(xiàn),有些結(jié)論知道的人不少,卻鮮有人能給出嚴(yán)謹(jǐn)?shù)淖C明,讓人覺得美中不足.本文給出一個(gè)結(jié)論的初等證明,以饗讀者.
結(jié)論過曲線Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0上一點(diǎn)P(x0,y0)作兩條直線PM、PN分別交曲線Γ于M、N兩點(diǎn),連接MN,若滿足下列條件中的一個(gè),則直線MN要么方向一定,要么恒過定點(diǎn).
(1)若kPM·kPN=λ(λ≠0);
(2)若kPM+kPN=μ.
(1)若kPM·kPN=λ(λ≠0),則
(2)若kPM+kPN=μ時(shí),即kPM+kPN=
若Cμ+B=0時(shí),直線MN的斜率
本文通過對這一經(jīng)典數(shù)學(xué)結(jié)論的證明,讓讀者知其然,更知其所以然,不但體現(xiàn)了數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,更為今后命制這類試題的科學(xué)性提供了支撐.