亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        五倍子化學(xué)成分和藥理作用的研究進(jìn)展

        2022-09-20 09:16:50劉天鳳張朝暉
        中草藥 2022年18期
        關(guān)鍵詞:鞣質(zhì)五倍子生物膜

        梁 正,徐 強(qiáng),張 倩,劉天鳳,張朝暉, *

        五倍子化學(xué)成分和藥理作用的研究進(jìn)展

        梁 正1,徐 強(qiáng)2,張 倩1,劉天鳳1,張朝暉1, 2*

        1. 廣東藥科大學(xué)中醫(yī)藥研究院,廣東 廣州 510006 2. 天津中醫(yī)藥大學(xué)第二附屬醫(yī)院,天津 300250

        五倍子為一味收澀性的中藥材,有斂肺降火、澀腸止瀉、斂汗、止血、收濕斂瘡的功效。五倍子化學(xué)成分多樣,至今已被鑒定的化學(xué)成分主要包括鞣質(zhì)、酚酸、氨基酸、脂肪酸、鞣花酸及其他成分等?,F(xiàn)代研究表明,五倍子具有抗齲齒、抗菌、止瀉、止血、抗炎、促進(jìn)傷口愈合、抗癌、清除自由基、抗氧化等多種藥理作用。對五倍子化學(xué)成分和藥理作用的研究進(jìn)展進(jìn)行綜述,以更好地了解五倍子的特征,擴(kuò)大其應(yīng)用范圍,為其臨床應(yīng)用提供科學(xué)依據(jù)。

        五倍子;鞣質(zhì);酚酸;鞣花酸;止瀉;抗齲齒;抗菌;止瀉

        五倍子Mill.又名鹽麩葉上球子、文蛤、百蟲倉、木附子、漆倍子、旱倍子,主要由五倍子蚜(Bell) Baker寄生在漆樹科植物鹽膚木Mill.、青麩楊Maxim.或紅麩楊Stew. var.(Diels) Rehd. et Wils葉上而形成的蟲癭,蟲癭是植物受到刺激后產(chǎn)生的增生組織,有斂肺降火、澀腸止瀉、斂汗、止血和收濕斂瘡的作用。五倍子的藥用初載于唐朝《本草拾遺》[1],該書首先提出五倍子煎劑在腸道中起收斂劑的作用,從而止腹瀉。唐代以后,五倍子逐漸在臨床上用于治療腹瀉和慢性瘡瘍。宋代和晉元時期,五倍子的使用逐漸增多,臨床上常與其他治療瘡、疥、癢、出血、遺精的藥物配伍。清代創(chuàng)制了五倍子新的外用方,以促進(jìn)降火的作用[1-2]?!吨袊幍洹?020年版記載[3],該藥味酸、澀,性寒,歸肺、大腸和腎經(jīng),故五倍子臨床上通常用于腹瀉、出血、咳嗽、嘔吐、出汗、痔瘡、皮膚潰爛、肛門和子宮脫垂等疾病的治療。中藥通常具有非常復(fù)雜的成分,到目前為止,已經(jīng)分離從五倍子中分離鑒定出了一些化學(xué)成分,且研究發(fā)現(xiàn)五倍子具有廣泛的藥理活性。本文主要對五倍子化學(xué)成分和藥理作用的研究進(jìn)展進(jìn)行綜述,為其臨床用藥提供依據(jù),以期擴(kuò)大五倍子的應(yīng)用范圍。

        1 化學(xué)成分

        迄今為止,五倍子中分離出來的化合物主要為鞣質(zhì),除此之外,還含有酚酸、氨基酸、脂肪酸和其他成分,且含有銅、鋅、鐵和鈣等微量元素,其中鈣含量最高,其次是鐵、磷、錳、鋅、鉻和其他微量元素。

        1.1 鞣質(zhì)

        鞣質(zhì)是五倍子中主要的生物活性化合物,是廣泛存在于天然藥物中的多酚化合物,它們與蛋白質(zhì)或生物堿結(jié)合形成沉淀物。鞣質(zhì)又可分為水解鞣質(zhì)和縮合鞣質(zhì)??s合鞣質(zhì)是黃烷醇的衍生物,由于結(jié)構(gòu)中不存在糖苷鍵和酯鍵,經(jīng)酸或堿處理可水解。水解鞣質(zhì)來源于沒食子酸與葡萄糖的酯化反應(yīng)及其氧化反應(yīng)產(chǎn)物,其中沒食子酸是最基本的供體。水解鞣質(zhì)主要包括葡萄糖沒食子苷、沒食子鞣質(zhì)、鞣花鞣質(zhì)及其衍生物[4]。水解鞣質(zhì)是許多常用中藥如五倍子、大黃和地榆的活性物質(zhì),可被酸、堿和酶水解[5]。五倍子中鞣質(zhì)化合物的具體信息見表1,化學(xué)結(jié)構(gòu)見圖1。

        表1 五倍子中的鞣質(zhì)

        Table 1 Tannins in G. chinensis

        編號化合物名稱分子式文獻(xiàn) 11,2,6-tri-O-galloyl-β-D-glucoseC27H24O18 6 21,2,3,6-tetra-O-galloyl-β-D-glucoseC34H28O22 6 31,2,4,6-tetra-O-galloyl-β-D-glucoseC34H28O22 7 41,2,3,4,6‐penta‐O‐galloyl‐β‐D‐glucoseC41H32O26 6 5石榴皮鞣素C34H22O22 8 61,3-digalloyl-4,6-hhdp-glucoseC34H26O22 8 72-O-digalloyl-1,3,4,6-tetra-O-galloyl-β-D-glucoseC48H36O30 8 8表沒食子兒茶素沒食子酸酯C22H18O11 9 9表兒茶素沒食子酸酯C22H18O109 10benzoic acid-3,4-dihydroxy-5-[(3,4,5-trihydroxybenzoyl)oxy]-5-ethoxycarbonyl-2,3-dihydroxyphenyl esterC23H18O1310 11三沒食子酸C41H32O2610

        圖1 五倍子中鞣質(zhì)的化學(xué)結(jié)構(gòu)

        1.2 酚酸

        酚酸是自然界中廣泛分布的一大類有機(jī)化合物,具有廣泛的藥理活性。酚酸是非類黃酮家族中的簡單酚類化合物。它們通過莽草酸途徑合成,能夠以結(jié)合或游離形式存在[11]。五倍子中分離出的酚酸化合物有沒食子酸(12)[12]、原兒茶酸(13)[9]、2-羥基-6-十五烷基苯甲酸(14)[13]、4-羥基-3-甲氧基苯甲酸(15)[12],化學(xué)結(jié)構(gòu)見圖2。

        圖2 五倍子中酚酸的結(jié)構(gòu)

        1.3 氨基酸

        五倍子中富含氨基酸,氨基酸是含有堿性氨基和酸性羧基的有機(jī)化合物,有較高的營養(yǎng)和藥用價值。其中含量最高的是精氨酸,質(zhì)量分?jǐn)?shù)高于1.0%,胱氨酸和蛋氨酸的質(zhì)量分?jǐn)?shù)在0.1%左右,其余氨基酸的質(zhì)量分?jǐn)?shù)基本都在0.2%~0.8%。五倍子中氨基酸化合物的具體信息見表2,化學(xué)結(jié)構(gòu)見圖3。

        1.4 脂肪酸

        脂肪酸是由碳、氫和氧組成的一類化合物,是中性脂肪、磷脂和糖脂的主要成分。五倍子中脂肪酸主要有8種,其中月桂酸、肉豆蔻酸、棕桐酸含量較高且無明顯差異。五倍子中脂肪酸化合物的化學(xué)結(jié)構(gòu)見圖4,具體信息見表3。

        1.5 其他

        從五倍子中分離出的其他成分還有沒食子酸甲酯、沒食子酸乙酯、鞣花酸、myricetin-3--rhamnoside、表沒食子兒茶素、銀杏酚、β-谷甾醇、二十五烷、莽草酸等。具體信息見表4,化學(xué)結(jié)構(gòu)見圖5。

        表2 五倍子中的氨基酸

        Table 2 Amino acids in G. chinensis

        編號化合物名稱分子式文獻(xiàn) 16天冬氨酸C4H7NO414 17蘇氨酸C4H9NO314 18絲氨酸C3H7NO314 19谷氨酸C5H9NO414 20脯氨酸C5H9NO214 21甘氨酸C2H5NO214 22丙氨酸C3H7NO214 23胱氨酸C6H12N2O4S214 24纈氨酸C5H11NO214 25蛋氨酸C5H11NO2S14 26異亮氨酸C6H13NO214 27亮氨酸C6H13NO214 28酪氨酸C9H11NO314 29苯丙氨酸C9H11NO214 30組氨酸C6H9N3O214 31賴氨酸C6H14N2O214 32精氨酸C6H14N2O214

        圖3 五倍子中氨基酸的化學(xué)結(jié)構(gòu)

        圖4 五倍子中脂肪酸的結(jié)構(gòu)

        表3 五倍子中的脂肪酸

        Table 3 Fatty acids in G. chinensis

        編號化合物名稱分子式文獻(xiàn) 33油酸C18H34O215 34亞油酸C18H32O215 35亞麻酸C18H30O215 36癸酸C10H20O215 37月桂酸C12H24O215 38肉豆蔻酸C14H28O215 39棕櫚酸C16H32O215 40硬脂酸C18H36O215

        表4 五倍子中的其他化合物

        Table 4 Other compounds in G. chinensis

        編號化合物名稱分子式文獻(xiàn) 41沒食子酸甲酯C8H8O516 42沒食子酸乙酯C9H10O516 43鞣花酸C14H6O816 44myricetin-3-O-rhamnosideC21H20O12 9 45表沒食子兒茶素C15H14O710 46銀杏酚C21H34O12 47β-谷甾醇C29H50O12 48二十五烷C25H5212 49莽草酸C7H10O511

        圖5 五倍子中其他化合物的化學(xué)結(jié)構(gòu)

        2 藥理作用

        藥理研究發(fā)現(xiàn),五倍子具有廣泛的藥理活性,其化學(xué)成分在體內(nèi)和體外都產(chǎn)生至關(guān)重要的生物活性,如抗齲齒和抗菌、止瀉、止血、抗炎、促進(jìn)傷口愈合、抗癌、抗氧化等作用。

        2.1 抗齲齒和抗菌

        齲齒是一種在口腔傳染病中非常普遍的生物膜依賴性疾病,伴隨著膳食碳水化合物細(xì)菌發(fā)酵產(chǎn)生的酸性副產(chǎn)物對易感牙齒硬組織的局部破壞[17]。齲齒發(fā)生的主要病理變化是無機(jī)物的脫礦化,有機(jī)物的分解和牙齒晶體結(jié)構(gòu)的轉(zhuǎn)變。

        研究表明,五倍子通過抑制脫礦化,增強(qiáng)再礦化作用和抑制口腔細(xì)菌機(jī)制發(fā)揮抗齲作用[18-19]。而牙齒硬組織再礦化過程中,Ca2+是其必需元素,通過對五倍子的主要有機(jī)成分和無機(jī)離子進(jìn)一步的研究分析發(fā)現(xiàn),Ca2+在五倍子中占無機(jī)離子的比例最大[20]。沒食子酸是五倍子中負(fù)責(zé)抑制牙釉質(zhì)脫礦的主要活性成分,抗脫礦質(zhì)作用可能歸因于其沉淀蛋白質(zhì)的能力[21],當(dāng)含有沒食子酸的溶液與牙釉質(zhì)接觸時,鈣離子與牙釉質(zhì)形成交聯(lián),從而影響各種牙釉質(zhì)蛋白的沉淀[20]。進(jìn)而推測沒食子酸可以作為Ca2+載體,為齲損的中間層提供鈣離子,從而通過提供Ca2+晶體修復(fù)來增強(qiáng)再礦化[22-23]。

        變形鏈球菌是一種兼性厭氧革蘭陽性菌,是人類齲齒生物膜形成過程中最重要的病原體之一[24],牙齒表面生物膜的形成是由變形鏈球菌葡糖基轉(zhuǎn)移酶B(glucosyltransferase B,GTFB)、葡糖基轉(zhuǎn)移酶C(glucosyltransferase C,GTFC)和葡糖基轉(zhuǎn)移酶D(glucosyltransferase D,GTFD)的協(xié)同作用產(chǎn)生的[25],GTFB結(jié)合到牙齒表面和細(xì)菌表面,能夠催化水不溶性葡聚糖的合成,從而導(dǎo)致牙齒表面的持續(xù)定植[26],GTFC、GTFD催化蔗糖合成水不溶性、水溶性和堿溶性葡聚糖(α-1,6-連接),從而維護(hù)生物膜形成和結(jié)構(gòu)的穩(wěn)定[26]。此外,變形鏈球菌葡聚糖結(jié)合蛋白B(glucan binding protein B,GBPB)有助于細(xì)菌黏附到葡聚糖上,從而使生物膜成熟[27],隨后的碳水化合物(如蔗糖)細(xì)菌發(fā)酵成有機(jī)酸導(dǎo)致牙齒生物膜的酸化[28],變形鏈球菌生物膜內(nèi)的產(chǎn)酸性進(jìn)一步由細(xì)菌質(zhì)子釋放出F型ATP酶維持,產(chǎn)生葡萄糖基轉(zhuǎn)移酶[29],該酶催化蔗糖合成胞外聚合物,能夠使細(xì)菌有效地定植牙齒表面并有助于形成高度致齲的生物膜[30]。變形鏈球菌還發(fā)酵糖以產(chǎn)生在牙齒表面積聚的有機(jī)酸,導(dǎo)致局部低pH環(huán)境、牙釉質(zhì)溶解,并最終引發(fā)齲齒[31]。

        沒食子酸和沒食子酸乙酯具有抗病毒和抗真菌活性[32]。在ATCC 25175生物膜模型中[32],沒食子酸和沒食子酸乙酯通過減少活細(xì)胞的數(shù)量和堿溶性葡聚糖的產(chǎn)生,降低堿溶性葡聚糖的產(chǎn)酸能力和下調(diào)、和基因的表達(dá)來干擾生物膜的形成。沒食子酸和沒食子酸乙酯處理的生物膜掃描電子顯微鏡圖像顯示,變形鏈球菌的生物量、胞外多糖和微菌落減少。二者能使活細(xì)胞的數(shù)量減少,微生物細(xì)胞的積累被抑制,使得保護(hù)生物膜中細(xì)菌的聚合物基質(zhì)減少[33]。沒食子酸和沒食子酸乙酯顯著降低了變形鏈球菌生物膜中的產(chǎn)酸量,二者使細(xì)胞對酸化敏感,導(dǎo)致pH值顯著升高,從而促進(jìn)細(xì)胞膜上質(zhì)子滲透性的中斷,進(jìn)而減少生物膜中的糖酵解和酸生成[34]。變形鏈球菌的酸度主要歸因于脂肪酸轉(zhuǎn)運蛋白(fatty acid transporter protein,F(xiàn)-ATP)酶的質(zhì)子泵[35],沒食子酸通過抑制GTF,促進(jìn)15%和20%葡聚糖合成的輕微減少[34]。

        除此之外,通過使用定量逆轉(zhuǎn)錄聚合酶鏈反應(yīng)評估編碼、、、和酶的基因表達(dá)[36],結(jié)果顯示沒食子酸乙酯顯著降低了、和的基因表達(dá),有助于抑制細(xì)菌黏附到葡聚糖上,抑制細(xì)菌黏附是干擾變形鏈球菌重要毒力因子的指示[37],同時沒食子酸乙酯抑制了變形鏈球菌的F-ATP酶,使生物膜內(nèi)的產(chǎn)酸性無法得到維持。

        沒食子酸辛酯除了能顯著減少固體表面上暴露的變形鏈球菌生物膜的形成,并以劑量相關(guān)方式抑制了產(chǎn)酸性,阻止了pH值水平的降低,用沒食子酸辛酯處理的產(chǎn)生生物膜的細(xì)菌基因(、、)表達(dá)顯著降低[38]。在體外實驗中[38],隨著五倍子濃度的增加,變形鏈球菌、血鏈球菌和口腔鏈球菌的生長受到抑制,變形鏈球菌生物膜的微觀結(jié)構(gòu)亦發(fā)生改變。研究發(fā)現(xiàn),五倍子納米銀顆粒能夠減少葡聚糖介導(dǎo)的黏附到唾液包被的羥基磷灰石,對變形鏈球菌和嗜酸乳桿菌具有一定的抗菌和抗菌膜活性[39]。這些結(jié)果表明,五倍子作為抑制齲齒發(fā)展的新型抗真菌和抗菌劑有巨大潛力。

        2.2 止瀉

        腹瀉是常見的腸道性疾病,多與病毒及細(xì)菌感染有關(guān)。研究發(fā)現(xiàn),產(chǎn)腸毒素大腸桿菌(enterotoxigenic,ETEC)被認(rèn)為是導(dǎo)致腹瀉的最常見細(xì)菌[40]。ETEC是一組不同的病原體,主要分泌不耐熱腸毒素和耐熱腸毒素2種主要類型的毒素,它們具有共同定植小腸的能力[41],通過激活囊性纖維化跨膜電導(dǎo)調(diào)節(jié),從而導(dǎo)致水從細(xì)胞凈流入腸腔,導(dǎo)致大量水樣腹瀉[42]。

        五倍子富含鞣質(zhì)[43],鞣質(zhì)是抵抗大腸桿菌的活性化合物之一[44],鞣質(zhì)對腸毒素引起的分泌性腹瀉具有抑制作用,可能與囊性纖維化跨膜電導(dǎo)調(diào)節(jié)通道功能的過度激活有關(guān)。鞣質(zhì)已被證明可抑制人克隆結(jié)腸腺癌Caco2細(xì)胞、大鼠甲狀腺FRT細(xì)胞、結(jié)腸腺癌肺轉(zhuǎn)移T84細(xì)胞和結(jié)腸上皮HT29-CL19A細(xì)胞中囊性纖維化跨膜電導(dǎo)調(diào)節(jié)依賴性Cl?的分泌[45],五倍子口服溶液(oral solution,GOS)在蓖麻油誘導(dǎo)的小鼠腹瀉模型中顯示出顯著的止瀉活性[46],表明鞣質(zhì)可以抑制腸毒素的產(chǎn)生和活性[47]。研究發(fā)現(xiàn)表明,在小鼠腹瀉模型中[48],GOS可以劑量相關(guān)性地提高ETEC感染小鼠的存活率。GOS能劑量相關(guān)性地降低促炎細(xì)胞因子γ干擾素(interferon-γ,IFN-γ)、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)、白細(xì)胞介素(interleukin,IL)-1β、IL-6和IL-8的表達(dá),并增加抗炎細(xì)胞因子IL-4的水平。GOS治療后,大腸桿菌數(shù)量顯著降低,同時乳酸桿菌和雙歧桿菌等益生菌的數(shù)量顯著增加。GOS可以減少液體分泌劑量,抑制ETEC引起的誘導(dǎo)過度分泌和腸道蠕動[49],表明GOS可以減少ETEC感染引起的小鼠體液分泌??垢腥镜牟糠衷蚴怯捎诖嬖谧銐蛩降难搴头置谛悦庖咔虻鞍?,尤其是抗原特異性抗體免疫球蛋白G(immunoglobulin G,IgG)和分泌型抗體IgA(secretory immunoglobulin A,slgA)[50],GOS可提高血清中IgG和回腸末端sIgA的濃度,GOS誘導(dǎo)的IgG和sIgA升高對機(jī)體感染具有重要意義。此外,鞣質(zhì)還具有誘導(dǎo)排泄參數(shù)、組織結(jié)構(gòu)和黏蛋白分泌的恢復(fù),以及毒蕈堿乙酰膽堿受體和G蛋白信號的恢復(fù)作用[51]。

        GOS是一種強(qiáng)效止瀉劑,預(yù)期可用于治療ETEC感染引起的急性腹瀉。研究表明GOS保護(hù)或恢復(fù)了腸黏膜和杯狀細(xì)胞數(shù)量,阻止了ETEC O101對結(jié)腸黏膜結(jié)構(gòu)的破壞[52],保護(hù)了結(jié)腸杯狀細(xì)胞,提供了其抗菌活性的證據(jù)。通過改變細(xì)胞因子和免疫球蛋白的水平,調(diào)節(jié)腸道細(xì)菌,保護(hù)結(jié)腸黏膜的結(jié)構(gòu),對ETEC感染具有治療和保護(hù)作用。

        2.3 止血

        鞣質(zhì)能夠以非特異性方式濃縮原生質(zhì)體和微生物中的各種酶,與蛋白質(zhì)、可沉淀的許多重金屬離子、生物堿、苷等反應(yīng)形成不溶性復(fù)合物,在傳統(tǒng)醫(yī)學(xué)治療中還可用作止血噴霧劑和創(chuàng)傷治療的軟膏[53-54]。研究表明,將鞣質(zhì)涂層紗布與血液孵育后,發(fā)現(xiàn)釋放的血紅蛋白濃度開始下降,表明鞣質(zhì)涂層紗布上出現(xiàn)了更多的血栓素。在動物傷口模型,鞣質(zhì)涂層的高效止血性能主要歸因于鞣質(zhì)涂層在與血液接觸時吸收了大量的蛋白質(zhì),尤其是纖維蛋白原,纖維蛋白原轉(zhuǎn)化為不溶性纖維蛋白凝塊[55],進(jìn)一步誘導(dǎo)凝血酶催化的凝血[56]。

        2.4 抗炎

        皮膚受傷后會引起炎癥反應(yīng),表皮屏障被破壞,角質(zhì)形成細(xì)胞釋放預(yù)存的炎癥細(xì)胞因子,包括IL-1、IL-6和IL-10[57-58],在傷口大鼠模型中,鞣質(zhì)能夠顯著降低血清和組織中促炎細(xì)胞因子IL-1和IL-6含量,同時升高堿性成纖維細(xì)胞生長因子、細(xì)胞外信號調(diào)節(jié)激酶1/2(extracellular signal-regulated-kinase 1/2,ERK1/2)和p-ERK1/2在ERK1/2通路中的蛋白水平,進(jìn)而應(yīng)對損傷,并促進(jìn)老鼠胚胎細(xì)胞的生長。

        2.5 促進(jìn)傷口愈合

        鞣質(zhì)是一種天然植物多酚收斂劑,大量存在于五倍子中,研究表明,鞣質(zhì)通過ERK1/2介導(dǎo)的信號通路有效促進(jìn)傷口愈合,組織病理學(xué)研究中,鞣質(zhì)治療加速了毛囊的再上皮化和生長,減少瘢痕形成,其中含有大量鞣質(zhì)的五倍子溶液可以以劑量相關(guān)的方式改善感染真菌的狗的皮膚損傷和脫發(fā)[59]。五倍子能夠顯著增加細(xì)胞數(shù)量和遷移,減少細(xì)胞死亡和乳酸脫氫酶的釋放,以及誘導(dǎo)I型膠原和III型膠原的mRNA過度表達(dá),增加膠原蛋白的總?cè)芙舛?,并激活潛在的抗氧化特性,從而加速傷口愈合[60]。

        2.6 抗癌

        癌癥是起源于上皮組織的惡性腫瘤,是可以影響全身任何器官系統(tǒng)的多種疾病的總稱[61]。五倍子可以劑量相關(guān)地抑制表皮生長因子受體(不同人類惡性腫瘤的有效靶標(biāo))的活性[62]。五倍子中的沒食子酸、鞣花酸、沒食子酸甲酯、β-谷甾醇、1,2,3,4,6-penta--galloyl-β--glucose和黃酮類化合物等已被報道在體外或體內(nèi)具有抗癌活性[63-69],因此它們可以認(rèn)為是五倍子抗癌活性的物質(zhì)基礎(chǔ)。

        沒食子酸是在動物模型和體外癌細(xì)胞系中顯示抑制致癌作用報道最多的化合物[70-72]。沒食子酸通過對細(xì)胞周期、細(xì)胞凋亡、血管生成、侵襲和轉(zhuǎn)移的作用發(fā)揮抗肝癌活性[73-74]。在各種類型的人類或嚙齒動物癌細(xì)胞中鑒定出沒食子酸的分子機(jī)制包括調(diào)節(jié)凋亡相關(guān)蛋白、激活絲氨酸-蘇氨酸蛋白激酶、抑制核糖核苷酸還原酶、抑制環(huán)氧合酶、抑制谷胱甘肽、抑制尿苷二磷酸葡萄糖脫氫酶、抑制血管內(nèi)皮生長因子,抑制去整合素金屬蛋白酶、抑制核因子-κB(nuclear factor kappa-B,NF-κB)[75-81]。

        沒食子酸乙酯是一種多酚化合物,其抗癌特性已得到充分研究,沒食子酸乙酯的生長抑制作用已在一系列體外和體內(nèi)癌癥實驗?zāi)P椭写_定[82],其可通過調(diào)節(jié)線粒體依賴性信號通路、細(xì)胞周期信號級聯(lián)、蛋白激酶C信號通路、轉(zhuǎn)化生長因子-β/Smad3通路等多種亞細(xì)胞信號通路來觸發(fā)細(xì)胞凋亡并抑制癌細(xì)胞的增殖、血管生成、遷移和侵襲,同時沒食子酸乙酯通過增加Caco2細(xì)胞和人結(jié)腸癌HCT-116細(xì)胞中Sub-G1期的細(xì)胞數(shù)量來引起細(xì)胞毒性和細(xì)胞抑制作用[83]。

        沒食子酸甲酯通過對凋亡分子的改變,以及蛋白激酶、NF-κB、ERK1/2、磷酸肌醇-3-激酶和非受體酪氨酸激酶/信號傳導(dǎo)及轉(zhuǎn)錄激活因子信號通路的阻斷導(dǎo)致癌細(xì)胞的凋亡[84],此外其還可以通過抑制CD4+CD25+調(diào)節(jié)性T細(xì)胞的腫瘤浸潤來逆轉(zhuǎn)免疫抑制,從而發(fā)揮抗腫瘤活性[85]。

        1,2,3,4,6-penta--galloyl-β--glucose通過靶向抑制人乳酸脫氫酶-A的過表達(dá)和人乳腺癌細(xì)胞的代謝來實現(xiàn)出抗癌活性[86]。侵襲性惡性腫瘤的一個特征是乳酸脫氫酶-A的過度表達(dá),1,2,3,4,6-penta--galloyl-β--glucose是一種有效的人乳酸脫氫酶-A抑制劑,并且具有顯著阻止人乳腺癌細(xì)胞增殖的能力。在分子對接研究中[86],數(shù)據(jù)顯示1,2,3,4,6-penta--galloyl-β--glucose競爭性結(jié)合在人乳酸脫氫酶-A的煙酰胺腺嘌呤二核苷酸結(jié)合輔因子位點內(nèi),且其與煙酰胺腺嘌呤二核苷酸的競爭性結(jié)合清楚地表明該位點對1,2,3,4,6-penta--galloyl-β--glucose的親和力高于煙酰胺腺嘌呤二核苷酸。

        黃酮類化合物以前被認(rèn)為是一種癌癥化學(xué)預(yù)防劑,在體外刺激許多類型癌細(xì)胞系的細(xì)胞周期停滯和細(xì)胞凋亡[87],分子機(jī)制主要涉及對人過氧化物酶體增殖物激活受體γ和線粒體發(fā)出的內(nèi)在途徑的作用[88]。此外,還能抑制NF-κB和血管內(nèi)皮生長因子的表達(dá),從而抑制腫瘤血管生成和轉(zhuǎn)移[89]。

        2.7 抗氧化

        自由基理論認(rèn)為活性氧誘導(dǎo)的氧化損傷在衰老的病理生理學(xué)中起必要作用[90-91]。大量證據(jù)表明,氧自由基與信號識別、蛋白質(zhì)表達(dá)和免疫反應(yīng)密切相關(guān)。然而,過量的活性氧對人體有不利影響,包括DNA損傷、增加膜脂過氧化和激活細(xì)胞凋亡,最終導(dǎo)致細(xì)胞損傷[92]。五倍子中鞣花酸已被證明具有體內(nèi)和體外清除自由基的能力[93-94]。研究發(fā)現(xiàn),鞣花酸能使-半乳糖致衰老大鼠的過氧化氫酶、谷胱甘肽過氧化物酶、超氧化物歧化酶和總抗氧化能力的抗氧化酶活性顯著提升,減少了肝臟和大腦中丙二醛的產(chǎn)生,并能清除自由基來恢復(fù)抗氧化防御系統(tǒng),從而減輕-半乳糖誘導(dǎo)衰老大鼠肝臟和大腦的氧化損傷[95]。

        2.8 抗凋亡

        研究發(fā)現(xiàn),鞣花酸對體內(nèi)-半乳糖致衰老大鼠的肝臟和大腦有保護(hù)作用,使肝組織中檢測到肝細(xì)胞凋亡和炎性細(xì)胞浸潤,以及海馬CA1區(qū)的凋亡細(xì)胞和具有不規(guī)則神經(jīng)元的雜亂神經(jīng)纖維炎的情況得到改善[96]。B淋巴細(xì)胞瘤-2(B-cell lymphoma-2,Bcl-2)蛋白是抑制凋亡的關(guān)鍵因子,其過表達(dá)可有效阻止過氧化氫、自由基和微生物污染所誘導(dǎo)的凋亡[97]。Bcl-2關(guān)聯(lián)X(Bcl-2-associated X,Bax)蛋白的主要功能是加速凋亡,并與Bcl-2一起調(diào)節(jié)細(xì)胞凋亡。然而,凋亡中的核心分子是半胱氨酸蛋白酶,它是已知的哺乳動物凋亡的關(guān)鍵因子[98]。通常認(rèn)為Bcl-2作用于半胱氨酸蛋白酶激活的下游,因此,抑制細(xì)胞凋亡是通過抑制半胱氨酸蛋白酶的激活來實現(xiàn)的[99],結(jié)果表明,鞣花酸干預(yù)顯著下調(diào)了Bcl-2和Bax蛋白的表達(dá),上調(diào)了半胱氨酸蛋白酶的表達(dá)。結(jié)果表明,鞣花酸治療模型大鼠通過抑制半胱氨酸蛋白酶的激活[100],降低了Bax和Bcl-2的比值,從而對-半胱氨酸誘導(dǎo)的肝臟和腦細(xì)胞衰老損傷產(chǎn)生了抗AP光效應(yīng)[101]。

        2.9 其他

        鞣花酸可減輕高血壓期間血管組織中的血漿堿性磷酸酶活性、鈣含量和肥大,故鞣花酸可以改善高血壓引起的心血管損害[102]。鞣花酸的腸道代謝物尿石素對肝癌HepG2細(xì)胞顯示出有效的抗增殖活性[103],當(dāng)尿石素誘導(dǎo)細(xì)胞死亡時,發(fā)現(xiàn)β-連環(huán)蛋白、核蛋白類癌基因和細(xì)胞周期蛋白D1的表達(dá)降低,T細(xì)胞因子/淋巴增強(qiáng)子結(jié)合因子轉(zhuǎn)錄激活顯著下調(diào),同時還增加了p53、p38-絲裂原活化蛋白激酶(protein 38-mitogen-activated protein kinase,p38-MAPK)和含半胱氨酸的天冬氨酸蛋白水解酶-3(cysteinyl aspartate specific proteinase-3,Caspase-3)的蛋白表達(dá),抑制了NF-κB p65和其他炎癥介質(zhì)的表達(dá),尿石素對HepG2細(xì)胞存活具有抗增殖和抗氧化作用。

        五倍子中可水解的鞣質(zhì)通過下調(diào)破骨細(xì)胞生成的關(guān)鍵調(diào)節(jié)因子以及破骨細(xì)胞相關(guān)基因的表達(dá)[104],顯著抑NK-κB配體誘導(dǎo)的破骨細(xì)胞分化,從而表明,鞣質(zhì)可能是治療破骨細(xì)胞介導(dǎo)骨骼疾病的天然化合物。沒食子酸甲酯可降低NF-κB的抑制蛋白降解、NF-κB p65、即刻早期原癌基因的核轉(zhuǎn)位以及ERK1/2、p38和JNK磷酸化,通過抑制NF-κB信號傳導(dǎo)和MAPK通路減輕Toll樣受體配體誘導(dǎo)的炎癥[105]。

        3 結(jié)語與展望

        五倍子在我國已有1400多年的藥用歷史,對多種疾病皆有可靠療效。隨著科技的進(jìn)步,五倍子中越來越多的的生物活性物質(zhì)被鑒定,如鞣質(zhì)、酚酸、氨基酸、脂肪酸和其他化學(xué)成分,且其含有銅、鋅、鐵和鈣等微量元素。現(xiàn)今,在臨床使用前,五倍子的處理方法通常是去除雜質(zhì)和非藥用成分,或添加醋、酒精、茶等,通常以粉末、軟膏、口服湯劑或丸劑的形式使用?,F(xiàn)代藥理學(xué)研究證實了五倍子的多種藥理活性,如抗齲齒、抗菌、止瀉、止血、抗炎、促進(jìn)傷口愈合、抗癌、抗氧化等作用,同時對五倍子的一些傳統(tǒng)用途原理進(jìn)行了深入研究,特別是在治療腹瀉以及促進(jìn)傷口愈合方面。通過現(xiàn)代研究驗證五倍子的作用機(jī)制至關(guān)重要,中藥成分復(fù)雜,因此五倍子中的多種生物活性成分可能比單一生物活性成分更加有效,并可能通過多種靶標(biāo)和通路提供多種治療效果。未來可通過藥動學(xué),嘗試鑒別五倍子進(jìn)入人體后其化學(xué)成分的吸收、轉(zhuǎn)變、分布、代謝、排泄、毒性等,來揭示中藥在復(fù)雜化學(xué)成分和臨床作用下的潛力,對五倍子進(jìn)行更深入的臨床研究來評估其對體表感染、瘡瘍和腫瘤潛在的治療效果以期開發(fā)出中藥衍生新藥品,促進(jìn)中醫(yī)中藥的推廣發(fā)展。

        利益沖突 所有作者均聲明不存在利益沖突

        [1] 楊雅西, 平靜, 于鷹, 等. 五倍子古今應(yīng)用探要 [J]. 山西中醫(yī)學(xué)院學(xué)報, 2012, 13(3): 11-14.

        [2] 李楊, 吳俠, 邢效銘. 五倍子本草考證 [J]. 山東中醫(yī)雜志, 2020, 39(5): 509-512.

        [3] 中國藥典 [S]. 一部. 2020: 68.

        [4] Cai Y E, Zhang J M, Chen N G,. Recent advances in anticancer activities and drug delivery systems of tannins [J]., 2017, 37(4): 665-701.

        [5] Wu L F, Yuan Y B, Wang K F,. Research progress on chemistry and pharmacology of hydrolyzable tannin monomer [J]., 2014, 45(2): 290-299.

        [6] Duan D L, Li Z Q, Luo H P,. Antiviral compounds from traditional Chinese medicines Galla Chinese as inhibitors of HCV NS3 protease [J]., 2004, 14(24): 6041-6044.

        [7] Kwon O J, Bae J S, Lee H Y,. Pancreatic lipase inhibitory gallotannins fromwith inhibitory effects on adipocyte differentiation in 3T3-L1 cells [J]., 2013, 18(9): 10629-10638.

        [8] 王冬梅, 林森森, 鄭司浩, 等. 五倍子抑制表皮生長因子受體活性及活性部位的UPLC/Q-TOF-MS分析 [J]. 中草藥, 2013, 44(18): 2515-2519.

        [9] 周紅超, 陳平, 張建博, 等. 不同pH條件下五倍子中EGCG, EGC, ECG含量測定及分析 [J]. 云南中醫(yī)中藥雜志, 2016, 37(9): 78-80.

        [10] 楊寒冰, 楊文強(qiáng), 宋敏, 等. 五倍子中酚性化學(xué)成分及其抗病毒活性 [J]. 中國藥科大學(xué)學(xué)報, 2016, 47(5): 566-569.

        [11] Tarnawski M, Depta K, Grejciun D,. HPLC determination of phenolic acids and antioxidant activity in concentrated peat extract: A natural immunomodulator [J]., 2006, 41(1): 182-188.

        [12] 李春遠(yuǎn), 丁唯嘉, 渠桂榮. 五倍子化學(xué)成分研究 [J]. 中草藥, 2008, 39(8): 1129-1132.

        [13] Cheng L, Li J Y, Hao Y Q,. Effect of compounds ofand their combined effects with fluoride on remineralization of initial enamel lesion[J]., 2008, 36(5): 369-373.

        [14] 劉蘭香, 査玉平, 陳京元, 等. 肚倍在各生長期的主要成分含量變化分析 [J]. 生物資源, 2017, 39(5): 366-372.

        [15] 易盛國, 雷紹榮. 五倍子油化學(xué)成分的研究 [J]. 化學(xué)研究與應(yīng)用, 1998, 10(2): 192-194.

        [16] 谷竹義. 五倍子中化合物的分離與鑒定 [D]. 大連: 遼寧師范大學(xué), 2012.

        [17] Kassebaum N J, Bernabé E, Dahiya M,. Global burden of untreated caries: A systematic review and metaregression [J]., 2015, 94(5): 650-658.

        [18] Zhang T T, Chu J P, Zhou X D. Anti-carious effects of: A systematic review [J]., 2015, 29(12): 1837-1842.

        [19] Cheng L, Li J Y, Hao Y Q,. Effect of compounds ofand their combined effects with fluoride on remineralization of initial enamel lesion[J]., 2008, 36(5): 369-373.

        [20] Huang X L, Liu M D, Li J Y,. Chemical composition ofextract and the effect of its main component(s) on the prevention of enamel demineralization[J]., 2012, 4(3): 146-151.

        [21] Zou L, Zhang L L, Li J Y,. Effect ofextract and chemical fractions on demineralization of bovine enamel[J]., 2008, 36(12): 999-1004.

        [22] Cheng L, Li J Y, Hao Y Q,. Effect of compounds ofand their combined effects with fluoride on remineralization of initial enamel lesion[J]., 2008, 36(5): 369-373.

        [23] Cheng L, ten Cate J M. Effect ofon theremineralization of advanced enamel lesions [J]., 2010, 2(1): 15-20.

        [24] Lemos J A, Quivey R G, Koo H,.: A new gram-positive paradigm? [J]., 2013, 159(Pt 3): 436-445.

        [25] Ooshima T, Matsumura M, Hoshino T,. Contributions of three glycosyltransferases to sucrose-dependent adherence of[J]., 2001, 80(7): 1672-1677.

        [26] Li J H, Wu T T, Peng W W,. Effects of resveratrol on cariogenic virulence properties of[J]., 2020, 20(1): 99.

        [27] Matsumoto-Nakano M. Role ofsurface proteins for biofilm formation [J]., 2018, 54(1): 22-29.

        [28] Lemos J A, Palmer S R, Zeng L,. The biology of[J]., 2019, doi: https://doi.org/10.1128/microbiolspec.GPP3-0051-2018.

        [29] Gong Y X, Tian X L, Sutherland T,. Global transcriptional analysis of acid-inducible genes in: Multiple two-component systems involved in acid adaptation [J]., 2009, 155(Pt 10): 3322-3332.

        [30] Yang Y, Mao M Y, Lei L,. Regulation of water-soluble glucan synthesis by thedexA gene effects biofilm aggregation and cariogenic pathogenicity [J]., 2019, 34(2): 51-63.

        [31] Quivey R G Jr, Grayhack E J, Faustoferri R C,. Functional profiling in: Construction and examination of a genomic collection of gene deletion mutants [J]., 2015, 30(6): 474-495.

        [32] Passos M R, Almeida R S, Lima B O,. Anticariogenic activities of, gallic acid and ethyl gallate againstin biofilm model [J]., 2021, 274: 114059.

        [33] Li J H, Wu T T, Peng W W,. Effects of resveratrol on cariogenic virulence properties of[J]., 2020, 20(1): 99.

        [34] Gabe V, Kacergius T, Abu-Lafi S,. Inhibitory effects of ethyl gallate onbiofilm formation by optical profilometry and gene expression analysis [J]., 2019, 24(3): E529.

        [35] Sendamangalam V, Choi O K, Kim D,. The anti-biofouling effect of polyphenols against[J]., 2011, 27(1): 13-19.

        [36] Wu H, Moser C, Wang H Z,. Strategies for combating bacterial biofilm infections [J]., 2015, 7(1): 1-7.

        [37] Gabe V, Kacergius T, Abu-Lafi S,. Suppressive effects of octyl gallate onbiofilm formation, acidogenicity, and gene expression [J]., 2019, 24(17): 3170.

        [38] Kim E J, Jin B H. Antibacterial effect of different concentrations ofextract on cariogenic bacteria in a biofilm model [J]., 2020, 44(1): 13.

        [39] Chittrarasu M, Ahamed A S, Ravi V. Antimicrobial efficacy of green synthesis of silver nanoparticles against cariogenic pathogens-anstudy [J]., 2021, 13(Suppl 2): S1188-S1192.

        [40] Walker R I, Steele D, Aguado T,. Analysis of strategies to successfully vaccinate infants in developing countries against enterotoxigenic.(ETEC) disease [J]., 2007, 25(14): 2545-2566.

        [41] Fleckenstein J M, Hardwidge P R, Munson G P,. Molecular mechanisms of enterotoxigenicinfection [J]., 2010, 12(2): 89-98.

        [42] Madhavan T P V, Sakellaris H. Colonization factors of enterotoxigenic[J]., 2015, 90((9)): 155-197.

        [43] Abdel-Salam E.[M]. New York: Academic Press, 2011: 1187-1189.

        [44] Dubreuil J D. Antibacterial and antidiarrheal activities of plant products against enterotoxinogenic[J]., 2013, 5(11): 2009-2041.

        [45] Zhang W Q, Fujii N, Naren A P. Recent advances and new perspectives in targeting CFTR for therapy of cystic fibrosis and enterotoxin-induced secretory diarrheas [J]., 2012, 4(3): 329-345.

        [46] Yang Y, Luo H H, Song X,. Preparation oforal solution as well as its stability, safety, and antidiarrheal activity evaluation [J]., 2017, 2017: 1851459.

        [47] Girard M, Bee G. Invited review: Tannins as a potential alternative to antibiotics to prevent coliform diarrhea in weaned pigs [J]., 2020, 14(1): 95-107.

        [48] Song X, Yang Y, Li J Z,. Tannins extract fromcan protect mice from infection by EnterotoxigenicO101 [J]., 2021, 21(1): 84.

        [49] Dickinson B, Surawicz C M. Infectious diarrhea: An overview [J]., 2014, 16(8): 399.

        [50] Nieman D C, Nehlsen-Cannarella S L. The effects of acute and chronic exercise of immunoglobulins [J]., 1991, 11(3): 183-201.

        [51] Kim J E, Go J, Koh E K,. Gallotannin-enriched extract isolated frommay be a functional candidate with laxative effects for treatment of loperamide-induced constipation of SD rats [J]., 2016, 11(9): e0161144.

        [52] Xu C L, Wang Y M, Sun R,. Modulatory effects of vasoactive intestinal peptide on intestinal mucosal immunity and microbial community of weaned piglets challenged by an enterotoxigenic(K88) [J]., 2014, 9(8): e104183.

        [53] Canon F, Paté F, Cheynier V,. Aggregation of the salivary proline-rich protein IB5 in the presence of the tannin EgCG [J]., 2013, 29(6): 1926-1937.

        [54] Natarajan V, Krithica N, Madhan B,. Preparation and properties of tannic acid cross-linked collagen scaffold and its application in wound healing [J]., 2013, 101(4): 560-567.

        [55] Motlagh D, Yang J, Lui K Y,. Hemocompatibility evaluation of poly(glycerol-sebacate)for vascular tissue engineering [J]., 2006, 27(24): 4315-4324.

        [56] Johne J, Blume C, Benz P M,. Platelets promote coagulation factor XII-mediated proteolytic cascade systems in plasma [J]., 2006, 387(2): 173-178.

        [57] Barrientos S, Stojadinovic O, Golinko M S,. Growth factors and cytokines in wound healing [J]., 2008, 16(5): 585-601.

        [58] Werner S, Grose R. Regulation of wound healing by growth factors and cytokines [J]., 2003, 83(3): 835-870.

        [59] Sun K, Song X, Jia R Y,.evaluation ofsolution in the topical treatment of dermatophytosis [J]., 2017, 2017: 3843595.

        [60] Ren Y Y, Zhang X R, Li T N,., a traditional Chinese medicine: Comprehensive review of botany, traditional uses, chemical composition, pharmacology and toxicology [J]., 2021, 278: 114247.

        [61] Powers S, Pollack R E. Inducing stable reversion to achieve cancer control [J]., 2016, 16(4): 266-270.

        [62] Wang Z H, Lin S S, Wang D M,. Anti-epidermal growth factor receptor tyrosine kinase activities of traditional Chinese medicine for cancer treatment [J]., 2014, 6(5): 565-570.

        [63] Pithayanukul P, Nithitanakool S, Bavovada R. Hepatoprotective potential of extracts from seeds ofand nutgalls of[J]., 2009, 14(12): 4987-5000.

        [64] Chaudhuri D, Ghate N B, Singh S S,. Methyl gallate isolated fromexhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation [J]., 2015, 11(42): 269-276.

        [65] Chen J H, Chen W L, Liu Y C. Amentoflavone induces anti-angiogenic and anti-metastatic effects through suppression of NF-κB activation in MCF-7 cells [J]., 2015, 35(12): 6685-6693.

        [66] Han N R, Kim H M, Jeong H J. The potential anti-proliferative effect of β-sitosterol on human mast cell line-1 cells [J]., 2015, 93(11): 979-983.

        [67] Salimi A, Roudkenar M H, Sadeghi L,. Ellagic acid, a polyphenolic compound, selectively induces ROS-mediated apoptosis in cancerous B-lymphocytes of CLL patients by directly targeting mitochondria [J]., 2015, 6: 461-471.

        [68] Lu Y C, Lin M L, Su H L,. ER-dependent Ca2+-mediated cytosolic ROS as an effector for induction of mitochondrial apoptotic and ATM-JNK signal pathways in gallic acid-treated human oral cancer cells [J]., 2016, 36(2): 697-705.

        [69] Sun G J, Zhang S Q, Xie Y R,. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells [J]., 2016, 11(1): 150-158.

        [70] Giftson Senapathy J, Jayanthi S, Viswanathan P,. Effect of gallic acid on xenobiotic metabolizing enzymes in 1, 2-dimethyl hydrazine induced colon carcinogenesis in Wistar rats: A chemopreventive approach [J]., 2011, 49(4): 887-892.

        [71] Wang K, Zhu X, Zhang K,. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells [J]., 2014, 28(9): 387-393.

        [72] Weng S W, Hsu S C, Liu H C,. Gallic acid induces DNA damage and inhibits DNA repair-associated protein expression in human oral cancer SCC-4 cells [J]., 2015, 35(4): 2077-2084.

        [73] Kuo C L, Lai K C, Ma Y S,. Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF-κB, Ras and matrix metalloproteinase-2 and-9 [J]., 2014, 32(1): 355-361.

        [74] Tan S, Guan X, Grün C,. Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells [J]., 2015, 30(1 Pt B): 506-513.

        [75] Kim N S, Jeong S I, Hwang B S,. Gallic acid inhibits cell viability and induces apoptosis in human monocytic cell line U937 [J]., 2011, 14(3): 240-246.

        [76] Hsu J D, Kao S H, Ou T T,. Gallic acid induces G2/M phase arrest of breast cancer cell MCF-7 through stabilization of p27(Kip1) attributed to disruption of p27(Kip1)/Skp2 complex [J]., 2011, 59(5): 1996-2003.

        [77] Liao C L, Lai K C, Huang A C,. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2 /-9, protein kinase B (PKB) and PKC signaling pathways [J]., 2012, 50(5): 1734-1740.

        [78] Madlener S, Illmer C, Horvath Z,. Gallic acid inhibits ribonucleotide reductase and cyclooxygenases in human HL-60 promyelocytic leukemia cells [J]., 2007, 245(1/2): 156-162.

        [79] Lu Y, Jiang F, Jiang H,. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells [J]., 2010, 641(2/3): 102-107.

        [80] You B R, Park W H. Gallic acid-induced lung cancer cell death is related to glutathione depletion as well as reactive oxygen species increase [J]., 2010, 24(5): 1356-1362.

        [81] He Z P, Chen A Y, Rojanasakul Y,. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells [J]., 2016, 35(1): 291-297.

        [82] Umesalma S, Nagendraprabhu P, Sudhandiran G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells [J]., 2015, 399(1/2): 303-313.

        [83] Yousef A I, El-Masry O S, Abdel Mohsen M A. Impact of cellular genetic make-up on colorectal cancer cell lines response to ellagic acid: Implications of small interfering RNA [J]., 2016, 17(2): 743-748.

        [84] Afsar T, Trembley J H, Salomon C E,. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of: Involvement of multiple signal transduction pathways [J]., 2016, 6: 23077.

        [85] Lee H, Lee H, Kwon Y,. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+regulatory T cells [J]., 2010, 185(11): 6698-6705.

        [86] Deiab S, Mazzio E, Eyunni S,. 1,2,3,4,6-penta--galloylglucose withininhibits human LDH-A and attenuates cell proliferation in MDA-MB-231 breast cancer cells [J]., 2015, 2015: 276946.

        [87] Pei J S, Liu C C, Hsu Y N,. Amentoflavone induces cell-cycle arrest and apoptosis in MCF-7 human breast cancer cells via mitochondria-dependent pathway [J]., 2012, 26(6): 963-970.

        [88] Lee E J, Shin S Y, Lee J Y,. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisome proliferator-activated receptor γ activation [J]., 2012, 33(7): 2219-2223.

        [89] Chen J H, Chen W L, Liu Y C. Amentoflavone induces anti-angiogenic and anti-metastatic effects through suppression of NF-κB activation in MCF-7 cells [J]., 2015, 35(12): 6685-6693.

        [90] Yang C, Du Y K, Wang J,. Transplanted adipose-derived stem cells ameliorate testicular dysfunction in AD-galactose-induced aging rat model [J]., 2015, 230(10): 2403-2414.

        [91] Zhen Y Z, Lin Y J, Li K J,. Effects of rhein lysinate on-galactose-induced aging mice [J]., 2016, 11(1): 303-308.

        [92] Xu L Q, Xie Y L, Gui S H,. Polydatin attenuates d-galactose-induced liver and brain damage through its anti-oxidative, anti-inflammatory and anti-apoptotic effects in mice [J]., 2016, 7(11): 4545-4555.

        [93] Omur A D, Coyan K. Protective effects of the antioxidants curcumin, ellagic acid and methionine on motility, mitochondrial transmembrane potential, plasma membrane and acrosome integrity in freeze-thawed Merino ram sperm [J]., 2016, 61(1): 10-16.

        [94] Yousef A I, El-Masry O S, Abdel Mohsen M A. Impact of cellular genetic make-up on colorectal cancer cell lines response to ellagic acid: Implications of small interfering RNA [J]., 2016, 17(2): 743-748.

        [95] Schmedes M, Aadland E K, Sundekilde U K,. Lean-seafood intake decreases urinary markers of mitochondrial lipid and energy metabolism in healthy subjects: Metabolomics results from a randomized crossover intervention study [J]., 2016, 60(7): 1661-1672.

        [96] Lakshmi B V S, Sudhakar M, Prakash K S. Protective effect of selenium against aluminum chloride-induced Alzheimer’s disease: Behavioral and biochemical alterations in rats [J]., 2015, 165(1): 67-74.

        [97] Shaikh N H, Deshmukh V M, Walvekar M V. Alteration in testicular morphology and sperm count due to glycowithanolides treatment during aging [J]., 2015, 8(3): 72-77.

        [98] Feng Y, Yu Y H, Wang S T,. Chlorogenic acid protects-galactose-induced liver and kidney injury via antioxidation and anti-inflammation effects in mice [J]., 2016, 54(6): 1027-1034.

        [99] Grippa A, Buxó L, Mora G,. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites [J]., 2015, 211(4): 829-844.

        [100]Neprasova M, Maixnerova D, Novak J,. Toward noninvasive diagnosis of IgA nephropathy: A pilot urinary metabolomic and proteomic study [J]., 2016, 2016: 3650909.

        [101]Ortiz-Ruiz C V, Berna J, Tudela J,. Action of ellagic acid on the melanin biosynthesis pathway [J]., 2016, 82(2): 115-122.

        [102]Jord?o J B R, Porto H K P, Lopes F M,. Protective effects of ellagic acid on cardiovascular injuries caused by hypertension in rats [J]., 2017, 83(10): 830-836.

        [103]Wang Y, Qiu Z P, Zhou B H,.antiproliferative and antioxidant effects of urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells [J]., 2015, 29(5): 1107-1115.

        [104]Ihn H J, Kim T H, Kim K,. 2--digalloyl-1,3,4,6-tetra--galloyl-β--glucose isolated fromsuppresses osteoclast differentiation and function by inhibiting NF-κB signaling [J]., 2019, 52(6): 409-414.

        [105]Correa L B, Seito L N, Manchope M F,. Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-κB signaling pathways [J]., 2020, 69(12): 1257-127.

        Research progress on chemical constituents and pharmacological effects of

        LIANG Zheng1, XU Qiang2, ZHANG Qian1, LIU Tian-feng1, ZHANG Zhao-hui2

        1. Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China 2. The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300250, China

        is a kind of astringent Chinese herbal medicine, which has the effect of astringent lung and fire, astringent intestine and diarrhea, astringent sweat, hemostasis, dampness and sores. The chemical constituents ofare diverse, and its chemical constituents that have been identified so far mainly include tannins, phenolic acids, amino acids, fatty acids, ellagic acid and other chemical constituents. Modern research shows thathas many pharmacological effects, such as anti caries, antibacterial, antidiarrheal, hemostatic, anti-inflammatory, promoting wound healing, anti-cancer, scavenging free radicals, anti-oxidation and so on. Research progress on chemical constituents and pharmacological effects ofwere reviewed in this paper, to better understand the characteristics of, expand its application scope, and provide reference for its clinical application.

        Mill.; tannin; phenolic acid; ellagic acid; anti caries; antibacterial; antidiarrheal

        R282.710.5

        A

        0253 - 2670(2022)18 - 5908 - 12

        10.7501/j.issn.0253-2670.2022.18.033

        2022-06-07

        國家重點研發(fā)計劃課題(2019YFC1709303);國家自然科學(xué)基金青年基金資助項目(81904211)

        梁 正,男,碩士研究生,從事中西醫(yī)結(jié)合治療瘡瘍病及周圍血管病基礎(chǔ)與臨床研究工作。E-mail: 395458464@qq.com

        張朝暉,教授,主任醫(yī)師,博士生導(dǎo)師,從事中醫(yī)藥防治瘡瘍病及周圍血管病基礎(chǔ)與臨床研究工作。Tel: (022)60637062 E-mail: zzh45@aliyun.com

        [責(zé)任編輯 崔艷麗]

        猜你喜歡
        鞣質(zhì)五倍子生物膜
        幽門螺桿菌生物膜的研究進(jìn)展
        生物膜胞外聚合物研究進(jìn)展
        藍(lán)布正總鞣質(zhì)提取純化工藝的優(yōu)化
        中成藥(2021年5期)2021-07-21 08:38:52
        板栗殼鞣質(zhì)提取及其對DPPH自由基清除活性的研究
        五倍子湯漱口止牙疼
        五倍子湯漱口止牙疼
        光動力對細(xì)菌生物膜的作用研究進(jìn)展
        NY3菌固定化及生物膜處理含油廢水的研究
        巧用五倍子
        五倍子及五倍子倍花中油脂的提取工藝研究
        亚洲午夜精品久久久久久人妖| 免费av片在线观看网址| av日韩高清一区二区| 人妻少妇精品视频专区vr| 手机在线观看免费av网站| 51国产偷自视频区视频| 日日噜噜夜夜狠狠va视频| 日本公与熄乱理在线播放| 蜜臀久久99精品久久久久久小说 | 内射精品无码中文字幕| 精品亚洲aⅴ在线观看| 国产婷婷丁香五月麻豆| 97精品国产97久久久久久免费| 亚洲精品一区二区三区大桥未久| 99热最新在线观看| 欧洲日韩视频二区在线| 欧美日本国产亚洲网站免费一区二区 | 久久久久久久综合日本| 久久国产av在线观看| 久久五月精品中文字幕| 国产另类av一区二区三区| 麻豆国产精品一区二区三区| 精品国产一区二区三区av| 免费无码又爽又高潮视频| 成在线人免费视频| 在线亚洲欧美日韩精品专区| 精品无码一区二区三区爱欲九九| a级毛片免费观看网站| 亚洲国产精品av麻豆网站| 色婷婷久久综合中文蜜桃| 免费人成视频网站在在线| 天天做天天爱夜夜爽| 亚洲精品乱码8久久久久久日本 | 免费无码av一区二区三区| 国产揄拍国产精品| 亚洲有码转帖| AV中文码一区二区三区| 日本中文字幕一区二区视频| 国产伦理自拍视频在线观看| 国产精品国产三级国产专区不| 香港aa三级久久三级|