亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        交比及性質(zhì)的初等證明與應(yīng)用*

        2022-07-14 09:13:20華南師范大學(xué)附屬中學(xué)510630羅碎海袁宇飛
        關(guān)鍵詞:性質(zhì)

        華南師范大學(xué)附屬中學(xué)(510630) 羅碎海 袁宇飛

        只有認(rèn)識(shí)了圓錐曲線的極點(diǎn)與極線性質(zhì)以及點(diǎn)列與線束交比的射影性質(zhì),才能深刻認(rèn)識(shí)圓錐曲線的數(shù)學(xué)本質(zhì).有些高考題就是這些問題的特殊化,可一望而知答案.筆者最近重做2013年江西省的高考題,自覺趣味更濃,發(fā)現(xiàn)文理題同源于交比.查閱資料,有多篇文章探討推廣[1,2,3],但覺還需再邁一步,洞悉本質(zhì).現(xiàn)拙筆寫出,與同行交流.試看考題新分析:

        例1(2013年江西高考理數(shù)20題)如圖,橢圓C:=1(a>b>0)經(jīng)過點(diǎn)離心率直線l的方程為x=4.

        (1)求橢圓C的方程;

        (2)AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1,k2,k3.問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,說明理由.

        分析(1)易得橢圓C的方程為=1.

        (2)應(yīng)用圓錐曲線射影性質(zhì)分析如下:由(1)可得橢圓右焦點(diǎn)F(1,0).已知的直線l方程為x=4,正是橢圓焦點(diǎn)F關(guān)于橢圓的極線(即準(zhǔn)線),而且直線PF⊥x軸.由橢圓的交比性質(zhì)可知直線束PA,PB,PF,PM是一組調(diào)和線束,由于直線PF斜率不存在,則由調(diào)和線束與斜率關(guān)系有=?1,化簡(jiǎn)即k1+k2=2k3,即λ=2.(文末詳細(xì)再說理由)

        若學(xué)生能掌握這些知識(shí),可快速得到了答案,解題就只需用高中知識(shí)書寫表演而已了.

        高等幾何中的交比與調(diào)和比以及圓錐曲線的射影性質(zhì),完全可以用高中數(shù)學(xué)知識(shí)證明.為了使高中學(xué)生更本質(zhì)的認(rèn)識(shí)圓錐曲線,我們有必要做高等數(shù)學(xué)初等化的工作.

        1 交比的定義與性質(zhì)

        1.1 點(diǎn)列中四點(diǎn)的交比

        性質(zhì)2過點(diǎn)P作兩條直線分別與圓錐曲線交于A1,B1與A2,B2,若A1A2∩B1B2=D,A1B2∩A2B1=C,連CD交A1B1于R,交A2B2于S,則P,R調(diào)和分割A(yù)1,B1,P,S調(diào)和分割A(yù)2,B2,且R,S調(diào)和分割C,D.

        原文中此性質(zhì)的證明與圓錐曲線無關(guān),它是完全四邊形的性質(zhì).由于調(diào)和分割,當(dāng)四邊形放在圓錐曲線內(nèi)時(shí),極點(diǎn)與極線的關(guān)系就呈現(xiàn)出來.得到完全四邊形的性質(zhì).

        圖4

        性質(zhì)3一個(gè)四邊形的四個(gè)頂點(diǎn)在一條二次曲線上,則這個(gè)四邊形的對(duì)邊延長(zhǎng)線的交點(diǎn)(假設(shè)四邊形對(duì)邊不平行)及其對(duì)角線交點(diǎn)的組成的三角形的任一頂點(diǎn)是其對(duì)邊的極點(diǎn).

        如圖5,點(diǎn)Q的極線是直線PR,點(diǎn)P的極線是直線QR,點(diǎn)R的極線是PQ.另外點(diǎn)P,R調(diào)和分割S,T;點(diǎn)Q,S調(diào)和分割C,A;點(diǎn)Q,R調(diào)和分割U,V;由文[4]中性質(zhì)4還可知,點(diǎn)P,R調(diào)和分割M,N,等等.

        圖5

        1.2 線束的交比

        定義4線束中的四直線li(i=1,2,3,4),則

        叫做l1,l2,l3,l4的交比,其中l(wèi)1,l2,叫基線偶,l3,l4叫分線偶.其中(l1,l2)表示l1到l2的角,是有向的.

        性質(zhì)4設(shè)線束S的四直線a,b,c,d被直線s截得A,B,C,D,則(AB,CD)=(ab,cd),即四點(diǎn)的交比與四線的交比相等.

        分析如圖6,過點(diǎn)S作直線s的垂線,垂足設(shè)為H,則三角形ASC面積=·AC·SH,根據(jù)正弦定理,三角形ASC的面積還可以用SA·SC·sin∠ASC表示,這樣,sin∠ASC=(AC·SH)/(SA·SC);這樣把上面等式中的正弦全部換成這樣的表達(dá)式,立即就得證了(AB,CD)=(ab,cd).

        圖6

        由性質(zhì)4可得

        性質(zhì)5如果兩條直線截同一線束,則所得對(duì)應(yīng)四點(diǎn)的交比相等.如圖7,(AB,CD)=(A′B′,C′D′).

        圖7

        性質(zhì)6兩個(gè)線束投射同一點(diǎn)列,則得對(duì)應(yīng)四直線的交比相等.如圖8,有(ab,cd)=(a′b′,c′d′).

        圖8

        定義5如果四直線li(i=1,2,3,4),滿足(l1l2,l3l4)=?1,稱線偶l3,l4和線偶l1,l2調(diào)和分離(調(diào)和共軛),也稱l4為第四調(diào)和線,交比值?1稱調(diào)和比.

        特殊:三角形一個(gè)角的內(nèi)外角平分線調(diào)和分離這個(gè)角的兩邊.

        進(jìn)一步我們得到交比與直線斜率的計(jì)算公式.

        圖9

        進(jìn)一步可得到直線系的兩性質(zhì):

        圖10

        2 2013年高考江西數(shù)學(xué)文理20題分析

        用以上知識(shí),發(fā)現(xiàn)2013年高考江西數(shù)學(xué)文理20題同源于交比,只是理科比文科題多了一步調(diào)和比不變性的射影變換,現(xiàn)詳細(xì)說明兩題的聯(lián)系與本質(zhì).

        例1(2013年江西高考理數(shù)20題)題干在文首.

        詳細(xì)分析:(1)易得橢圓C的方程為=1.

        (2)如圖11,由(1)可得橢圓右焦點(diǎn)F(1,0).已知的直線l的方程為x=4,l正是點(diǎn)F關(guān)于橢圓的極線MN(也是準(zhǔn)線).設(shè)MN與x軸的交點(diǎn)是D,橢圓長(zhǎng)軸兩端點(diǎn)為A1,A2,則由性質(zhì)1知(A1A2,FD)=?1.

        圖1

        圖11

        連A1B,AA2,則A1AA2B是橢圓內(nèi)接四邊形,其對(duì)角線交點(diǎn)是F.由性質(zhì)3知A1A與BA2兩線相交,設(shè)交點(diǎn)為S必在F的極線MN上.連FS,由性質(zhì)4與性質(zhì)10可知線束SA1,SA2,SF,SD調(diào)和分割.由于該線束又與直線AM交于A,F,B,M四點(diǎn),由性質(zhì)5知(AB,FM)=?1.由性質(zhì)6知過A,F,B,M的四線PA,PB,PF,PM為一組調(diào)和線束.

        (1)求橢圓C的方程;

        (2)如圖,A,B,D是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交x軸于點(diǎn)N,直線AD交BP于點(diǎn)M.設(shè)BP的斜率為k,MN的斜率為m.證明:2m?k為定值.

        圖12

        分析(1)由已知易得橢圓方程為+y2=1.

        (2)由于ABPD是橢圓內(nèi)接四邊形,點(diǎn)M與N分別是四邊形對(duì)邊AD與BP,AB與DP交點(diǎn).連四邊形對(duì)角線AP與BD,設(shè)交點(diǎn)為E(如圖13).則由性質(zhì)3知ME為點(diǎn)N關(guān)于橢圓的極線,點(diǎn)N在x軸上,則極線ME⊥x軸.由性質(zhì)10可知,線束MA,MB,ME,MN是一組調(diào)和線束,斜率分別為即為定值.

        圖13

        搞清了題目的源頭與發(fā)展變化,看到了理科題是比文科題多設(shè)計(jì)了一步射影變換(性質(zhì)6).進(jìn)一步從橢圓退到圓或向其它圓錐曲線(雙曲線、拋物線)推廣,從理科題向競(jìng)賽題推廣就成了很簡(jiǎn)單的事情了.

        猜你喜歡
        性質(zhì)
        含有絕對(duì)值的不等式的性質(zhì)及其應(yīng)用
        MP弱Core逆的性質(zhì)和應(yīng)用
        弱CM環(huán)的性質(zhì)
        一類非線性隨機(jī)微分方程的統(tǒng)計(jì)性質(zhì)
        隨機(jī)變量的分布列性質(zhì)的應(yīng)用
        一類多重循環(huán)群的剩余有限性質(zhì)
        完全平方數(shù)的性質(zhì)及其應(yīng)用
        三角函數(shù)系性質(zhì)的推廣及其在定積分中的應(yīng)用
        性質(zhì)(H)及其攝動(dòng)
        九點(diǎn)圓的性質(zhì)和應(yīng)用
        国产普通话对白视频二区| 日本强伦姧人妻一区二区| 7777色鬼xxxx欧美色妇| 久久精品国产亚洲精品| 国产va在线播放| 午夜桃色视频在线观看| 亚洲中文字幕无码av永久| 国产精品久久久久久无码| 久久狠色噜噜狠狠狠狠97| 亚洲精品中文字幕熟女| 男女肉粗暴进来动态图| 久久亚洲私人国产精品| 久久这里都是精品一区| 久久婷婷国产色一区二区三区| 欧美日韩在线视频| 久久夜色精品国产噜噜av| 丝袜欧美视频首页在线| 亚洲一区久久蜜臀av| 欧美激情肉欲高潮视频| 中文字幕人妻丝袜美腿乱| 草莓视频在线观看无码免费| 熟女一区二区国产精品| 又粗又大又硬毛片免费看| 无遮无挡三级动态图| 青青青草国产熟女大香蕉| 水蜜桃精品视频在线观看| 丰满少妇a级毛片野外| 2021年国产精品每日更新| 国产一区二区三区探花| 国产精品国产三级国产av剧情| 久久久久久久久888| 色窝综合网| 蜜桃臀av一区二区三区| 久久精品国产久精国产| 亚洲春色AV无码专区在线播放| 国产剧情亚洲一区二区三区| 国产乡下妇女做爰| 久久夜色撩人精品国产小说| 成在线人免费视频播放| 久久精品一区午夜视频| 精品无码人妻一区二区三区品|