王 根
(廈門大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 福建 廈門 361005)
定義[1]設(shè)C:P→為非常數(shù)的光滑函數(shù).如果對(duì)所有的可微函數(shù)f:P→,都有{C,f}GPB=0,則C稱為Poisson流形P上的Casimir函數(shù).
定理1[5]根據(jù)廣義結(jié)構(gòu)Poisson括號(hào),則有
S-動(dòng)力學(xué):ds/dt=w={s,H}GPB={1,H}.
廣義協(xié)變Hamilton系統(tǒng):Df/dt={f,H}={f,H}GPB+G(s,f,H).
其中,D/dt=d/dt+w為協(xié)變時(shí)間算子.
定理2廣義Leibniz恒等式{f,gh}=h{f,g}+g{f,h}成立當(dāng)且僅當(dāng)s是Casimir函數(shù).
證明:根據(jù)廣義Leibniz恒等式{f,gh}=h{f,g}+g{f,h}+gh{s,f}GPB,其中f,g,h為非零函數(shù),故{f,gh}=h{f,g}+g{f,h}成立當(dāng)且僅當(dāng){s,f}GPB=0對(duì)于所有函數(shù)f.故根據(jù)Casimir函數(shù)的定義易得此時(shí)s為Casimir函數(shù).
因此,由定理2易得到若s為Casimir函數(shù),則對(duì)于所有函數(shù)f,r上的廣義結(jié)構(gòu)Poisson括號(hào){f,g}={f,g}GPB+G(s,f,g)簡(jiǎn)化為{f,g}={f,g}GPB+f{s,g}GPB,即幾何括號(hào)變?yōu)镚(s,f,g)=f{s,g}GPB,故s為Casimir函數(shù)是局部的退化情況,為特殊情況.若取g=H為Hamilton函數(shù),則廣義協(xié)變Hamilton系統(tǒng)簡(jiǎn)化為Df/dt={f,H}GPB+fw對(duì)于所有函數(shù)f.
定理3(i)若f,g>0均為正定函數(shù),則G(s,f,g)=0當(dāng)且僅當(dāng){s,ln(g/f)}GPB=0.
(ii)若f,g<0均為負(fù)定函數(shù),則G(s,f,g)=0當(dāng)且僅當(dāng){s,ln(g/f)}GPB=0.
(iii)若f>0,g<0,則G(s,f,g)=0當(dāng)且僅當(dāng){s,ln(-g/f)}GPB=0.
(iv)若f<0,g>0,則G(s,f,g)=0當(dāng)且僅當(dāng){s,ln(-g/f)}GPB=0.
證明:這里僅證明(i)的情況,其他三種情況類似證明,根據(jù)幾何括號(hào)的定義式,易得G(s,f,g)=0當(dāng)且僅當(dāng)
進(jìn)一步地,易得G(s,f,g)=fgJijAi?j(ln(g/f))=fg{s,ln(g/f)}GPB,又由于fg≠0,故G(s,f,g)=0成立當(dāng)且僅當(dāng){s,ln(g/f)}GPB=0,即得證.
很顯然,對(duì)于任意的正定函數(shù)f,g>0,只要{s,ln(g/f)}GPB=0,則廣義結(jié)構(gòu)Poisson括號(hào)退化為廣義Poisson括號(hào)的條件.此充要條件說明了特殊情況下存在的幾何標(biāo)量勢(shì)函數(shù)的表達(dá)形式,將這種退化充要條件應(yīng)用到廣義協(xié)變Hamilton系統(tǒng)上是可行的,根據(jù)以上對(duì)于定理3的相關(guān)討論,易得如下推論.
推論1流形上總存在幾何勢(shì)函數(shù)s=ln(g/f),fg>0或者s=ln(-g/f),fg<0使得幾何括號(hào)G(s,f,g)=0.
式中,-b1=A2+2x2A3,-b2=-A1+2x1A3,-b3=-2x2A1-2x1A2,關(guān)于動(dòng)量的方程為
對(duì)應(yīng)的S-動(dòng)力學(xué)系統(tǒng)經(jīng)過計(jì)算為w=x2A1-x1A2-4x1x2A3-H(b1A1+b2A2+b3A3),廣義協(xié)變哈密頓系統(tǒng)關(guān)于x1和p1給出為
-b1=2(x2+2x2x3)/l2,-b2=(-2x1+4x1x3)/l2,-b3=-8x1x2/l2,