亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        平面圖Γn的邊度量維數(shù)研究

        2022-06-30 05:24:37康娜李志全楊麗婷

        康娜 李志全 楊麗婷

        【摘? ?要】? ?圖的度量維數(shù)是圖論與組合優(yōu)化交叉領(lǐng)域的重要研究?jī)?nèi)容,邊度量維數(shù)是度量維數(shù)的一個(gè)變形。 給出了平面圖Γn的一個(gè)邊度量生成集,并證明了當(dāng)n≥6時(shí),平面圖Γn的邊度量維數(shù)為3。

        【關(guān)鍵詞】? ?邊度量維數(shù);邊度量生成集;平面圖Γn

        Study on the Edge Metric Dimension of Plane Graph Γn

        Kang Na, Li Zhiquan, Yang Liting

        (Hebei GEO University, Shijiazhuang 050031, China)

        【Abstract】? ? The metric dimension of graph is an important object in the intersection between graph theory and combinatorial optimization. The edge metric dimension is a variation of metric dimension of graph. This paper presentsan edge metric generator of plane graph Γn, and shows that the edge metric dimension of Γnis 3 when n≥6.

        【Key words】? ? ?edge metric dimension; edge metric generator; plane graphΓn

        〔中圖分類(lèi)號(hào)〕? O157.5? ? ? ? ? ? ?〔文獻(xiàn)標(biāo)識(shí)碼〕? A ? ? ? ? ? ? ?〔文章編號(hào)〕 1674 - 3229(2022)02- 0005 - 03

        0? ? ? 引言

        1953年,Blumenthal[1]引入了一般度量空間中度量維數(shù)的概念。Slater[2]以及Harary和Melter[3]分別于1975年和1976年獨(dú)立地把解析集和度量維數(shù)的概念引入到圖中。圖的度量維數(shù)在醫(yī)藥化學(xué)[4]、機(jī)器巡航[5]等領(lǐng)域都有廣泛的應(yīng)用。目前圖的度量維數(shù)的研究已取得許多成果[6-9]。

        設(shè)G是一個(gè)有限無(wú)向簡(jiǎn)單的連通圖,其中V(G)為頂點(diǎn)集,E(G)為邊集。圖G中兩頂點(diǎn)u、v之間的距離d(u,v)是以u(píng)和v為端點(diǎn)的最短路中所有邊的條數(shù)。對(duì)于頂點(diǎn)x∈V(G),若d(x,u)≠d(x,v),則稱(chēng)頂點(diǎn)x解析頂點(diǎn)u、v。設(shè)S是圖G中一個(gè)非空的頂點(diǎn)子集,如果G中的任意兩個(gè)頂點(diǎn)都能被S中的某個(gè)頂點(diǎn)解析,稱(chēng)S是圖G的解析集。圖G的基數(shù)最小的解析集稱(chēng)作圖G的度量基,其基數(shù)稱(chēng)作圖G的度量維數(shù),記作dim(G)。

        2018年,Kelenc[10]等人將度量維數(shù)進(jìn)行了變形,給出了圖的邊度量維數(shù)的概念。此后,圖的邊度量維數(shù)問(wèn)題引起了許多學(xué)者的關(guān)注[11-16]。

        1? ? ?主要結(jié)論

        2? ? ?結(jié)語(yǔ)

        圖的度量維數(shù)是圖論與組合優(yōu)化交叉領(lǐng)域的重要內(nèi)容。本文給出了平面圖Γn的一個(gè)邊度量生成集,并證明了當(dāng)n≥6時(shí),平面圖Γn的邊度量維數(shù)為3。本文研究對(duì)度量維數(shù)的研究與發(fā)展有積極的推動(dòng)作用。關(guān)于該平面圖的混合度量維數(shù)尚無(wú)結(jié)論,后續(xù)將進(jìn)一步研究平面圖Γn的混合度量維數(shù)及其他一些平面圖的(點(diǎn)、邊、混合)度量維數(shù)。

        [參考文獻(xiàn)]

        [1]? Blumenthal L M. Theory and applications of distance geometry[M]. Oxford:Clarendon Press, 1953.

        [2] Slater P J. Leaves of trees[J]. Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Congressus Numerantium, 1975, 14: 549-559.

        [3] Harary F, Melter R A. On the metric dimension of a graph? [J]. Ars Combinatorial, 1976 (2): 191-195.

        [4] Chartrand G, Eroh L, Johnson M A, et al. Resolvability in graphs and the metric? dimension of a graph[J]. Discrete Applied Mathematics, 2000, 105 (1-3): 99-113.

        [5]Khuller S, Raghavachari B, Rosenfeld A. Landmarks in graphs[J]. Discrete Applied Mathematics, 1996, 70 (3): 217-229.CB01F5E6-8224-48DA-B2C0-8B4DC33D85A2

        [6] Cáceres J, Hernando C, Mora M, et al. On the metric dimension of Cartesian products of graphs[J]. SIAM Journal on Discrete Mathematics, 2007, 21(2): 423-441.

        [7] Imran M, Baig A Q, Bokhary S A. On the metric dimension of rotationally-symmetric graphs[J]. Ars Combinatorial, 2016, 124: 111-128.

        [8]? Zhang Y Z, Hou L H, Wu W L, et al. On the metric dimension of the folded? -cube [J]. Optimization. Letters, 2020, 14(1): 249-257.

        [9] Guo J, Wang K S, Li F G. Metric dimension of some distance-regular graphs[J]. Jouranl of Combinatorial Optimization, 2013, 26(1): 190-197.

        [10] Kelenc A, Tratnik N, Yero I G. Uniquely identifying the edge of a graph: the edge metric dimension[J]. Discrete Applied Mathematics, 2018, 251: 204-220.

        [11] Nasir R, Zafar S, Zahid Z. Edge metric dimension of graphs[J]. Ars Combinatorial, 2018, 147: 143-156.

        [12] Adawiyah R, Dafik, Alfarisi R, et al. Edge metric dimension on some families of tree[C]. Journal of Physics:Conference Series, 2019.

        [13] Zhang Y Z, Gao S G. On the edge metric dimension of convex polytopes and its related graphs Journal of Combinatorial Optimization[J]. Jouranl of Combinatorial Optimization, 2020, 39(2): 334-350.

        [14] Zubrilina N. On the edge dimension of a graph[J]. Discrete Mathematics, 2018, 341(7): 2083-2088.

        [15] Kratica J, Filipovic V, Kartelj A. Edge metric dimension of some generalized petersen graphs[J]. Results in Mathematics, 2019, 74(4): 1-15.

        [16] 張躍忠.關(guān)于圖的度量維數(shù)及其相對(duì)設(shè)計(jì)的研究[D].石家莊:河北師范大學(xué), 2020.

        [17] Khuller S, Raghavachari B, Rosenfeld A. Landmarks in graphs[J]. Discrete Applied Mathematics, 1996, 70 (3): 217-229.CB01F5E6-8224-48DA-B2C0-8B4DC33D85A2

        国产三级三级精品久久| 午夜免费观看一区二区三区| 亚洲日本高清一区二区| 日韩人妻免费视频一专区| 国产在线一区二区三区四区 | 日本又色又爽又黄又免费网站| 少妇放荡的呻吟干柴烈火动漫 | 果冻蜜桃传媒在线观看| 国产片在线一区二区三区| 香港三日本三级少妇三级视频| 亚洲人成人影院在线观看| 久久亚洲aⅴ精品网站婷婷| 精品国产麻豆一区二区三区| 一区在线视频免费播放| 日韩人妻无码精品久久免费一| 国产在线丝袜精品一区免费| 扒下语文老师的丝袜美腿| 日韩av综合色区人妻| 在线精品国产亚洲av蜜桃| 国语对白做受xxxxx在线| 97色噜噜| 国产黄三级三级三级三级一区二区| 白白色最新福利视频二| 亚洲欧洲国产成人综合在线| 亚洲欧美精品伊人久久| 国产一区二区三区视频大全| 一区二区黄色在线观看| 亚洲av成人中文无码专区| 亚洲日韩一区二区一无码| 国产一级自拍av播放| 日韩经典午夜福利发布| 亚洲成a∨人片在线观看不卡 | 国产精品无码不卡一区二区三区| 国产丝袜精品丝袜一区二区| 日本加勒比精品一区二区视频| 精品国产麻豆免费人成网站| 亚洲精品乱码久久久久久久久久久久 | 1234.com麻豆性爰爱影| 放荡成熟人妻中文字幕| a级毛片无码久久精品免费| 国产一级三级三级在线视|