王雪春 朱影 黃常新
[摘要] 近年來(lái),免疫檢查點(diǎn)抑制劑和嵌合抗原受體免疫療法(CAR-T)因其顯著的治療有效率,已成為某些腫瘤的“特效藥”。新抗原作為腫瘤的特異性抗原,可激活細(xì)胞毒性T淋巴細(xì)胞(CTL),發(fā)揮特異性抗腫瘤免疫應(yīng)答。目前,下一代基因測(cè)序技術(shù)和質(zhì)譜分析為新抗原的發(fā)現(xiàn)和鑒定提供了有利的技術(shù)支撐?;谛驴乖膫€(gè)性化腫瘤免疫治療的突出療效,在國(guó)內(nèi)外實(shí)體瘤治療大放異彩;其還可作為如T細(xì)胞受體修飾的T細(xì)胞治療(TCR-T)治療的特異性靶標(biāo);聯(lián)合其他抗腫瘤療法也顯示出良好的發(fā)展前景?,F(xiàn)就目前基于腫瘤新生抗原免疫治療的研究進(jìn)展做一綜述。
[關(guān)鍵詞] 腫瘤;免疫治療;腫瘤新抗原;腫瘤疫苗
[中圖分類號(hào)] R730.5? ? ? ? ? [文獻(xiàn)標(biāo)識(shí)碼] A? ? ? ? ? [文章編號(hào)] 1673-9701(2022)12-0188-04
[Abstract] In recent years, immune checkpoint inhibitors and chimeric antigen receptor T-cell (CAR-T) immunotherapy have become "specific drugs" for certain tumors because of their remarkable effective rate in treatment. As tumor-specific antigens, neoantigens can activate cytotoxic T lymphocytes (CTL) and exert specific anti-tumor immune responses. Currently, next-generation gene sequencing technology and mass spectrometry provide favorable technical support for the discovery and identification of neoantigens. Neoantigens-based personalized tumor immunotherapy has made a great splash in the treatment of solid tumors at home and abroad due to its outstanding efficacy. It can also serve as a specific target for T-cell receptor modified T-cell (TCR-T) therapy, for example. And the combination of it with other anti-tumor therapies has also shown a good development prospect. This paper reviews the current advances in the study of tumor neoantigens-based immunotherapy.
[Key words] Tumor; Immunotherapy; Tumor neoantigens; Tumor vaccine
據(jù)世界衛(wèi)生組織國(guó)際癌癥研究機(jī)構(gòu)發(fā)布的2020年全球癌癥數(shù)據(jù)顯示,中國(guó)癌癥的新發(fā)例數(shù)和死亡例數(shù)占全球第一位[1]。近年來(lái),以靶向藥物和免疫治療為代表的生物治療迅猛發(fā)展,超越了傳統(tǒng)的手術(shù)、放療、化療等治療,成為腫瘤治療發(fā)展的主流趨勢(shì)。目前已有大量研究證實(shí),利用新抗原制備的腫瘤疫苗,可激發(fā)機(jī)體自身抗腫瘤免疫效應(yīng),在腫瘤治療中具備極大的應(yīng)用前景。
1 新抗原的來(lái)源與意義
突變的發(fā)生和逐步累積被公認(rèn)為是腫瘤啟動(dòng)和進(jìn)展的主要機(jī)制,某些“非同義突變”會(huì)導(dǎo)致新抗原的產(chǎn)生[2]。新抗原是腫瘤特異性突變導(dǎo)致氨基酸序列改變形成的新表位,只存在于腫瘤組織,而不存在于正常組織,屬于腫瘤特異性抗原。近年來(lái)研究發(fā)現(xiàn),絕大部分新抗原是來(lái)自于非編碼區(qū)突變,即蛋白翻譯后的錯(cuò)誤剪接組合和降解轉(zhuǎn)運(yùn)過(guò)程[3],基于全外顯子或信使RNA測(cè)序預(yù)測(cè)的新抗原肽,極少為質(zhì)譜所證實(shí)。Prehn等[4]的體內(nèi)實(shí)驗(yàn)表明,引起強(qiáng)烈腫瘤排斥的抗原更具有個(gè)體特異性。因此,與腫瘤相關(guān)抗原相比,新抗原具有更強(qiáng)的免疫原性及高度特異度,能激發(fā)機(jī)體特異性抗腫瘤免疫效應(yīng),成為精準(zhǔn)腫瘤免疫治療的特異性靶點(diǎn)。
較高的腫瘤突變負(fù)荷與改善腫瘤免疫治療的生存率有關(guān)[5],本團(tuán)隊(duì)的前期研究還證實(shí)某些腫瘤新抗原與生存期改善有關(guān)[6-7];并且,患者預(yù)后不僅與擁有的新抗原數(shù)量相關(guān),新抗原質(zhì)量與類型也影響著其臨床抗腫瘤免疫效應(yīng)[8-9]。
2 新抗原的發(fā)現(xiàn)與鑒定
過(guò)去常以cDNA文庫(kù)鑒定新抗原,此方法費(fèi)時(shí)費(fèi)力[10]。下一代測(cè)序技術(shù)(next generation sequencing,NGS)因其檢測(cè)高效和技術(shù)成熟,已成為新抗原發(fā)現(xiàn)的重要手段,其簡(jiǎn)要過(guò)程如下:①利用全基因測(cè)序和(或)全外顯子基因測(cè)序等技術(shù)對(duì)患者腫瘤組織及正常組織進(jìn)行測(cè)序獲取抗原譜;②腫瘤組織進(jìn)行轉(zhuǎn)錄子測(cè)序;③選擇腫瘤樣品中非同義突變體;④預(yù)測(cè)與人類白細(xì)胞抗原(human leukocyte antigen,HLA)分子親和力;⑤體外合成抗原肽,驗(yàn)證免疫原性[11-12]。然而,目前常用的全外顯子(即編碼區(qū))測(cè)序?qū)ふ夷[瘤新抗原肽的準(zhǔn)確性較低;并且由于每例患者的腫瘤新抗原肽不相同不通用,腫瘤細(xì)胞實(shí)際存在的免疫有效新抗原肽不多,而占絕大多數(shù)的弱免疫原性肽可導(dǎo)致免疫耐受、無(wú)能甚至免疫抑制,故需每例患者進(jìn)行體外免疫學(xué)實(shí)驗(yàn)確定每條肽的免疫活性,這一過(guò)程非常費(fèi)時(shí)繁瑣。以上這些直接限制了個(gè)體化疫苗的臨床推廣應(yīng)用。因此,快速、準(zhǔn)確地發(fā)現(xiàn)腫瘤細(xì)胞內(nèi)有效新抗原肽和提高弱免疫原性新抗原肽的免疫效應(yīng)顯得極為重要[13],本團(tuán)隊(duì)研究發(fā)現(xiàn),新抗原結(jié)構(gòu)特性及新抗原肽與特異性T細(xì)胞之間的關(guān)系可幫助快速發(fā)現(xiàn)和鑒定新抗原[14-15]。1F3890C3-8A7A-49C8-B0DE-876920586D0F
質(zhì)譜分析手段的成熟為新抗原鑒定提供新思路,高分辨率質(zhì)譜可直接鑒定腫瘤組織表面抗原肽。發(fā)表于Nature的研究表明,利用主要組織相容性復(fù)合體(major histocompatibility complex,MHC)肽組譜發(fā)現(xiàn)了95,500條與黑色素瘤相關(guān)抗原肽,并成功從中鑒定到11條體細(xì)胞來(lái)源新抗原肽[16]。質(zhì)譜鑒定抗原肽的重要條件之一是獲取MHC洗脫肽;免疫沉淀是獲取MHC洗脫肽最常用的方法之一。技術(shù)流程:①M(fèi)HC復(fù)合物通過(guò)免疫沉淀從腫瘤組織或細(xì)胞中分離;②充分洗滌除去未結(jié)合混合物;③應(yīng)用酸性洗脫液分離來(lái)自MHC分子和抗體的抗原肽;④純化肽段;⑤對(duì)純化肽段進(jìn)行質(zhì)譜分析;⑥原始圖譜對(duì)比蛋白質(zhì)數(shù)據(jù)庫(kù)獲取真實(shí)存在蛋白質(zhì)數(shù)據(jù)庫(kù)[17-18]。此方法獲取抗原肽的特異性較高,但操作復(fù)雜。弱酸洗脫法為另一種獲取MHC洗脫肽的常用方法。利用低pH值可使MHC Ⅰ的輕鏈與 MHC Ⅰ重鏈分離,在短時(shí)間內(nèi)直接從細(xì)胞膜上洗脫MHC肽[19]。相比免疫沉淀法而言,弱酸洗脫法所獲取MHC洗脫肽假陽(yáng)性率更高。兩種方法都需要大量腫瘤組織,標(biāo)本預(yù)處理較為困難復(fù)雜,鑒定所獲取抗原肽數(shù)目龐大,影響臨床應(yīng)用。本研究團(tuán)隊(duì)目前致力于研究快速篩選基于質(zhì)譜獲取的新抗原肽方法,且頗具成效,極大縮短新抗原篩選時(shí)間。
此外,利用腫瘤共享數(shù)據(jù)庫(kù)也可快速發(fā)現(xiàn)具有免疫原性的腫瘤新抗原肽。國(guó)內(nèi)有研究者利用癌癥基因組圖譜 (the cancer genome atlas,TCGA)和癌癥體細(xì)胞突變目錄(catalogue of somatic mutations in cancer,COSMIC)數(shù)據(jù)庫(kù)對(duì)9種常見(jiàn)的實(shí)體瘤進(jìn)行分析,在20 d內(nèi)成功鑒定出被自體外周血淋巴細(xì)胞識(shí)別的腫瘤特異性新抗原[20]。
3 基于腫瘤新抗原的抗腫瘤免疫治療
經(jīng)過(guò)驗(yàn)證的免疫原性MHC結(jié)合肽可進(jìn)一步制備個(gè)性化腫瘤疫苗。國(guó)內(nèi)有研究[21]利用iNeo-Vac-P01新抗原疫苗啟動(dòng)了一項(xiàng)單臂、開(kāi)發(fā)臨床試驗(yàn),結(jié)果顯示在納入的22例晚期惡性腫瘤患者中,疾病控制率為71.4%,中位無(wú)進(jìn)展生存(median progression-free survival,mPFS)為4.6個(gè)月,12個(gè)月總生存期(overall survival,OS)百分比約為55.1%,且納入的2例胰腺癌患者無(wú)進(jìn)展生存期(progression-free survival,PFS)分別為4.2個(gè)月和6.3個(gè)月,OS分別為14.0+個(gè)月和13.3+個(gè)月,高于轉(zhuǎn)移性胰腺癌一線化療方案(奧沙利鉑+伊立替康+氟尿嘧啶+亞葉酸鈣,F(xiàn)OLFIRINOX)的PFS 為3.1個(gè)月,中位OS為 6.1個(gè)月[22]。
黑色素瘤具有較高的突變負(fù)荷,臨床研究結(jié)果表明個(gè)性化新抗原疫苗可以在黑色素瘤患者中刺激持久的免疫反應(yīng),幫助控制轉(zhuǎn)移性腫瘤[23]。Ott等[24]對(duì)6例手術(shù)切除后的ⅢB/C期和ⅣM1a/b期黑色素瘤患者進(jìn)行新抗原疫苗接種,在20~32個(gè)月隨訪中,4例進(jìn)入研究的ⅢB/C期患者仍沒(méi)有復(fù)發(fā),且2例ⅣM1b期疾病患者在接受pembrolizumab治療后得到完全緩解。
與黑色素瘤不同,膠質(zhì)母細(xì)胞瘤具有低突變負(fù)荷和低免疫性腫瘤微環(huán)境。 然而,Keskin等[25]對(duì)手術(shù)切除和放療后的新診斷膠質(zhì)母細(xì)胞瘤患者也進(jìn)行多表位個(gè)體化新抗原疫苗接種,結(jié)果顯示循環(huán)中腫瘤浸潤(rùn)性T細(xì)胞增加,且外周血的新抗原特異性T細(xì)胞可以遷移到顱內(nèi)膠質(zhì)母細(xì)胞瘤腫瘤中,為新抗原疫苗可能改變膠質(zhì)母細(xì)胞瘤的免疫環(huán)境提供依據(jù)。
研究證實(shí),肺癌存在多種免疫逃逸機(jī)制,高克隆新抗原與肺腺癌和鱗狀細(xì)胞癌的無(wú)病生存率相關(guān)[26]。一項(xiàng)轉(zhuǎn)移性肺癌患者進(jìn)行單臂、多中心的新抗原疫苗臨床研究(NCT02956551)表明,對(duì)入組12例患者總共進(jìn)行85次多表位新抗原樹突狀細(xì)胞疫苗接種,盡管患者沒(méi)有達(dá)到完全緩解,但疾病客觀緩解率(objective response rate,ORR)為25%,疾病控制率達(dá)到75%,mPFS為5.5個(gè)月,中位生存期為7.9個(gè)月,且患者接受新抗原疫苗產(chǎn)生不良反應(yīng)為1~2級(jí)[27],證實(shí)新抗原疫苗在肺癌中的有效性及安全性。國(guó)內(nèi)還有研究者利用全外顯子測(cè)序和計(jì)算機(jī)算法成功從3例非小細(xì)胞肺癌患者中篩選到強(qiáng)免疫原性新抗原,且研究者利用已從體外證實(shí)具有免疫原性的新抗原ACAD8-T105I、BCAR1-G23V 和 PLCG1-M425L對(duì)荷瘤小鼠進(jìn)行過(guò)繼性T細(xì)胞治療,結(jié)果提示新抗原特異性T細(xì)胞可延緩腫瘤生長(zhǎng)[28]。
4 新抗原免疫治療的聯(lián)合療法
免疫檢查點(diǎn)抑制劑通過(guò)激活宿主免疫系統(tǒng)誘導(dǎo)腫瘤排斥反應(yīng),在過(guò)去的10多年在多種癌癥中取得了極大的成功。但是,免疫檢查點(diǎn)阻斷療法單一應(yīng)用在多數(shù)患者中獲益有限[29]。一項(xiàng)基于NEO-PV-01新抗原疫苗與程序性死亡受體1(programmed death-1,PD-1)抑制劑nivolumab聯(lián)合治療晚期黑色素瘤、非小細(xì)胞肺癌、膀胱癌晚期癌癥ⅠB期研究(NCT02897765)的結(jié)果表明,三種癌癥的ORR分別為59%、39%、27%,mPFS為23.5個(gè)月、8.5個(gè)月、5.8個(gè)月,明顯優(yōu)于抗PD-1抑制劑單藥應(yīng)用臨床數(shù)據(jù),且具備良好安全性[30-31]。
化療和靶向抗腫瘤藥物仍是臨床抗腫瘤治療的主力軍,可以導(dǎo)致免疫原性細(xì)胞死亡,啟動(dòng)級(jí)聯(lián)反應(yīng),產(chǎn)生腫瘤特異性新抗原,增強(qiáng)樹突狀細(xì)胞細(xì)胞吞噬及抗原呈遞,提高新抗原疫苗效率[32-35]。如靶向抗血管生成藥物可以重塑腫瘤血管,使其正?;?,逆轉(zhuǎn)血管內(nèi)皮生長(zhǎng)因子誘導(dǎo)的單核細(xì)胞向樹突狀細(xì)胞分化的抑制作用,恢復(fù)癌癥患者外周血樹突狀細(xì)胞數(shù)量并促進(jìn)其活化,轉(zhuǎn)化免疫抑制微環(huán)境,增強(qiáng)新抗原遞呈,從而增強(qiáng)抗腫瘤免疫治療[36]。
免疫治療和放療被臨床證實(shí)為很好的“搭檔”。放療可誘導(dǎo)腫瘤細(xì)胞釋放更多的抗原,且放療可增強(qiáng)T細(xì)胞向腫瘤組織運(yùn)輸。有研究者利用三陰乳腺癌小鼠模型發(fā)現(xiàn),放療可增強(qiáng)免疫原性新抗原基因表達(dá),并引發(fā)CD8+和CD4+ T細(xì)胞反應(yīng),導(dǎo)致MHC -Ⅱ和死亡受體上調(diào),此外,新抗原特異性CD8+ T細(xì)胞優(yōu)先殺死輻射的腫瘤細(xì)胞,提供新抗原與放療聯(lián)合應(yīng)用可控制腫瘤證據(jù)[37]。1F3890C3-8A7A-49C8-B0DE-876920586D0F
5 展望
目前,基于腫瘤新抗原的免疫療法雖然仍在臨床試驗(yàn)過(guò)程中,但捷報(bào)頻傳,以往“非同義突變”被認(rèn)為是新抗原主要來(lái)源。最新的實(shí)驗(yàn)結(jié)果表明,融合基因新抗原具有更高的免疫原性,是癌癥免疫療法新興的靶標(biāo),可作為免疫檢查點(diǎn)療效的預(yù)后生物學(xué)標(biāo)志物[38],受到研究者的廣泛關(guān)注。然而結(jié)合本課題組的自身實(shí)踐,抗腫瘤新抗原療法仍有許多難題尚未得到有效解決:①常見(jiàn)實(shí)體瘤驅(qū)動(dòng)基因突變產(chǎn)生的新抗原,其免疫原性較弱;②HLA等位基因型繁多,HLA限制性新抗原明確缺乏有效的預(yù)測(cè)手段,主流預(yù)測(cè)抗原與HLA親和力的數(shù)據(jù)庫(kù),其預(yù)測(cè)效率不高,存在假陽(yáng)性;③新抗原鑒定流程復(fù)雜,亟待優(yōu)化;④新抗原治療個(gè)體性強(qiáng),其治療成本較高,且無(wú)法普及等。而這些問(wèn)題的解決一方面需要新興檢測(cè)技術(shù)的發(fā)展,另一方面可能需要如生物信息學(xué)技術(shù)、結(jié)構(gòu)生物學(xué)、藥物設(shè)計(jì)學(xué)等學(xué)科的交叉與融入,如通過(guò)機(jī)器學(xué)習(xí)大量HLA限制性新抗原數(shù)據(jù),確立有效的免疫應(yīng)答位點(diǎn);結(jié)合冷凍電鏡觀察不同新抗原HLA-TCR三者復(fù)合體的晶體結(jié)構(gòu),明確相互作用的關(guān)系;修飾新抗原使其更容易被CTL識(shí)別并針對(duì)靶細(xì)胞產(chǎn)生特異性免疫應(yīng)答等。上述問(wèn)題的深入探討與研究將為新抗原療法臨床實(shí)踐的順利開(kāi)展提供堅(jiān)實(shí)的前期基礎(chǔ),期待新抗原將在今后的腫瘤治療中發(fā)揮不可或缺的重要地位。
[參考文獻(xiàn)]
[1]? ?World Health Organization (WHO). World cancer report 2020. 2020. URL: https://www.iarc.fr/cards_page/world-cancer-report/.
[2]? ?蘇萌,黃常新. 結(jié)直腸癌免疫治療的臨床研究及進(jìn)展[J].浙江臨床醫(yī)學(xué),2020,22(11):1689-1692.
[3]? ?Laumont CM,Vincent K,Hesnard L,et al. Noncoding regions are the main source of targetable tumor-specific antigens[J].Sci Transl Med,2018,10(470):eaau5516.
[4]? ?Prehn RT,Main JM. Immunity to methylcholanthrene-induced sarcomas[J].J Natl Cancer Inst,1957,18(6):769-778.
[5]? ?Wang P,Chen Y,Wang C. Beyond tumor mutation burden: Tumor neoantigen burden as a biomarker for immunotherapy and other types of therapy[J].Front Oncol,2021,11:672 677.
[6]? ?Zhu Y,Hu B,Zhang S,et al. Neoantigen detection in postoperative colorectal cancer patients by next-generation sequencing and liquid chromatography-mass spectrometry[J].J Med Imaging Health Inform,2020,10(12):2905-2912.
[7]? ?Zhu Y,Hu B,Xu L,et al. Tumor-specific nascent nine-peptide-epitopes prediction and bioinformatics characterization in human colorectal cancer[J].J Med Imaging Health Inform,2020,10(6):1338-1345.
[8]? ?Mcgranahan N,Swanton C. Neoantigen quality,not quantity[J].Sci Transl Med, 2019,11(506):eaax7918.
[9]? ?Richard G,Groot A,Steinberg GD,et al. Multi-step screening of neoantigens′ HLA-and TCR-interfaces improves prediction of survival[J].Sci Rep,2021,11(1):9983.
[10]? Lu YC,Robbins PF. Cancer immunotherapy targeting neoantigens[J].Semin Immunol,2016,28(1):22-27.
[11]? Hashimoto S,Noguchi E,Bando H,et al. Neoantigen prediction in human breast cancer using RNA sequencing data[J].Cancer Sci,2021,112(1):465-475.
[12]? Blass E,Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J].Nat Rev Clin Oncol,2021,18(4):215-229.1F3890C3-8A7A-49C8-B0DE-876920586D0F
[13]? Wells DK,Van Buuren MM,Dang KK,et al. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen prediction[J].Cell,2020,183(3):818-834.e13.
[14]? Huang C,Chen J,Ding F,et al. Related parameters of affinity and stability prediction of HLA-A*2402 restricted antigen peptides based on molecular docking[J].Ann Transl Med,2021,9(8):673.
[15]? Zhu Y,Huang C,Su M,et al. Characterization of amino acid residues of T-cell receptors interacting with HLA-A*02-restricted antigen peptides[J].Ann Transl Med,2021,9(6):495.
[16]? Bassani-Sternberg M,Brunlein E,Klar R,et al. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry[J].Nat Commun,2016,7:13 404.
[17]? Verma A,Halder A,Marathe S,et al. A proteogenomic approach to target neoantigens in solid tumors[J].Expert Rev Proteomics,2020,17(11-12):797-812.
[18]? Kalaora S,Samuels Y. Cancer exome-based identification of tumor neo-antigens using mass spectrometry[J].Methods Mol Biol,2019,1884:203-214.
[19]? Gloger A, Ritz D, Fugmann T, et al. Mass spectrometric analysis of the HLA class I peptidome of melanoma cell lines as a promising tool for the identification of putative tumor-associated HLA epitopes[J].Cancer Immunol Immunother,2016,65(11):1377-1393.
[20]? Chen F,Zou Z,Du J,et al. Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors[J].J Clin Invest,2019,129(5):2056-2070.
[21]? Fang Y,Mo F,Shou J,et al.A Pan-cancer clinical study of personalized neoantigen vaccine monotherapy in treating patients with various types of advanced solid tumors[J].Clin Cancer Res,2020,26(17):4511-4520.
[22]? Wang-Gillam A,Li CP,Bodoky G,et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy(NAPOLI-1):A global, randomised, open-label, phase 3 trial[J].Lancet,2016,387(10 018):545-557.
[23]? Hu Z,Leet DE,Allese RL,et al. A. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma[J].Nat Med,2021,27(3):515-525.
[24]? Ott PA,Hu Z,Keskin DB,et al. An immunogenic personal neoantigen vaccine for patients with melanoma[J].Nature,2017,547(7662):217-221.
[25]? Keskin DB,Anandappa AJ,Sun J,et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J].Nature,2019,565(7738):234-239.1F3890C3-8A7A-49C8-B0DE-876920586D0F
[26]? Rosenthal R,Cadieux EL,Salgado R,et al. Neoantigen-directed immune escape in lung cancer evolution[J].Nature,2019,567(7749):479-485.
[27]? Ding Z,Li Q,Zhang R,et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer[J].Signal Transduct Target Ther,2021,6(1):26.
[28]? Zhang W,Yin Q,Huang H,et al. Personal neoantigens from patients with NSCLC induce efficient antitumor responses[J].Front Oncol,2021,11:628 456.
[29]? Robert C. A decade of immune-checkpoint inhibitors in cancer therapy[J].Nat Commun,2020,11(1):3801.
[30]? Ott PA,Hu-Lieskovan S,Chmielowski B,et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma,non-small cell lung cancer,or bladder cancer[J].Cell,2020,183(2):347-362.e24.
[31]? Zaidi N. Can personalized neoantigens raise the T cell bar[J].Cell,2020,183(2):301-302.
[32]? Pich O,Muios F,Lolkema MP,et al. The mutational footprints of cancer therapies[J].Nat Genet,2019,51(12):1732-1740.
[33]? Frk M,Krawczyk P, Kalinka E, et al. Molecular and clinical premises for the combination therapy consisting of radiochemotherapy and immunotherapy in non-small cell lung cancer patients[J].Cancers,2021,13(6):1222.
[34]? Luo Q,Zhang L,Luo C,et al. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy[J].Cancer Lett,2019,454:191-203.
[35]? Jin MZ,Wang XP. Immunogenic cell death-based cancer vaccines[J].Front Immunol,2021,12:697 964.
[36]? Ntellas P,Mavroeidis L,Gkoura S,et al. Old player-new tricks:Non angiogenic effects of the VEGF/VEGFR pathway in cancer[J].Cancers,2020,12(11):3145.
[37]? Lhuillier C,Rudqvist NP,Yamazaki T,et al. Radiotherapy-exposed CD8+ and CD4+ neoantigens enhance tumor control[J].J Clin Invest,2021,131(5):e138 740.
[38]? Wang Y,Shi T,Song X,et al. Gene fusion neoantigens:Emerging targets for cancer immunotherapy[J].Cancer Lett,2021,506:45-54.
(收稿日期:2021-10-18)1F3890C3-8A7A-49C8-B0DE-876920586D0F