第1章 數(shù)學(xué)與我們同行
領(lǐng)? ? 銜? ? 人:黃秀旺
組稿團(tuán)隊(duì):江蘇省南京市初中數(shù)學(xué)黃秀旺名師工作室
當(dāng)你閱讀本篇文章時(shí),你已是一名初中生了,祝賀你!經(jīng)歷了小學(xué)六年的數(shù)學(xué)學(xué)習(xí),相信你對(duì)“數(shù)學(xué)”有許多話可說(shuō),比如,數(shù)學(xué)有趣,數(shù)學(xué)好玩,當(dāng)然,你也可能說(shuō)數(shù)學(xué)很難。種種感受因人而異,實(shí)屬正常。那么,學(xué)數(shù)學(xué)有什么用?今天,我們就來(lái)聊一聊。
首先,請(qǐng)你寫(xiě)幾個(gè)偶數(shù)。你會(huì)很容易就寫(xiě)出2、4、6等。那么,你能把所有的偶數(shù)寫(xiě)出來(lái)嗎?有沒(méi)有什么辦法呢?
我們發(fā)現(xiàn):2=2×1,4=2×2,6=2×3……也就是說(shuō),任意一個(gè)偶數(shù)可以寫(xiě)成2與一個(gè)整數(shù)的積的形式。如果我們用字母n表示一個(gè)整數(shù),那么,偶數(shù)就可以表示為2×n,省略“×”號(hào),就是2n。這樣我們就可以用2n表示偶數(shù),從而解決問(wèn)題。同樣,我們可以用2n+1表示奇數(shù)。
以上的討論,實(shí)際上告訴我們,學(xué)習(xí)數(shù)學(xué),可以讓我們學(xué)會(huì)用數(shù)學(xué)的眼光觀察世界。在上述例子中,引出字母n是關(guān)鍵。進(jìn)入初中后,我們會(huì)深刻地體會(huì)到用符號(hào)表達(dá)問(wèn)題、思考問(wèn)題的優(yōu)越性。
接下來(lái),我再問(wèn)你,“兩個(gè)偶數(shù)的和(或差)是偶數(shù)嗎?”我們可以先寫(xiě)出兩個(gè)偶數(shù),例如6和4,發(fā)現(xiàn)它們的和(或差)都是偶數(shù)。那我們是不是可以說(shuō)“兩個(gè)偶數(shù)的和(或差)是偶數(shù)”呢?顯然有失偏頗。因?yàn)槟阒慌e了一個(gè)例子。有的同學(xué)說(shuō),那好辦,多舉一些例子,不妨舉1000個(gè)例子。最后,發(fā)現(xiàn)結(jié)果仍然都是偶數(shù)。這樣是不是就可以確定我們的發(fā)現(xiàn)(猜想)是正確的呢?很遺憾,還不能。因?yàn)榕紨?shù)有無(wú)數(shù)個(gè),你沒(méi)有把所有情形都列舉出來(lái)。
那怎么辦?這就彰顯數(shù)學(xué)的魅力了——用數(shù)學(xué)的思維思考問(wèn)題。
我們用2n、2m表示兩個(gè)偶數(shù)(n、m是整數(shù)),根據(jù)乘法分配律,2n+2m=2(n+m),2n-2m=2(n-m)。我們知道,兩個(gè)整數(shù)相加或相減,結(jié)果仍是整數(shù),所以2(n+m)和2(n-m)是偶數(shù)。由于n、m是整數(shù),所以2n、2m就可以表示任意的兩個(gè)偶數(shù),雖不是具體的偶數(shù),但具有一般性。
以上的討論實(shí)際上經(jīng)歷這樣的過(guò)程:舉出具體的例子去試一試→發(fā)現(xiàn)規(guī)律→提出猜想→證實(shí)猜想→確認(rèn)結(jié)論。這是一個(gè)完整的思考問(wèn)題的過(guò)程,進(jìn)入初中,我們經(jīng)常會(huì)經(jīng)歷這樣的過(guò)程。同學(xué)們可以自行嘗試按照這樣的過(guò)程思考一下:兩個(gè)奇數(shù)的和(或差)是奇數(shù)嗎?一個(gè)偶數(shù)與一個(gè)奇數(shù)的呢?
最后一個(gè)問(wèn)題。母親節(jié),小紅買(mǎi)了一束花,打算送給媽媽。這束花有2支百合、2支玫瑰、4支康乃馨。小紅共付了45元,但她看百合是5元1支,然后對(duì)售貨員說(shuō):“你的賬算錯(cuò)了?!毙〖t說(shuō)的對(duì)嗎?
我們可以像剛才分析問(wèn)題的思路一樣,引入字母。1支玫瑰a元,2支玫瑰就是2a元,顯然2a是偶數(shù)。1支康乃馨b元,4支康乃馨是4b元,因?yàn)?b=2×2b,所以4b也是偶數(shù)。而2支百合為10元,所以這束花需要(10+2a+4b)元。我們知道,任意兩個(gè)偶數(shù)的和仍是偶數(shù),所以10+2a+4b是偶數(shù),這與“她共付了45元”矛盾,所以小紅說(shuō)的對(duì)。
其實(shí),這個(gè)問(wèn)題還可以這樣理解:1支玫瑰a元,1支康乃馨b元,按照題意,我們得到等式:2×5+2a+4b=45,即10+2a+4b=45。這個(gè)等式成立嗎?一位同學(xué)這樣想:如果a=1,則b=[334];如果a=2,則b=[314];如果a=3,則b=[294];如果a=4,則b=[274]……一直算下去,結(jié)果發(fā)現(xiàn)b的值都不是整數(shù),所有情形都不符合實(shí)際情況,所以小紅說(shuō)的對(duì)。
回顧以上兩種思路,我們發(fā)現(xiàn),第一種方法是引入字母,用一些式子表示花的價(jià)格并進(jìn)行分析與判斷;第二種方法也是引入字母,不僅用一些式子表示花的價(jià)格及總價(jià),還列出了一個(gè)包含字母a、b的等式,列舉了所有可能的結(jié)果。這兩種方法中,字母、含字母的式子以及等式都是數(shù)學(xué)的語(yǔ)言(當(dāng)然,文字及圖表也是)。因此,學(xué)會(huì)用數(shù)學(xué)的語(yǔ)言描述與表達(dá)現(xiàn)實(shí)問(wèn)題,就可以把現(xiàn)實(shí)問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,然后用數(shù)學(xué)的知識(shí)加以解決。在后續(xù)的學(xué)習(xí)中,我們可以逐漸體會(huì)到數(shù)學(xué)語(yǔ)言構(gòu)建了數(shù)學(xué)通往現(xiàn)實(shí)世界的橋梁。
同學(xué)們,通過(guò)剛剛對(duì)偶數(shù)相關(guān)問(wèn)題的討論,有沒(méi)有意識(shí)到學(xué)習(xí)數(shù)學(xué)的意義?即用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)世界,用數(shù)學(xué)的思維思考現(xiàn)實(shí)世界,用數(shù)學(xué)的語(yǔ)言表達(dá)現(xiàn)實(shí)世界。希望通過(guò)學(xué)習(xí)數(shù)學(xué),我們的眼光、思維與表達(dá)都能充滿數(shù)學(xué)味兒。
(作者單位:江蘇省南京市江寧區(qū)教學(xué)研究室)