劉超 何斌 汪澤幸 周蓉
摘要:大多數(shù)合成纖維屬于惰性高分子材料,由于活性基團較少,抗菌改性相對較困難,因此對抗菌劑的選擇和改性方法提出了更高要求。鹵胺化合物具有廣譜長效抗菌、可循環(huán)再生、穩(wěn)定性好等優(yōu)點被廣泛用于纖維材料的抗菌改性。本文從鹵胺化合物分類和合成纖維抗菌改性方法兩個方面出發(fā),總結了表面接枝、表面涂覆、共混改性和反應擠出等方法對合成纖維進行鹵胺化合物抗菌改性的研究進展,并展望了未來合成纖維抗菌改性的發(fā)展方向。
關鍵詞:鹵胺化合物;合成纖維;抗菌;改性方法
中圖分類號:TS102.6文獻標志碼:A文章編號:1009265X(2022)03002308
Research progress of antibacterial modified synthetic fiber materials
based on Nhalamine compounds
LIU Chao HE Bin WANG Zexing ZHOU Rong
Abstract: Most synthetic fibers are inert polymer materialsand are relatively difficult for antibacterial modification due to fewer active groups, setting higher requirements for the selection and modification methods of antibacterial agents. Nhalamine compounds with the advantages of their broadspectrum, longacting antibacterial, recyclable and good stability are widely used in antibacterial modification of fiber materials. In this paper, based on the classification of Nhalamine compounds and the antibacterial modification methods of synthetic fibers, the research progress of different Nhalamine compounds in the antibacterial modification of synthetic fibers by surface grafting, surface coating, blending modification and reactive extrusion was summarized, and the future development direction of antibacterial modification of synthetic fibers was prospected.
Key words: Nhalamine; synthetic fiber; antibacterial; modification method
鹵胺化合物是一種新型的有機抗菌劑,最早由Kovacic等[12]在1969年提出,20 世紀90年代后,Sun等[3]開始致力于高分子鹵胺化合物的設計和合成制備。鹵胺化合物可定義為含有一個或多個氮鹵(N—X)共價鍵的有機抗菌劑,其分子結構一般如圖1所示[4],其中R1,R2一般是無機基團、有機基團、H、Cl、Br等,X表示鹵素Cl或Br。根據(jù)N—X相鄰基團性質不同,可分為酰亞胺結構,酰胺結構或胺結構的鹵胺化合物。與其它抗菌劑相比,由于其具有廣譜長效抗菌、可再生、穩(wěn)定性好、對人不產生毒副作用、環(huán)境友好等優(yōu)點[5]而引起了研究者的廣泛關注。
1鹵胺抗菌劑
1.1抗菌機理
由于N—Br,N—I鍵在實際應用中不穩(wěn)定且易分解,因此目前常使用氯胺(N—Cl)化合物作為主要的鹵胺抗菌劑,其抗菌機理和可再生循環(huán)過程如圖2所示[67],N—Cl鍵在水分子作用下會緩慢分解,逐漸被還原成N—H鍵,同時釋放出的氯正離子(Cl+)具有氧化殺菌作用,可有效殺死多種細菌、病毒等有害微生物。與無機鹵素相比,鹵胺化合物性能更穩(wěn)定,腐蝕性更小[8]。殺死這些病菌后,再經(jīng)過次氯酸鹽漂洗,化合物中的N—H 鍵又可以被氧化形成N—Cl鍵,再次獲得殺菌功能,因此鹵胺化合物的抗菌性能具有循環(huán)可再生性。研究認為鹵胺化合物中N—X共價鍵和游離的鹵正離子是主要的活性單體,均表現(xiàn)出較強的正電性和氧化性能,可以與微生物中的活性官能團反應,通過N—X中的鹵正離子直接轉移到微生物表面,或鹵正離子被釋放到溶液中再與微生物接觸,從而抑制和破壞微生物體內的酶活性來達到殺菌的目的[910]。
1.2環(huán)狀和非環(huán)狀鹵胺化合物
根據(jù)鹵胺化合物分子結構中N—X所處位置的不同,可將其分為可分為環(huán)狀和非環(huán)狀鹵胺化合物。環(huán)狀鹵胺化合物是指N—X共價鍵在環(huán)狀結構內部,目前合成的環(huán)狀鹵胺化合物多為五元環(huán)和六元環(huán)結構。環(huán)狀鹵胺化合物由于不含有α氫,阻止了脫鹵化氫過程,因此抗菌性能更穩(wěn)定,持續(xù)時間更長[1112]。常見的環(huán)狀鹵胺化合物有五元環(huán)結構的海因類(5,5二甲基海因)、咪唑烷酮類、惡唑烷酮類、琥珀酰亞胺類,以及六元環(huán)結構的1,3,5三嗪2,4二酮,氰尿酸類和哌啶醇類等[4],其結構如圖3所示。
五元環(huán)結構中以含有海因結構的鹵胺化合物最常見。Eknoiam等[13]基于BuchererBergs 反應,合成出了一系列海因環(huán)狀鹵胺化合物,如5甲基5(4′甲基苯基)海因、3(5′甲基5′海因)乙酰苯胺[14],5甲基5(3′氨基苯基)海因[15]等。此外,以5,5二甲基海因作為反應物,通過取代反應可以制備不同連接基團的鹵胺化合物,如3(2,3二羥基丙基)5,5二甲基海因,3環(huán)氧基5,5二甲基海因,三乙氧基5,5二甲基海因等都是基于該方法制備得到[9, 16]。除五元環(huán)結構的環(huán)狀鹵胺化合物以外,Li等[17]和Ma等[18]基于異氰尿酸,制備出了多種六元環(huán)鹵胺化合物,如1環(huán)氧丙基s三嗪2,4,6三酮和1(2,3二羥基丙基)s三嗪2,4,6三酮。
非環(huán)狀鹵胺化合物是指N—X共價鍵不在環(huán)狀結構內部。目前常見的主要有胺類、酰胺類、多糖、三聚氰胺、氨基酸等化學結構的非環(huán)狀鹵胺化合物,如圖4所示。由于其結構較開放,非環(huán)狀鹵胺化合物對水解更敏感。Pastoriza 等[1920]將有機胺與具有氧化性的鹵素化合物反應,制成了多種有機胺類非環(huán)狀鹵胺化合物。酰胺類非環(huán)狀鹵胺化合物通常采用乙烯基酰胺類單體聚合后氯化得到,如丙烯酰胺(AAM),甲基丙烯酰胺(MAM),N叔丁基丙烯酰胺(NTAAM)和N叔丁基甲基丙烯酰胺(NTMAM)等,已被研究人員用于棉纖維和聚酯(PET)、聚丙烯(PP)和聚丙烯腈(PAN)等合成纖維的表面抗菌整理[2123]。部分多糖類聚合物通過氯化處理后,可以成為非環(huán)狀鹵胺化合物,如常用的殼聚糖。將甲殼素納米纖維膜與次氯酸反應可以制成具有抗菌性能的納米纖維[24]。Cao等[25]將氨基殼聚糖氯化處理制成具有抑菌效果的生物膜,但其抗菌活性不強。Li等[26]、Cheng等[27]采用海因環(huán)接枝改性殼聚糖,制備出抗菌性能優(yōu)異的鹵胺化合物。
2鹵胺化合物抗菌改性合成纖維材料
目前鹵胺化合物已被廣泛應用于水消毒,除臭,抗菌涂料和衛(wèi)生材料等方面,同時在纖維織物,非織造材料和聚合物原料的抗菌改性方面也有大量應用。由于棉纖維表面含有較多羥基,可作為反應基團與鹵胺單體進行接枝或交聯(lián)反應,是鹵胺化合物抗菌改性應用研究較多的一種纖維材料。而大多數(shù)合成纖維屬于惰性高分子材料,鹵胺化合物對其進行抗菌改性相對較困難,工藝流程較復雜,目前常用的合成纖維抗菌改性方法主要有:表面接枝、表面涂覆、共混改性和反應擠出等。
2.1表面接枝
表面接枝主要采用自由基接枝聚合方法在材料表面接枝鹵胺前驅體,然后經(jīng)氯漂后得到鹵胺化合物抗菌改性材料。Huang等[28]和Tamizifar等[29]采用該方法,將不同的乙烯基鹵胺單體,如3烯丙基5,5二甲基乙內酰脲(ADMH),N乙烯基吡咯烷酮(VP),4氰基苯乙烯(CnSt),甲基丙烯酸四甲基4哌啶基酯(TMPM),AAM和2丙烯酰胺基2甲基1丙烷磺酸(AMPS)等,在過氧化物引發(fā)劑作用下接枝到PET纖維表面,氯化后的PET纖維表現(xiàn)出優(yōu)異的抗菌性能。同時采用Hansen溶解度參數(shù)理論定量分析接枝體系中化學成分(包括單體,引發(fā)劑,聚酯和溶劑)的相互作用和親和力,用于控制PET纖維上的自由基接枝聚合[30]。此外,研究發(fā)現(xiàn)在接枝反應體系中添加交聯(lián)劑可以促進乙烯基單體的接枝[31]。
Xi等[32]通過氣相輔助聚合(VAP)方法對PET織物進行抗菌改性,VAP工藝不需要有機溶劑且抗菌單體消耗量少[3334]。先用等離子處理PET織物使其表面產生自由基,然后將ADMH氣化并接枝聚合在PET織物表面。氯化后,改性的PET織物對金黃色葡萄球菌和大腸桿菌的殺菌率達到80%,可承受超過30次的洗滌試驗。
通過在材料表面接枝互穿網(wǎng)絡高分子來進行抗菌改性是目前一個新的研究方向[35],通過交聯(lián)可以有效提高鹵胺前驅體的接枝率,增加材料表面的活性官能團,進而提高抗菌性能。Liu等[36]、Zhao等[3738]通過在材料表面生成熱塑性半互穿聚合物網(wǎng)絡(IPN),如圖5所示,將聚丙烯酰胺(PAM)或聚甲基丙烯酰胺(PMAM)交聯(lián)固定在化學惰性熱塑性聚合物(如PP或PET)基材的表面上。氯化后轉化為N鹵胺化合物,所得材料顯示出持久而有效的抗菌活性。此外,由于改性僅限于聚合物材料的一側,因此對聚合物纖維材料的表面形態(tài),透氣性和拉伸強度影響較小。
2.2表面涂覆法
Liu等[39]分別合成了兩種高分子鹵胺前驅體:陽離子型聚3(丙烯酰胺丙基)三甲基氯化銨和陰離子型聚(2丙烯酰胺基2甲基丙磺酸鈉鹽),并采用layerbylayer(LbL)組裝技術[40],分別通過浸漬和噴涂法將其涂覆在聚丙烯紡粘非織造材料上,如圖6所示??咕囼灡砻?,浸漬處理的試樣能分別在60 min和30 min內能滅活5 log以上的金黃色葡萄球菌和大腸桿菌,噴涂法處理的試樣中活性氯含量相對較低,但也能在60 min內使細菌失活。所有試樣在黑暗和光照條件下均表現(xiàn)出良好的儲存穩(wěn)定性,且涂層對試樣透氣性影響較小。Denisrohr等[41]也采用LbL技術將聚乙烯亞胺和聚丙烯酸涂覆至厚度為150 μm的聚丙烯膜上,浸漬或噴涂法制成的試樣氯漂后對李斯特菌的抗菌效率均達到99.999%以上。
Cerkez等[4243]分別合成了含乙內酰脲的N鹵胺均聚物(HP),以及含乙內酰丙烯酰胺(HA)、甲基丙烯酸縮水甘油酯和乙基三甲基氯化銨的水分散性三元共聚物(HAcoGMcoMETAC),再采用浸軋法分別涂覆至PET織物表面,涂層織物殺菌性能優(yōu)異,并具有優(yōu)良的耐洗性和耐紫外線性能。此外,該團隊還基于HA合成了陰離子和陽離子型N鹵胺共聚物,分別采用LbL技術和浸軋法將共聚物沉積在PP非織造材料表面[44]。結果顯示,LbL多層沉積試樣所需的滅活時間比浸軋法的單層沉積試樣更長,因為活性氯從多層結構中釋放速度較慢,因此浸軋法形成的單層沉積更適合用于一次性產品的抗菌處理。
Ren等[14]將合成的鹵胺前驅體3(5甲基5′乙內酰脲基)乙酰苯胺涂覆在靜電紡PAN納米纖維上,經(jīng)氯漂后,5 min接觸時間內可殺滅5 log金黃色葡萄球菌和大腸桿菌。張淑敏等[45]采用浸漬法將共聚合成的3(3′丙烯酸丙酯)5,5二甲基海因乙酸乙烯酯整理到PP非織造材料上,結果顯示改性后的試樣在30 min內能使所有金黃色葡萄球菌和大腸桿菌失活。Demir等[46]將MC通過表面涂覆的方式對不同面密度的PP熔噴過濾材料進行抗菌改性,接觸10 min后能完全滅活大腸桿菌和金黃色葡萄球菌。此外,還設計了含菌氣溶膠過濾實驗,結果顯示該試樣在3 h后仍具有抗菌功效。
Chen等[47]通過硅烷醇解反應,將合成的4乙基4(羥甲基)惡唑烷22(EHMO)鹵胺前體接枝到聚甲基氫硅氧烷(PMHS)上。氯化處理后再將其溶解于超臨界二氧化碳中,最終在PP纖維表面形成厚度為72 nm的N鹵胺聚硅氧烷涂層,該涂層能在10 min接觸時間后使金黃色葡萄球菌和大腸桿菌完全失活,同時具有良好的可再生性、耐洗滌性、儲存穩(wěn)定性和耐紫外線輻射等。
2.3共混改性法
共混改性法是將含有N鹵胺官能團的聚合物與其它高分子聚合物共混,再經(jīng)過紡絲得到抗菌纖維材料的方法。N鹵胺改性聚合物材料的抗菌性能應在很大程度上取決材料表面的N鹵胺功能位點數(shù)量,即纖維越細,比表面積越大,處于纖維表面的N鹵胺功能位點越多,纖維與微生物的接觸面積越多,則材料而具有更高效的抗菌性能,因此,可以通過靜電紡絲等方法將共混聚合物制備成抗菌納米纖維膜。
李蓉等[48]將聚乙烯醇(PVA)與3環(huán)氧丙基5,5二甲基海因改性殼聚糖(CTSGH)共混溶解后,再通過靜電紡絲工藝將混合物制成直徑為800 nm左右的納米纖維膜,經(jīng)氯漂后獲得高效抗菌性能。黃程博等[49]將合成的海因單體3(4′乙烯芐基)5,5二甲基海因(VBDMH)與甲基丙烯酸甲酯(MMA)進行聚合反應,制成新型的抗菌鹵胺高分子前驅體,再與PAN共混溶解,最后通過靜電紡絲形成抗菌PAN納米纖維膜,可在30 min內殺滅大腸桿菌和金黃色葡萄球菌。此外,還將MC與PAN混合后制成具有抗菌性能的PAN/MC納米纖維,10 min接觸時間后能殺滅6 log以上的金黃色葡萄球菌和大腸桿菌[50]。
Luo等[51]將2,2,6,6四甲基4哌啶醇氯化后接枝到聚甲基丙烯酸甲酯(PMMA)大分子鏈上制成N鹵胺抗菌聚合物(AP),然后將AP和熱塑性聚氨酯(TPU)分別溶解于N,N二甲基乙酰胺后按一定比例共混,采用靜電紡絲工藝將共混物加工成納米纖維膜。結果表明,制成的納米纖維膜對金黃色葡萄球菌、大腸桿菌、以及釀酒酵母和曲霉菌等真菌均表現(xiàn)出較強的抗菌功效,可用于傷口抗菌敷料的制備。
Bai等[52]將環(huán)狀N鹵胺化合物1,3二氯5,5二甲基乙內酰脲(DCDMH)和1,3二溴5,5二甲基乙內酰脲(DBDMH)分別或同時與PMMA混合,溶解后通過靜電紡絲工藝制納米纖維,大腸桿菌分別與 PMMADBDMH 和 PMMADCDMH 接觸 60 min 和 90 min后被完全殺滅,循環(huán)抗菌測試表明,經(jīng)過5次循環(huán)測試后,初紡纖維可以保持抗菌性能。然而,對于產業(yè)化應用而言,PMMA纖維仍存在機械強度和柔軟性不足等問題,需要進一步研究改善。
Tian等[53]通過親核取代反應將5、5二甲基乙內酰脲和三甲胺接枝到聚苯乙烯上(PS),合成了一種新型聚合物(PSDT),該聚合物上同時具有鹵胺和陽離子季銨鹽基團,然后將其與聚氨酯(PU)混合制成溶液,再通過特殊的靜電紡絲技術制成了PSDT / PU納米纖維蛛網(wǎng)膜,由于納米蛛網(wǎng)具有多孔結構,使得靜電紡絲膜表現(xiàn)出高效低阻空氣過濾性能,且氯化后的PSDT/PU納米蛛網(wǎng)能在2 min顯示出優(yōu)異的殺菌和殺病毒性能(>99.999%),對細菌的攔截效率達到99.77%。
2.4反應擠出法
Badrossamay等[21, 5458]通過熔融反應擠出法分別將AAM、MAM、NTAAM、NTMAM、VBDMH、2,4二氨基6二烯丙基氨基1,3,5三嗪(NDAM)和ADMH等單體成功接枝到PP或聚乙烯(PE)大分子主鏈上,對比分析了過氧化物引發(fā)劑的濃度和類型,反應溫度和反應擠出的轉速對接枝聚合物反應的影響。然后將改性后的熱塑性聚合物作為分散相與醋酸丁酸纖維素(CAB)按一定比例混合,由于兩者互不相容從而形成了不相容共混體系,如圖7所示。共混物熔融后,熱塑性聚合物會以球形狀分散于CAB中,擠出時由于壓力作用產生拉伸變形而成為橢圓形,熔體被進一步拉伸變形,在基體材料CAB中的熱塑性聚合物形成連續(xù)納米纖維,混合物冷卻固化后,再通過大量的丙酮萃取將CAB去除,最終得到平均直徑為600 nm的納米纖維。氯化后的纖維對大腸桿菌和金黃色葡萄球菌表現(xiàn)出強效的抗菌性能。
Wang等[5962]采用反應擠出法將NDAM單體熔融接枝聚合到親水性聚乙烯醇co乙烯共聚物(PVAcoPE)上,研究了過氧化物引發(fā)劑的濃度和原料中乙烯含量對NDAM接枝率的影響。并采用不相容共混體系制備成平均直徑為200 nm的纖維,將納米纖維與異丙醇按一定比例混合后,經(jīng)攪拌機粉碎制成分散均勻的納米纖維懸浮液,通過高壓噴槍噴涂在非織造基布上,經(jīng)氯漂后制成了具有抗菌效果的水過濾微濾膜。
3結語
鹵胺化合物通過表面接枝和交聯(lián)、表面涂覆等方法對合成纖維材料進行抗菌整理,是目前比較常用的抗菌改性方法,具有操作簡單,適用范圍廣,工藝流程短等優(yōu)點,但可能存在耐洗牢度較差等問題。而共混和反應擠出改性是對合成纖維原料進行改性,抗菌效果更持久,耐洗性更好,但纖維材料抗菌改性過程較復雜,對抗菌劑和原料的選擇要求更高。長遠來看,通過抗菌劑直接對高分子聚合物原料進行改性是未來的發(fā)展趨勢,通過實現(xiàn)工業(yè)化生產直接用于制備抗菌纖維材料,產品可廣泛用于醫(yī)療衛(wèi)生、過濾、擦拭材料、個體防護,阻隔防護等領域,具有廣闊的應用前景。
參考文獻:
[1]KOVACIC P, LOWERY M K. Chemistry of Nhalamines. XII. Amination of alkyl halides with trichloraminealuminum chloride[J]. The Journal of Organic Chemistry, 1969, 34(4): 911917.
[2]KOVACIC P, LOWERY M K, FIELD K W. Chemistry of Nbromamines and Nchloramines[J]. Chemical Reviews, 1970, 70(6): 639665.
[3]SUN G, WHEATLEY W B, WORLEY S D. A new cyclic Nhalamine biocidal polymer[J]. Industrial & Engineering Chemistry Research, 1994, 33(1): 168170.
[4]HUI F, DEBIEMMECHOUVY C. Antimicrobial Nhalamine polymers and coatings: A review of their synthesis, characterization, and applications[J]. Biomacromolecules, 2013, 14(3): 585601.
[5]LI L, JUNG J, MA W, et al. Enhanced antimicrobial and antifungal property of twodimensional fibrous material assembled by Nhalamine polymeric electrolytes[J]. Materials Science and Engineering C, 2020, 115: 111122.
[6]SUN X, CAO Z, PORTEOUS N, et al. Amine, melamine, and amide Nhalamines as antimicrobial additives for polymers[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 1120611213.
[7]REN X H, KOU L, KOCER H B, et al. Antimicrobial coating of an Nhalamine biocidal monomer on cotton fibers via admicellar polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317(1/2/3): 711716.
[8]WORLRY S D, WILLAMS D E, CRAWFROD R A. Halamine water disinfectants[J]. Critical Reviews in Enviromental Control, 1988, 18(2): 133175.
[9]REN X H, KOCER H B, WORLEY S D, et al. Rechargeable biocidal cellulose: Synthesis and application of 3(2,3dihydroxypropyl)5,5dimethylimidazolidine2,4dione[J]. Carbohydrate Polymers, 2009, 75(4): 683687.
[10]BARNELA S B, WORLEY S D, WILLAMS D E. Syntheses and antibacterial activity of new Nhalamine compounds[J]. Journal of Pharmaceutical Sciences, 1987, 76(3): 245247.
[11]AHMED A E S I, HAY J N, BUSHELL M E, et al. Optimizing halogenation conditions of Nhalamine polymers and investigating mode of bactericidal action[J]. Journal of Applied Polymer Science, 2009, 113(4): 24042412.
[12]CHOI K, NAM M J, KIM J Y, et al. Synthesis and characterization of biocidal poly(oxyethylene)s having Nhalamine side groups[J]. Macromolecular Research, 2011, 19(12): 12271232.
[13]EKNOIAN M W, WORLEY S D, Harris J M. New biocidal NhalaminePEG polymers[J]. Journal of Bioactive and Compatible Polymers, 1998, 13(2): 136145.
[14]REN X H, AKDAG A, ZHU C Y, et al. Electrospun polyacrylonitrile nanofibrous biomaterials [J]. Journal of Biomedical Materials Research Part A, 2009, 91A(2): 385390.
[15]LEE J, BROUGHTON R M, AKDAG A, et al. Preparation and application of anstriazinebased novel Nhalamine biocide for antimicrobial fibers[J]. Fibers and Polymers, 2007, 8(2): 148154.
[16]LIANG J, CHEN Y J, REN X H, et al. Fabric treated with antimicrobial Nhalamine epoxides[J]. Industrial & Engineering Chemistry Research, 2007, 46(20): 64256429.
[17]LI L, MA K K, LIU Y, et al. Biocompatible antimicrobial cotton modified with tricarbimidebased Nhalamine [J]. Polymers for Advanced Technologies, 2014, 25(9): 963968.
[18]MA K K, LIU Y, XIE Z, et al. Synthesis of novel Nhalamine epoxide based on cyanuric acid and its application for antimicrobial finishing [J]. Industrial & Engineering Chemistry Research, 2013, 52(22): 74137418.
[19]PASTORIZA C, ANTELO J M, CRUGEIRAS J. Reactions of chlorination withtertbutyl hypochlorite (TBuOCl)[J]. Journal of Physical Organic Chemistry, 2014, 27(12): 952959.
[20]PASTORIZA C, ANTELO J M, CRUGEIRAS J. Use of NchloroNmethylptoluenesulfonamide in Nchlorination reactions[J]. Journal of Physical Organic Chemistry, 2013, 26(7): 551559.
[21]BADROSSAMAY M R, SUN G. Acyclic halamine polypropylene polymer: Effect of monomer structure on grafting efficiency, stability and biocidal activities[J]. Reactive and Functional Polymers, 2008, 68(12): 16361645.
[22]LUO J, SUN Y. Acyclic Nhalaminebased fibrous materials: Preparation, characterization, and biocidal functions [J]. Journal of Polymer Science Part A Polymer Chemistry, 2006, 44(11): 35883600.
[23]YLDIZ O, CERKEZ I, KOCER H B, et al. N(hydroxymethyl)acrylamide as a multifunctional finish to cotton and a tether for grafting methacrylamide for biocidal coatings[J]. Journal of Applied Polymer Science, 2013, 128(6): 44054410.
[24]DUTTA A K, EGUSA M, KAMINAKA H, et al. Facile preparation of surface Nhalamine chitin nanofiber to endow antibacterial and antifungal activities[J]. Carbohydrate Polymers, 2015, 115: 342347.
[25]CAO Z, SUN Y. Nhalaminebased chitosan: Preparation, characterization, and antimicrobial function[J]. Journal of Biomedical Materials Research Part A, 2008, 85(1): 99107.
[26]LI R, HU P, REN X H, et al. Antimicrobial Nhalamine modified chitosan films[J]. Carbohydrate Polymers, 2013, 92(1): 534539.
[27]CHENG X L, MA K K, LI R, et al. Antimicrobial coating of modified chitosan onto cotton fabrics[J]. Applied Surface Science, 2014, 309: 138143.
[28]HUGANG C, CHEN Y B, SUN G, et al. Disinfectant performance of a chlorine regenerable antibacterial microfiber fabric as a reusable wiper[J]. Materials, 2019, 12(1): 127.
[29]TAMIZIFAR M, SUN G. Control of surface radical graft polymerization on polyester fibers by using Hansen solubility parameters as a measurement of the affinity of chemicals to materials[J]. RSC Advances, 2017, 7(22): 1329913303.
[30]TAMIZIFAR M, SUN G. Surface modification of poly(ethylene terephthalate)fibers via controlled radical graft polymerization[J]. Journal of Applied Polymer Science, 2018, 135(11): 45990.
[31]TAMIZIFAR M, SUN G. Controlled surface functionalization of poly(ethylene terephthalate)fibers with varied vinyl monomers via radical graft copolymerization[J]. Materials Today Communications, 2018, 17: 124132.
[32]XI G H, XIUY L, WANG L, et al. Antimicrobial Nhalamine coatings synthesized via vaporphase assisted polymerization[J]. Journal of Applied Polymer Science, 2015, 132(15): 41824.
[33]ANDOU Y, JEONG J M, NISHIDA H, et al. Simple procedure for polystyrenebased nanocomposite preparation by vaporphaseassisted surface polymerization[J]. Macromolecules, 2009, 42(20): 79307935.
[34]ANDOU Y, JEONG J M, HIKI S, et al. Design of nanocomposites by vaporphase assisted surface polymerization[J]. Macromolecules, 2009, 42(3): 768772.
[35]王留陽,王芳穎.鹵胺在織物抗菌改性中的應用進展[J].上海紡織科技,2011,39(11):811.
WANG Liuyang, WANG Fangying. Progress of halamine applications in the preparation of antimicrobial fabrics[J]. Shanghai Textile Science & Technology, 2011, 39(11): 811.
[36]LIU S, ZHAO N, RUDENJA S. Surface interpenetrating networks of poly(ethylene terephthalate)and polyamides for effective biocidal properties[J]. Macromolecular Chemistry and Physics, 2010, 211(3): 286296.
[37]ZHAO N, ZHANEL G G, LIU S. Regenerability of antibacterial activity of interpenetrating polymeric Nhalamine and poly(ethylene terephthalate)[J]. Journal of Applied Polymer Science, 2011, 120(1): 611622.
[38]ZHAO N, LIU S. Thermoplastic semiIPN of polypropylene (PP)and polymeric Nhalamine for efficient and durable antibacterial activity[J]. European Polymer Journal, 2011, 47(8): 16541663.
[39]LIU Y, QIAO M, LV C, et al. Nhalamine polyelectrolytes used for preparation of antibacterial polypropylene nonwoven fabrics and study on their basal cytotoxicity and mutagenicity[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69(15): 971978.
[40]LIU Y, LI J, CHENG X, et al. Selfassembled antibacterial coating by Nhalamine polyelectrolytes on a cellulose substrate[J]. Journal of Materials Chemistry B, 2015, 3(7): 14461454.
[41]DENISROHR A, BASTARRACHEA L J, GODDARD J M. Antimicrobial efficacy of Nhalamine coatings prepared via dip and spray layerbylayer deposition[J]. Food and Bioproducts Processing, 2015, 96: 1219.
[42]CERKEZ I, WORLEY S D, BROUGHTON R M, et al. Antimicrobial coatings for polyester and polyester/cotton blends[J]. Progress in Organic Coatings, 2013, 76(7/8): 10821087.
[43]CERKEZ I, KOCER H B, WOLEY S D, et al. Antimicrobial functionalization of poly(ethylene terephthalate)fabrics with waterborne Nhalamine epoxides[J]. Journal of Applied Polymer Science, 2016, 133(9): 43088.
[44]CERKEZ I, WOLEY S D, BROUGHTON R M, et al. Antimicrobial surface coatings for polypropylene nonwoven fabrics[J]. Reactive and Functional Polymers, 2013, 73(11): 14121419.
[45]張淑敏,任學宏,李清芳.鹵胺抗菌共聚物改性丙綸無紡布的研究[J].化工新型材料,2018,46(4): 201204.
ZHANG Shumin, REN Xuehong, LI Qingfang. Study on antibacterial finishing of PP nonwoven fabric by Nhalamine copolymer[J]. New Chemical Materials, 2018, 46(4): 201204.
[46]DEMIR B, CERKEZ I, WORLEY S D, et al. Nhalaminemodified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria[J]. ACS Applied Materials & Interfaces, 2015, 7(3): 17521757.
[47]CHEN Y, HE Q K, REN G Y, et al. Preparation of biocidal 4ethyl4(hydroxymethyl)oxazolidin2onebased Nhalamine polysiloxane for impregnation of polypropylene in supercritical CO2[J]. Journal of Applied Polymer Science, 2018, 135(33): 46624.
[48]李蓉,劉喆,任學宏.環(huán)狀鹵胺化合物改性殼聚糖/PVA納米纖維的制備與表征[J].材料導報,2013,27(14):4548.
LI Rong, LIU Zhe, REN Xuehong. Preparation and characterization of cyclic Nhalamine modified chitosan/PVA nanofibers[J]. Materials Reports, 2013, 27(14): 4548.
[49]黃程博,任學宏.靜電紡抗菌聚丙烯腈納米纖維膜制備及其性能[J].紡織學報,2019,40(5):711.
HUANG Chengbo, REN Xuehong. Synthesis and properties of antibacterial polyacrylonitrile nanofiber membrane[J]. Journal of Textile Research, 2019, 40(5): 711.
[50]HUANG C B, LIU Y, LI Z G, et al. Nhalamine antibacterial nanofibrous mats based on polyacrylonitrile and Nhalamine for protective face masks[J]. Journal of Engineered Fibers and Fabrics, 2019, 14: 18.
[51]LUO H, YIN X Q, TAN P F, et al. Engineering an antibacterial nanofibrous membrane containing Nhalamine for recyclable wound dressing application[J]. Materials Today Communications, 2020, 23: 100898.
[52]BAI R, ZHANG Q, LI L L, et al. Nhalaminecontaining electrospun fibers kill bacteria via a contact/release codetermined antibacterial pathway[J]. ACS Applied Materials & Interfaces, 2016, 8(46): 3153031540.
[53]TIAN CC, WU F, JIAO W L, et al. Antibacterial and antiviral Nhalamine nanofibrous membranes with nanonet structure for bioprotective applications[J]. Composites Communications, 2021, 24: 100668.
[54]BADROSSAMAY M R, SUN G. A study of radical graft copolymerization on polypropylene during extrusion using two peroxide initiators[J]. Polymer International, 2010, 59(2): 155161.
[55]BADROSSAMAY M R, SUN G. A study on melt grafting of Nhalamine moieties onto polyethylene and their antibacterial activities[J]. Macromolecules, 2009, 42(6): 19481954.
[56]BADROSSAMAY M R, SUN G. Graft polymerization of Ntertbutylacrylamide onto polypropylene during melt extrusion and biocidal properties of its products[J]. Polymer Engineering & Science, 2009, 49(2): 359368.
[57]BADROSSAMAY M R, SUN G. Durable and rechargeable biocidal polypropylene polymers and fibers prepared by using reactive extrusion[J]. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2009, 89B(1): 93101.
[58]BADROSSAMAY M R, SUN G. Preparation of rechargeable biocidal polypropylene by reactive extrusion with diallylamino triazine[J]. European Polymer Journal, 2008, 44(3): 733742.
[59]WANG D, SUN G, CHIOU B S. A highthroughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers[J]. Macromolecular Materials and Engineering, 2007, 292(4): 407414.
[60]WANG D, LIU N, XU W L, et al. Layerbylayer structured nanofiber membranes with photoinduced selfcleaning functions[J]. The Journal of Physical Chemistry C, 2011, 115(14): 68256832.
[61]WANG D, SUN G. Formation and morphology of cellulose acetate butyrate (CAB)/polyolefin and CAB/polyester in situ microfibrillar and lamellar hybrid blends[J]. European Polymer Journal, 2007, 43(8): 35873596.
[62]WANG D, XU W L, SUN G, et al. Radical graft polymerization of an allyl monomer onto hydrophilic polymers and their antibacterial nanofibrous membranes[J]. ACS Applied Materials & Interfaces, 2011, 3(8): 28382844
收稿日期:20210623網(wǎng)絡出版日期:20211020
基金項目:湖南省教育廳項目(18C0693);湖南工程學院青年科研項目(XJ1802)
作者簡介:劉超(1985-),女,湖南衡陽人,博士研究生,主要從事非織造過濾材料制備及性能方面的研究。