2型糖尿?。═2DM)是一種與胰島素抵抗和高血糖相關(guān)的代謝紊亂疾病。糖尿病患者長期暴露在高血糖、高胰島素血癥、氧化應(yīng)激和炎性因子的環(huán)境中,會(huì)出現(xiàn)多種并發(fā)癥。藥物治療主要針對控制血糖,而對胰島素抵抗及相關(guān)并發(fā)癥效果不佳。最近研究表明,運(yùn)動(dòng)干預(yù)對2型糖尿病患者產(chǎn)生多方面的生理益處,包括控制血糖、改善胰島素抵抗以及減輕氧化應(yīng)激、血管病變和炎癥反應(yīng)等,成為防治糖尿病及其并發(fā)癥的重要措施,然而,與運(yùn)動(dòng)相關(guān)的分子機(jī)制目前還不清楚。Irisin是運(yùn)動(dòng)后產(chǎn)生的一種肌肉因子,在調(diào)節(jié)脂肪和糖代謝中發(fā)揮重要作用,它可能參與運(yùn)動(dòng)改善2型糖尿病的調(diào)節(jié)機(jī)制。本文從Irisin調(diào)控糖代謝的分子通路角度探討運(yùn)動(dòng)改善糖尿病的分子機(jī)制。
2型糖尿病主要表現(xiàn)為糖脂代謝紊亂,胰島素受體敏感性下降,底物磷酸化受損[1,2],出現(xiàn)胰島素抵抗。據(jù)報(bào)道,全世界約有9%的人口患有糖尿病,且以2型糖尿病的患病率為最高[3,4]。糖尿病可引起一系列的并發(fā)癥,如腎衰竭、周圍神經(jīng)病變、視網(wǎng)膜病變,心腦血管病變等。糖尿病并發(fā)癥嚴(yán)重降低了患者的生活質(zhì)量,給患者帶來很大負(fù)擔(dān),是致殘的重要原因。炎癥因子分泌增加是2型糖尿病的基本特征,改善炎癥與胰島素抵抗是控制糖尿病的關(guān)鍵。研究表明,運(yùn)動(dòng)干預(yù)等生活方式改變可以比藥物更有效地預(yù)防糖尿病的發(fā)生,可以有效改善血脂、血壓和炎癥標(biāo)志物,減少內(nèi)臟和腹部脂肪,從而改善胰島素抵抗。
1 Irisin與糖代謝
Irisin最先由Bostrom團(tuán)隊(duì)等發(fā)現(xiàn)[5],它是前體FNDC5(fibronectin type III domain containing protein 5)經(jīng)蛋白水解酶切割后形成。Irisin可通過調(diào)節(jié)體內(nèi)能量代謝、抑制血糖紊亂,改善糖尿病癥狀。Irisin可誘導(dǎo)P38絲裂原活化蛋白激酶(p38/ mitogen activated protein kinase, p38/MAPK)激活,使GLUT4轉(zhuǎn)移到肌細(xì)胞膜上,從而提高糖尿病小鼠骨骼肌的葡萄糖攝取量[6,7]。Irisin也被證明可以通過激活p38/MAPK和細(xì)胞外信號調(diào)節(jié)激酶(extracellular-signal regulated kinase,ERK),來促進(jìn)白色脂肪細(xì)胞中UCP1表達(dá)、增加褐色脂肪[5,8],而UCP1可以增強(qiáng)線粒體的呼吸作用,增加產(chǎn)熱,從而增加能量消耗,加速白色脂肪細(xì)胞褐變,減少脂毒性,改善胰島素抵抗。Huh等[9]證實(shí),人體血液中Irisin濃度升高明顯促進(jìn)骨骼肌內(nèi)葡萄糖氧化分解。在表達(dá)FNDC5高脂飲食小鼠中,Irisin和UCP-1(uncoupling protein 1)水平顯著增加,這兩個(gè)因子水平升高明顯增加棕色脂肪含量,棕色脂肪可以促進(jìn)消耗能量,對葡萄糖的分解代謝有促進(jìn)作用,從而起到降低血糖的作用[10]。有研究發(fā)現(xiàn)[11],新發(fā)糖尿病患者血漿Irisin水平明顯較低;阻斷Irisin斷信號通路可增加2型糖尿病發(fā)病。Liu等[12]對60例健康人與96例2型糖尿病患者血液中Irisin含量進(jìn)行比較,發(fā)現(xiàn)2型糖尿病患者循環(huán)Irisin水平顯著降低。成年男性循環(huán)Irisin水平與肥胖和胰島素抵抗相關(guān);小鼠Irisin水平升高可引起全身能量消耗增加,提示Irisin具有改善肥胖相關(guān)的胰島素抵抗作用[13]。
2 運(yùn)動(dòng)與糖尿病
研究表明,運(yùn)動(dòng)在預(yù)防肥胖癥和2型糖尿病等慢性病有重要的作用[14]。規(guī)律的體育鍛煉可以增加糖脂代謝并改善胰島素抵抗性[15,16],成為預(yù)防2型糖尿病的重要措施。另外,運(yùn)動(dòng)可改善肌肉減少癥,使骨骼肌纖維增粗,橫截面積增大,可吸收更多的餐后葡萄糖[17,18],使血糖濃度趨于穩(wěn)定、減少胰島素分泌,這對于改善胰島素抵抗非常重要。同時(shí),運(yùn)動(dòng)還會(huì)通過糖酵解系統(tǒng)和有氧氧化系統(tǒng)來增強(qiáng)線粒體的生物功能,從而改善胰島素信號傳導(dǎo)[1,2]。長期規(guī)律運(yùn)動(dòng)還會(huì)消耗機(jī)體過多的脂肪,包括皮下脂肪和內(nèi)臟脂肪,降低脂毒性,改善胰島素抵抗[1]。骨骼肌還是重要的內(nèi)分泌器官。骨骼肌可產(chǎn)生和釋放肌肉因子、影響機(jī)體代謝,并參與多個(gè)器官功能調(diào)節(jié)[19]。肌肉因子進(jìn)入血液循環(huán),能改善細(xì)胞內(nèi)糖脂代謝狀態(tài),促進(jìn)骨骼肌蛋白合成,維持骨骼肌細(xì)胞內(nèi)環(huán)境穩(wěn)定,改善胰島素敏感性,在防治肥胖、2型糖尿病和代謝綜合征等慢性疾病方面發(fā)揮重要作用[20]。
運(yùn)動(dòng)常包括不同類型的運(yùn)動(dòng),如有氧(耐力)和阻力(力量)訓(xùn)練[21]。運(yùn)動(dòng)方案也包括不同要素,比如運(yùn)動(dòng)量、頻率、強(qiáng)度和持續(xù)時(shí)間。美國糖尿病協(xié)會(huì)(ADA)發(fā)布的2020年糖尿病醫(yī)療護(hù)理標(biāo)準(zhǔn)補(bǔ)充建議,耐力活動(dòng)輔以力量訓(xùn)練是防治糖尿病的有效措施[22]。最近的一項(xiàng)研究評估了T2DM患者在不同負(fù)荷下進(jìn)行強(qiáng)度訓(xùn)練的效果。結(jié)果表明,最高中等強(qiáng)度(75%1RM)顯示糖尿病組的葡萄糖攝取更好。結(jié)果表明,60%或75%1RM的抗阻訓(xùn)練可以作為一種非藥理學(xué)措施改善糖尿病。Lee等[23]研究了12周耐力運(yùn)動(dòng)對肥胖青少年和T2DM患者BDNF和炎癥因子的影響。12周的耐力訓(xùn)練(每次40-60分鐘,每周3次)明顯改善2型糖尿病癥狀、增加大腦BDNF水平,降低心血管疾病風(fēng)險(xiǎn)。Mendes等人最近比較了HIIT和中等強(qiáng)度持續(xù)訓(xùn)練(MICT)對中老年人T2DM患者血糖控制的急性影響[24],發(fā)現(xiàn)HIIT可能明顯改善中老年人T2DM患者血糖水平,表明HIIT是一種安全有效的治療糖尿病措施。
3 Irisin在運(yùn)動(dòng)改善2型糖尿病及其并發(fā)癥的作用與機(jī)制
2型糖尿病患者長期暴露在高血糖、高胰島素血癥、氧化應(yīng)激和高水平炎癥因子環(huán)境中,會(huì)對心血管系統(tǒng)和心理健康產(chǎn)生負(fù)面影響,比如動(dòng)脈粥樣硬化性心血管疾?。–VD)和心理健康問題。運(yùn)動(dòng)干預(yù)對2型糖尿病患者會(huì)產(chǎn)生許多益處,比如控制血糖和血壓水平,降低心血管疾病和改善認(rèn)知功能。最近發(fā)現(xiàn)的Irisin是運(yùn)動(dòng)后產(chǎn)生的一種肌肉因子,目前認(rèn)為它參與2型糖尿病患者運(yùn)動(dòng)促進(jìn)心血管功能和改善認(rèn)知的重要機(jī)制。
3.1 Irisin、運(yùn)動(dòng)與2型糖尿病胰島素抵抗
在T2DM患者中,循環(huán)中Irisin含量通常會(huì)下降。Zhang等人研究發(fā)現(xiàn),運(yùn)動(dòng)可改善T2DM癥狀,促進(jìn)Irisin水平升高[8]。運(yùn)動(dòng)增加心血管系統(tǒng)功能,促進(jìn)白色脂肪組織細(xì)胞中解偶聯(lián)蛋白-1(UCP-1)表達(dá)升高,誘導(dǎo)這些細(xì)胞轉(zhuǎn)化為棕色型脂肪細(xì)胞。運(yùn)動(dòng)導(dǎo)致的Irisin分泌增加可促進(jìn)p38絲裂原活化蛋白激酶(p38 MAPK)的磷酸化和細(xì)胞外信號相關(guān)激酶(ERK)的激活,促進(jìn)α-trophin表達(dá)的增加,從而促進(jìn)β-胰腺細(xì)胞的增殖和再生,增加胰島素分泌。Amri等發(fā)現(xiàn)高強(qiáng)度間歇訓(xùn)練的糖尿病大鼠血清中Irisin、α-trophin和胰島素水平升高,改善胰島素抵抗[25]。胰島素抵抗是T2DM中一個(gè)重要的病理生理過程,與高胰島素血癥、脂肪酸氧化、ROS的產(chǎn)生、糖毒性和脂毒性相關(guān)[26],運(yùn)動(dòng)干預(yù)可有效改善胰島素抵抗[27]。
3.2 Irisin、運(yùn)動(dòng)與糖尿病心肌病
T2DM誘導(dǎo)多種細(xì)胞因子的激活,如TNF-α、白介素6(IL-6)、白介素1-β(IL-1β)、生長因子-β(TGF-β),這些細(xì)胞因子共同導(dǎo)致血管內(nèi)皮和心肌炎癥、心肌細(xì)胞肥大、細(xì)胞代謝改變、心肌細(xì)胞死亡、成纖維細(xì)胞激活和纖維化,產(chǎn)生糖尿病性心肌病[28]。運(yùn)動(dòng)抑制代謝紊亂和氧化應(yīng)激[29],減輕內(nèi)質(zhì)網(wǎng)應(yīng)激[30]減少心臟重構(gòu)并改善糖尿病心肌中ROS造成的損傷[31],增加一氧化氮的表達(dá),改善微血管舒張功能,促進(jìn)血管內(nèi)皮細(xì)胞功能[32]。運(yùn)動(dòng)導(dǎo)致的這些有益變化與Irisin分泌增加有關(guān),運(yùn)動(dòng)促進(jìn)Irisin表達(dá)、改善胰島素抵抗,從而改善心臟和骨骼肌中的胰島素受體敏化,促進(jìn)葡萄糖攝取,減少ROS產(chǎn)生,抑制脂毒性,減少TNF-α、IL-6、IL-1b、TGF-β分泌,減輕血管內(nèi)皮炎癥、心肌炎癥、心肌細(xì)胞肥大、心肌細(xì)胞死亡及纖維化[4]。
3.3 Irisin、運(yùn)動(dòng)與2型糖尿病認(rèn)知功能
T2DM可導(dǎo)致認(rèn)知功能下降和記憶減退,這種情況在老年糖尿病患者中更為普遍[33]。運(yùn)動(dòng)可改善胰島素抵抗、減輕認(rèn)知衰退和記憶衰退[34,35],這種良性作用與運(yùn)促進(jìn)Irisin 表達(dá)有關(guān)。大量研究發(fā)現(xiàn),Irisin表達(dá)增高可減輕炎癥和促進(jìn)線粒體膜蛋白的增加[36]。Irisin處理的大腦皮質(zhì)切片中發(fā)現(xiàn)那些改善認(rèn)知功能和記憶的幾種重要蛋白,如環(huán)磷酸腺苷(cAMP)、蛋白激酶A (PKA)和cAMP元素結(jié)合蛋白(CREB)表達(dá)升高[37]。運(yùn)動(dòng)可誘導(dǎo)小鼠BDNF和其他與神經(jīng)保護(hù)和記憶有關(guān)的基因的中樞表達(dá)[37,38],Irisin還保護(hù)神經(jīng)元免受Aβ寡聚物的影響,Aβ寡聚物是導(dǎo)致阿爾茨海默病認(rèn)知障礙和記憶喪失的主要原因[39]。研究發(fā)現(xiàn)Irisin通過調(diào)節(jié)星形膠質(zhì)細(xì)胞對培養(yǎng)的神經(jīng)元具有神經(jīng)保護(hù)作用。Wang等人在糖尿病小鼠模型中評估了Irisin是否能夠改善記憶和認(rèn)知能力[40]。結(jié)果表明,膠質(zhì)原纖維酸蛋白水平上調(diào),突觸蛋白表達(dá)減少。Irisin治療還抑制了糖尿病小鼠P38、STAT3和NFκB的激活。Irisin聯(lián)明顯改善糖尿病小鼠的認(rèn)知功能和記憶力下降現(xiàn)象。最近的一項(xiàng)研究評估了運(yùn)動(dòng)對小鼠[41]中PGC-1α/FNDC5/Irisin通路的影響,運(yùn)動(dòng)小鼠大腦中Irisin、FNDC5、PGC-1α和BDNF水平較高,其認(rèn)知和記憶缺陷較低。而拮抗FNDC5表達(dá),運(yùn)動(dòng)對認(rèn)知和記憶的有益影響被消除了。因此,運(yùn)動(dòng)可通過促進(jìn) Irisin 的表達(dá)改善T2DM患者及小鼠的認(rèn)知功能。
4 結(jié)論與展望
運(yùn)動(dòng)促進(jìn)Irisin分泌增加,從而改善2型糖尿病胰島素抵抗、增加心血管功能、改善認(rèn)知功能。目前的研究大多數(shù)是來自動(dòng)物實(shí)驗(yàn)的證據(jù),而Irisin在運(yùn)動(dòng)改善2型糖尿病患者心血管功能、抑郁和焦慮的影響還有待深入研究。這些問題的闡明,有利于我們更深入的了解運(yùn)動(dòng)改善糖尿病及其并發(fā)癥的機(jī)制,從為尋找有效的治療措施提供理論依據(jù)。
參考文獻(xiàn)
[1]Qatanani M,Lazar MA.Mechanisms of obesity-associated insulin resistance: many choices on the menu[J].Genes Dev. 2007;21(12):1443-1455.
[2]Gamas L,Matafome P,Seica R.Irisin and Myonectin Regulation in the Insulin Resistant Muscle: Implications to Adipose Tissue: Muscle Crosstalk [J]. J Diabetes Res.2015;2015:359159.
[3]Negre-Salvayre A,Salvayre R,Auge N,Pamplona R, Portero-Otin M.Hyperglycemia and glycation in diabetic complications [J].Antioxid Redox Signal. 2009;11(12):3071-3109.
[4]Gizaw M,Anandakumar P,Debela T.A Review on the Role of Irisin in Insulin Resistance and Type 2 Diabetes Mellitus[J].J Pharmacopuncture.2017;20(4):235-242.
[5]Xian HM,Che H,Qin Y,et al.Coriolus versicolor aqueous extract ameliorates insulin resistance with PI3K/Akt and p38 MAPK signaling pathways involved in diabetic skeletal muscle[J].Phytother Res. 2018;32(3):551-560.
[6]Lee HJ,Lee JO, Kim N,et al.Irisin,a Novel Myokine,Regulates Glucose Uptake in Skeletal Muscle Cells via AMPK [J].Mol Endocrinol.2015;29(6):873-881.
[7]Vaughan RA,Gannon NP,Barberena MA,et al.Characterization of the metabolic effects of Irisin on skeletal muscle in vitro [J].Diabetes Obes Metab.2014;16(8):711-718.
[8]Zhang Y,Li R, Meng Y,et al.Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling [J].Diabetes.2014;63(2):514-525.
[9]Huh JY,Panagiotou G,Mougios V,et al.FNDC5 and Irisin in humans:I.Predictors of circulating concentrations in serum and plasma and II.mRNA expression and circulating concentrations in response to weight loss and exercise [J].Metabolism.2012;61(12):1725-1738.
[10]Sanchis-Gomar F,Lippi G,Mayero S,Perez-Quilis C,Garcia-Gimenez JL.Irisin:a new potential hormonal target for the treatment of obesity and type 2 diabetes[J].J Diabetes.2012;4(3):196.
[11]Choi YK,Kim MK,Bae KH,et al.Serum Irisin levels in new-onset type 2 diabetes[J].Diabetes Res Clin Pract.2013;100(1):96-101.
[12]Liu JJ,Wong MD,Toy WC,et al.Lower circulating Irisin is associated with type 2 diabetes mellitus[J].J Diabetes Complications.2013;27(4):365-369.
[13]Yuksel MA,Oncul M,Tuten A,et al.Maternal serum and fetal cord blood Irisin levels in gestational diabetes mellitus[J].Diabetes Res Clin Pract. 2014;104(1):171-175.
[14]Petersen AM,Pedersen BK.The anti-inflammatory effect of exercise[J].J Appl Physiol(1985). 2005;98(4):1154-1162.
[15]Zou Z,Cai W,Cai M,Xiao M,Wang Z.Influence of the intervention of exercise on obese type II diabetes mellitus:A meta-analysis [J].Prim Care Diabetes. 2016;10(3):186-201.
[16]Mathur N,Pedersen BK. Exercise as a mean to control low-grade systemic inflammation [J].Mediators Inflamm.2008;2008:109502.
[17]Kozakova M,Balkau B,Morizzo C,Bini G, Flyvbjerg A,Palombo C.Physical activity,adiponectin, and cardiovascular structure and function[J].Heart Vessels.2013;28(1):91-100.
[18]Bostrom P,Wu J,Jedrychowski MP,et al.A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis [J].Nature. 2012;481(7382):463-468.
[19]Pedersen BK.Muscle as a secretory organ [J].Compr Physiol.2013;3(3):1337-1362.
[20]Hecksteden A,Wegmann M,Steffen A,et al.Irisin and exercise training in humans-results from a randomized controlled training trial[J].BMC Med. 2013;11:235.
[21]Garber CE,Blissmer B,Deschenes MR,et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory,musculoskeletal,and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise[J].Med Sci Sports Exerc.2011;43(7):1334-1359.
[22]American Diabetes A.3.Prevention or Delay of Type 2 Diabetes:Standards of Medical Care in Diabetes-2020 [J].Diabetes Care.2020;43(Suppl 1):S32-S36.
[23]Lee SS,Yoo JH,Kang S,et al.The Effects of 12 Weeks Regular Aerobic Exercise on Brain-derived Neurotrophic Factor and Inflammatory Factors in Juvenile Obesity and Type 2 Diabetes Mellitus [J].J Phys Ther Sci. 2014;26(8):1199-1204.
[24]Mendes R,Sousa N,Themudo-Barata JL,Reis VM. High-Intensity Interval Training Versus Moderate-Intensity Continuous Training in Middle-Aged and Older Patients with Type 2 Diabetes:A Randomized Controlled Crossover Trial of the Acute Effects of Treadmill Walking on Glycemic Control [J].Int J Environ Res Public Health.2019;16(21).
[25]Amri J,Parastesh M,Sadegh M,Latifi SA, Alaee M. High-intensity interval training improved fasting blood glucose and lipid profiles in type 2 diabetic rats more than endurance training; possible involvement of Irisin and betatrophin [J].Physiol Int. 2019;106(3):213-224.
[26]Boudina S,Abel ED.Diabetic cardiomyopathy revisited [J]. Circulation. 2007;115(25):3213-3223.
[27]Liu SX, Zheng F,Xie KL, Xie MR,Jiang LJ,Cai Y. Exercise Reduces Insulin Resistance in Type 2 Diabetes Mellitus via Mediating the lncRNA MALAT1/MicroRNA-382-3p/Resistin Axis [J]. Mol Ther Nucleic Acids. 2019;18:34-44.
[28]Frati G,Schirone L,Chimenti I,et al.An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy [J].Cardiovasc Res.2017;113(4):378-388.
[29]Mahmoud R,Wainwright SR,Galea LA.Sex hormones and adult hippocampal neurogenesis:Regulation, implications,and potential mechanisms [J].Front Neuroendocrinol.2016;41:129-152.
[30]Chengji W,Xianjin F.Exercise protects against diabetic cardiomyopathy by the inhibition of the endoplasmic reticulum stress pathway in rats[J].J Cell Physiol. 2019;234(2):1682-1688.
[31]Gimenes C,Gimenes R,Rosa CM,et al.Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats[J].J Diabetes Res. 2015;2015:457848.
[32]Cohen ND, Dunstan DW,Robinson C,Vulikh E, Zimmet PZ,Shaw JE.Improved endothelial function following a 14-month resistance exercise training program in adults with type 2 diabetes[J].Diabetes Res Clin Pract.2008;79(3):405-411.
[33]Bourdel-Marchasson I,Lapre E,Laksir H,Puget E. Insulin resistance,diabetes and cognitive function: consequences for preventative strategies [J].Diabetes Metab. 2010;36(3):173-181.
[34]Baker LD,F(xiàn)rank LL,F(xiàn)oster-Schubert K,et al.Effects of aerobic exercise on mild cognitive impairment:a controlled trial[J].Arch Neurol. 2010;67(1):71-79.
[35]Shima T,Matsui T,Jesmin S,et al.Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes [J].Diabetologia.2017;60(3):597-606.
[36]Botta A,Laher I,Beam J,et al.Short term exercise induces PGC-1alpha,ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts [J].PLoS One.2013;8(8):e70248.
[37]Lourenco MV,F(xiàn)rozza RL,de Freitas GB,et al.Exercise-linked FNDC5/Irisin rescues synaptic plasticity and memory defects in Alzheimer's models [J]. Nat Med. 2019;25(1):165-175.
[38]Wrann CD,White JP,Salogiannnis J,et al. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway [J].Cell Metab.2013;18(5):649-659.
[39]Wang K,Li H,Wang H,Wang JH,Song F,Sun Y. Irisin Exerts Neuroprotective Effects on Cultured Neurons by Regulating Astrocytes [J].Mediators Inflamm.2018;2018:9070341.
[40]Wang K,Song F, Xu K,et al. Irisin Attenuates Neuroinflammation and Prevents the Memory and Cognitive Deterioration in Streptozotocin-Induced Diabetic Mice [J].Mediators Inflamm.2019;2019:1567179.
[41]Sousa R,Hagenbeck KF,Arsa G,Pardono E. Moderate/high resistance exercise is better to reduce blood glucose and blood pressure in middle-aged diabetic subjects [J].Brazilian Journal of Physical Education and Sport. 2020;34(1):165-175.
通訊作者:趙仁清