劉心藜,欒曉圣,王芳,王會(huì)龍,梁志強(qiáng),王雪蓮,張晶晶
精密與超精密加工
扭力軸花鍵冷打表面完整性研究
劉心藜1,欒曉圣2a,王芳1,王會(huì)龍1,梁志強(qiáng)2b,王雪蓮1,張晶晶1
(1.北京北方車輛集團(tuán)有限公司,北京 100072;2.北京理工大學(xué) a.機(jī)械與車輛學(xué)院 b.先進(jìn)加工技術(shù)國(guó)防重點(diǎn)學(xué)科實(shí)驗(yàn)室,北京 100081)
針對(duì)扭力軸花鍵冷打表面完整性規(guī)律不明的問(wèn)題,研究冷打成形后花鍵表面的幾何、力學(xué)和組織狀態(tài)演變,為扭力軸花鍵抗疲勞制造工藝提供參考。將扭力軸花鍵冷打成形,檢測(cè)、表征冷打成形后花鍵的表面形貌及表面粗糙度、殘余應(yīng)力、表層硬化和表層微觀組織狀態(tài),基于高應(yīng)變率下的真實(shí)應(yīng)力應(yīng)變曲線,對(duì)表層等效塑性應(yīng)變進(jìn)行分析。花鍵冷打起始與結(jié)束區(qū)域的表面存在“加工紋理不連續(xù)”、“起裂”缺陷。齒根表面形成殘余壓應(yīng)力,達(dá)到–928.5 MPa。表層加工硬化效果明顯,硬化層深度達(dá)1 mm,顯微硬度和等效塑性應(yīng)變沿層深呈梯度分布,顯微硬度提升24.2%,等效塑性應(yīng)變達(dá)到175%。表層組織發(fā)生嚴(yán)重塑性變形,呈“纖維狀”,深度達(dá)500 μm。扭力軸花鍵冷打表面質(zhì)量不均勻,兩端為薄弱區(qū)域,對(duì)齒根進(jìn)行表面滾壓處理是后續(xù)必不可少的工序。冷打成形引入的殘余壓應(yīng)力、加工硬化和連續(xù)性的微觀組織變形層對(duì)于表面完整性具有積極意義,其受后續(xù)工序的影響及演變需要進(jìn)一步研究。
扭力軸花鍵;冷打成形;表面完整性
當(dāng)前先進(jìn)制造技術(shù)面臨從“成形制造”到“表面完整性制造”的轉(zhuǎn)變,即在實(shí)現(xiàn)零件加工精度的同時(shí),還需要形成高性能的表面層,以保證零件服役性能的長(zhǎng)期可靠性,如抗疲勞、耐磨損和耐腐蝕等性能要求[1-3]。加工表面幾何形態(tài)和力學(xué)性能,如表面紋理、表層硬化、殘余應(yīng)力和微觀組織變形等指標(biāo)是影響零件服役性能的關(guān)鍵因素,揭示其形成及演變規(guī)律,對(duì)于“表面完整性制造”具有重要的指導(dǎo)意義[4-5]。
冷打成形是利用金屬材料的塑性變形特征,強(qiáng)迫金屬塑性流動(dòng),形成輪廓外形的一種“等材制造”方法。該方法加工效率高、成本低,綠色環(huán)保,在保證高精度成形的同時(shí),改善成形表面完整性,使表層材料產(chǎn)生加工硬化,引入殘余壓應(yīng)力,表層形成連續(xù)組織纖維,提高結(jié)構(gòu)件的抗疲勞性能,具有重要的應(yīng)用價(jià)值[6-10]。崔鳳奎等[11]研究了漸開(kāi)線花鍵冷打成形表層殘余應(yīng)力的分布規(guī)律,發(fā)現(xiàn)齒根處形成的殘余壓應(yīng)力最大,齒頂處形成的殘余壓應(yīng)力最小。劉志奇等[12]在花鍵冷滾壓成形的研究中也發(fā)現(xiàn),齒根部位強(qiáng)化程度最高,顯微硬度提高25%。梁小明等[13]研究了40Cr材料冷滾打后的殘余應(yīng)力分布,發(fā)現(xiàn)沿冷打方向齒根處,殘余壓應(yīng)力最大值出現(xiàn)在距表面0.6 mm處,約為–550 MPa。李龍等[14]對(duì)45號(hào)鋼進(jìn)行了冷滾打試驗(yàn),發(fā)現(xiàn)齒槽表層金屬組織晶粒得到明顯細(xì)化,且呈纖維狀。Takemasu等[15]發(fā)現(xiàn)滾壓工藝能夠降低齒輪表層組織間的孔隙度,引入更大的殘余壓應(yīng)力,提升齒輪表面的抗疲勞性能。Roy等[16]和Haghshenas等[17-18]分別采用顯微壓痕硬度法,對(duì)采用花鍵芯軸單輥流動(dòng)成形的AISI 1020鋼制件內(nèi)部Von-Mises等效塑性真應(yīng)變的局部變化進(jìn)行了評(píng)估,分析了結(jié)構(gòu)件不同區(qū)域發(fā)生的塑性應(yīng)變差異帶來(lái)的應(yīng)變硬化效應(yīng),并在最大等效塑性應(yīng)變處觀察到明顯的晶粒拉伸變形。Ryttberg等[19]研究了100Cr6鋼環(huán)件冷輾擴(kuò)過(guò)程中組織和織構(gòu)的發(fā)展,發(fā)現(xiàn){111}纖維織構(gòu)向{110}織構(gòu)變化,推測(cè)出冷輾擴(kuò)過(guò)程中材料剪切和壓縮的混合變形。綜上所述,表面完整性已成為零件冷打成形過(guò)程中的主要研究?jī)?nèi)容,冷打成形后零件成形區(qū)域表層材料往往產(chǎn)生加工硬化,引入殘余壓應(yīng)力,發(fā)生嚴(yán)重塑性變形,對(duì)零件的服役性能產(chǎn)生重要影響。
扭力軸服役期間的主要失效形式是花鍵齒根部產(chǎn)生的疲勞斷裂,這與花鍵齒根加工表面形性特征密切相關(guān)[20]。冷打成形是扭力軸花鍵的主要成形工藝,目前對(duì)其表面形性特征的形成及演變規(guī)律認(rèn)識(shí)仍然不足,缺乏對(duì)其表面完整性的綜合表征分析。本文對(duì)扭力軸花鍵冷打成形表面進(jìn)行了全面的檢測(cè)分析,揭示了其表面形貌及表面粗糙度、殘余應(yīng)力、表層顯微硬度及等效塑性應(yīng)變分布、表層微觀組織的形成及演變規(guī)律,研究結(jié)果可用于指導(dǎo)扭力軸花鍵“表面完整性制造”。
扭力軸材料為退火處理后的45CrNiMoVA鋼,其化學(xué)成分見(jiàn)表1。其組織狀態(tài)形貌如圖1所示,其中白色相為鐵素體,暗色相為珠光體。
表1 45CrNiMoVA鋼化學(xué)成分
Tab.1 Chemical composition of 45CrNiMoVA steel wt.%
圖1 退火處理后45CrNiMoVA鋼的微觀組織形貌
花鍵冷打成形過(guò)程中,其表層材料的變形是一個(gè)高應(yīng)變率變形過(guò)程[21-22],基于霍普金森壓桿(SHPB)試驗(yàn),測(cè)得該材料在室溫、高應(yīng)變率(應(yīng)變率分別為3420、3690、3540 s–1)下的真實(shí)應(yīng)力應(yīng)變曲線如圖2a所示,以產(chǎn)生0.2%的殘余應(yīng)變值時(shí)的應(yīng)力值為屈服強(qiáng)度,從3條真實(shí)應(yīng)力應(yīng)變曲線中取平均值,得到45CrNiMoVA鋼的屈服強(qiáng)度s=746.7 MPa。金屬材料的名義硬度和屈服應(yīng)力y存在以下關(guān)系,見(jiàn)式(1)[23]。
式中:常數(shù)和壓頭幾何形狀及材料性質(zhì)有關(guān),對(duì)于晶體金屬材料,≈3。取y=746.7 MPa,計(jì)算得到45CrNiMoVA鋼在動(dòng)態(tài)加載下的名義硬度=2 240.1 MPa。
根據(jù)Hollomon[24]關(guān)系式(2),對(duì)真實(shí)應(yīng)力應(yīng)變曲線的塑性流動(dòng)應(yīng)力階段數(shù)據(jù)進(jìn)行擬合,結(jié)果如圖2b所示,得到45CrNiMoVA鋼的應(yīng)變硬化指數(shù)為0.683。
式中:為真實(shí)應(yīng)力;為強(qiáng)化系數(shù);為真實(shí)應(yīng)變。
Tabor[23]提出的顯微硬度與等效塑性應(yīng)變p之間的關(guān)系見(jiàn)式(3)。
式中:n是Berkovich硬度,與維氏硬度近似;近似等于材料的名義硬度;近似等于材料的應(yīng)變硬化指數(shù);ind是與壓痕過(guò)程相關(guān)的附加平均等效塑性應(yīng)變。基于45CrNiMoVA鋼的動(dòng)態(tài)力學(xué)性能分析結(jié)果,取=2 286 N/mm2,=0.683,基于Roy[16]對(duì)低碳鋼材料的研究,取ind=0.070 7。
基于以上分析,齒根表層材料顯微硬度HV和等效塑性應(yīng)變p的關(guān)系可以用(4)、(5)式表示:
扭力軸漸開(kāi)線花鍵冷打成形過(guò)程如圖3a所示。1對(duì)冷打輪分別偏心安裝于2根高速轉(zhuǎn)軸上,做同步逆向旋轉(zhuǎn)(本次試驗(yàn)轉(zhuǎn)速為1 800 r/min)。該旋轉(zhuǎn)運(yùn)動(dòng)帶動(dòng)冷打輪實(shí)現(xiàn)對(duì)材料表面非連續(xù)擊打,冷打輪能夠自由轉(zhuǎn)動(dòng)。擊打期間,冷打輪與工件表面為滾動(dòng)接觸。每擊打1次,扭力軸作分齒旋轉(zhuǎn)(360 (°)/,為花鍵齒數(shù)),同時(shí)沿軸向()做進(jìn)給運(yùn)動(dòng)(本次試驗(yàn)進(jìn)給速度為52 mm/min),冷打輪的擊打、滾壓迫使材料發(fā)生塑性流動(dòng),逐漸變形,直至花鍵成形。本次花鍵冷打成形試驗(yàn)是在Grob公司的C9機(jī)床上完成,冷打成形后的扭力軸花鍵試樣如圖3b所示。
冷打成形后,花鍵試樣表面完整性指標(biāo)的檢測(cè)方法如下:采用基恩士3D激光掃描顯微鏡VK-X100對(duì)試樣不同位置表面形貌進(jìn)行檢測(cè),并按照GBT 1031—2009測(cè)量表面粗糙度;依據(jù)QB-JX-01—2019,采用X射線殘余應(yīng)力分析儀μ-360 s測(cè)量表面殘余應(yīng)力;通過(guò)線切割,從冷打成形后的花鍵上切下一個(gè)齒,將垂直于軸向的橫截面磨拋、制樣,依據(jù)GB/T 4340.1—2009測(cè)量表層沿層深的顯微硬度分布,依據(jù)GB/T 13298—2015對(duì)表層截面微觀組織進(jìn)行檢測(cè)分析,通過(guò)電子背散射衍射(EBSD)技術(shù)對(duì)花鍵表層材料微觀組織變形進(jìn)行表征分析。
圖3 扭力軸花鍵冷打成形
扭力軸花鍵冷打成形后齒根的表面形貌如圖4所示。圖4a—e依次取自冷打開(kāi)始部位到冷打結(jié)束部位,沿花鍵軸向間隔均勻分布的齒根表面形貌演變過(guò)程。冷打開(kāi)始部位為扭力軸圓弧過(guò)渡段,擊打作用齒厚逐漸增加,此階段冷打成形后花鍵齒形輪廓與粗車紋理相交,導(dǎo)致此區(qū)域車削紋理不連續(xù)。同時(shí),齒根表面保留明顯的車削痕跡,如圖4a所示。隨后擊打作用齒厚進(jìn)入穩(wěn)定階段(如圖4b—d所示),齒根表面光潔度提升,保留有輕微的粗車紋理痕跡,粗車紋理痕跡的“凸向”反映了擊打材料塑性流動(dòng)的方向,沿該方向,齒根表面表現(xiàn)出明顯的連續(xù)纖維變形特征。最后,在扭力軸端面,花鍵冷打結(jié)束,此區(qū)域齒根表面出現(xiàn)“起裂”缺陷,如圖4e所示。這可能是過(guò)度擊打作用導(dǎo)致材料過(guò)度加工硬化所致。結(jié)合扭力軸結(jié)構(gòu)服役環(huán)境分析,花鍵輪廓與圓弧過(guò)渡段相交區(qū)域(見(jiàn)圖4a)表面紋理不連續(xù),在沖擊、循環(huán)扭轉(zhuǎn)載荷作用下,容易產(chǎn)生應(yīng)力集中,誘發(fā)疲勞裂紋萌生,需要重點(diǎn)關(guān)注。
圖4 花鍵冷打成形后齒根表面形貌
冷打成形過(guò)程中,與冷打輪首先接觸的區(qū)域形成齒根,隨著擊打深度的增加,齒面也與冷打輪接觸,而齒頂沒(méi)有與冷打輪直接接觸,因此花鍵冷打成形過(guò)程中齒根表面材料變形最為嚴(yán)重,其次為齒面,而齒頂表面材料受到的影響最小。圖5a、c分別為花鍵中間部位齒根和齒頂表面形貌,可見(jiàn),齒頂表面受擊打作用影響較小,仍保留明顯的粗車紋理,沿冷打方向(軸向)的形貌輪廓分別如圖5b、d所示,齒根在擊打作用下表面光潔度大幅提升。圖5e、f為齒根3D形貌及輪廓,齒根與齒面總體過(guò)渡均勻,形成較好的表面光潔度,這有利于花鍵連接配合、接觸均勻,延長(zhǎng)花鍵使役壽命。
沿冷打方向,齒根表面粗糙度變化如圖6所示。花鍵兩端齒根表面粗糙度值較大,中間位置齒根表面粗糙度值較小,為1.974 μm。冷打工藝在開(kāi)始和結(jié)束階段的不穩(wěn)定性造成的加工表面質(zhì)量問(wèn)題,可能是導(dǎo)致花鍵結(jié)構(gòu)抗疲勞、耐磨損和耐腐蝕性能降低的重要原因。
圖5 花鍵冷打成形后齒根/齒頂(花鍵中間位置)表面形貌及輪廓
圖6 花鍵冷打成形后齒根不同位置表面粗糙度
沿冷打方向測(cè)得花鍵齒根表面殘余應(yīng)力變化結(jié)果如圖7所示。在冷打作用下,齒根處材料受擠壓,發(fā)生嚴(yán)重不均勻塑性變形,齒根表面引入了較大的殘余壓應(yīng)力,表面殘余壓應(yīng)力有利于抑制表面裂紋萌生,提升結(jié)構(gòu)件使役壽命。沿花鍵冷打方向,齒根表面殘余壓應(yīng)力首先保持較為穩(wěn)定的變化,在花鍵冷打結(jié)束階段,齒根表面殘余壓應(yīng)力出現(xiàn)明顯衰減,進(jìn)一步反映了冷打結(jié)束階段的工藝不穩(wěn)定性。齒根表面最大殘余壓應(yīng)力達(dá)到–928.5 MPa,幅值超過(guò)其材料屈服強(qiáng)度。這是因?yàn)楸韺硬牧蠌椝苄宰冃芜^(guò)程中加工硬化所致[25]。這種高應(yīng)變率變形過(guò)程中,加工硬化還可能導(dǎo)致材料屈服強(qiáng)度提高。Haghshenas等[18]在花鍵芯軸流動(dòng)成形研究中發(fā)現(xiàn),應(yīng)變硬化導(dǎo)致5052合金和6061合金的平均屈服應(yīng)力分別增加了187%和87%。
圖7 花鍵冷打成形后齒根沿軸向的表面殘余應(yīng)力分布規(guī)律
在應(yīng)變硬化機(jī)制作用下,齒根表面形成硬化層。齒根表層顯微硬度分布規(guī)律如圖8a所示,可以發(fā)現(xiàn),齒根表層顯微硬度由表面到內(nèi)部呈梯度變化,最大顯微硬度出現(xiàn)在表面。相比于內(nèi)部基體的顯微硬度(最小值為277HV),表面顯微硬度(最大值344HV)提升了24.2%,硬化層深度(1)能夠達(dá)到1 mm。基于式(5)計(jì)算齒根表層材料等效塑性應(yīng)變沿層深的分布,結(jié)果如圖8b所示。最大等效塑性應(yīng)變發(fā)生在表面,達(dá)到175%,同樣沿層深形成梯度分布。實(shí)際上,鐵素體和珠光體兩相力學(xué)性能的差異會(huì)導(dǎo)致在更小尺度下鐵素體相周圍存在更大的局部應(yīng)變。Kon-stantinov等[26]通過(guò)多尺度數(shù)值仿真計(jì)算得到了鐵素體-珠光體鋼冷軋后的微觀應(yīng)變,局部組織應(yīng)變相對(duì)宏觀應(yīng)變明顯更大。
圖8 冷打成形后花鍵齒根表層材料的應(yīng)變硬化規(guī)律
扭力軸花鍵冷打表層橫截面微觀組織形貌如圖9b所示。冷打成形后,花鍵齒根-齒面-齒頂表層形成連續(xù)性流線變形,這種連續(xù)性表層微觀組織結(jié)構(gòu)能夠阻礙裂紋的萌生與擴(kuò)展[27],提升花鍵抗疲勞性能。因受擊打作用力的不同,花鍵齒頂與齒根表層微觀組織變形程度相差較大。圖9a、d為齒頂表層橫截面微觀組織形貌及其局部放大圖,齒頂表層組織變形主要由車削加工引起,受車削加工進(jìn)給方向(平行于外圓切向)影響,形成深度大約100 μm的流變層(即嚴(yán)重塑性變形層)。齒根表層微觀組織形貌如圖9c、e所示,在直接擊打作用下,齒根表層發(fā)生嚴(yán)重塑性變形,形成深度大約500 μm的流變層,鐵素體和珠光體組織晶粒均被拉長(zhǎng)成纖維狀,這與齒根表層等效塑性應(yīng)變的梯度分布規(guī)律相對(duì)應(yīng)。
因?yàn)殍F素體(較軟)和珠光體(較硬)在同一擊打過(guò)程中會(huì)發(fā)生不同的應(yīng)變[26],會(huì)導(dǎo)致微觀組織變形的不均勻。扭力軸花鍵冷打成形后,齒根表層晶粒取向分布及反極圖分布如圖10所示。從圖10a可以發(fā)現(xiàn),表層組織形成較為明顯的“纖維狀”微織構(gòu)特征;從圖10b可以發(fā)現(xiàn),微織構(gòu)偏聚在[101]方向。
圖9 扭力軸花鍵冷打表層橫截面微觀組織形貌
圖10 扭力軸花鍵冷打成形后齒根表層材料EBSD檢測(cè)結(jié)果
1)花鍵冷打表面質(zhì)量存在不均勻現(xiàn)象,花鍵起始及結(jié)束區(qū)域冷打表面質(zhì)量較差,容易成為扭力軸服役期間的薄弱部位,對(duì)扭力軸花鍵齒根進(jìn)行表面滾壓是其后續(xù)加工工藝流程中必不可少的一道工序。
2)冷打成形后齒根表層材料的加工硬化和塑性應(yīng)變呈梯度分布,影響層深度達(dá)到1 mm,最大顯微硬度提升24.2%,最大塑性應(yīng)變達(dá)175%。
3)冷打成形后,齒根表層組織晶粒被明顯拉長(zhǎng)呈“纖維狀”,形成微織構(gòu),嚴(yán)重變形層深度達(dá)到500 μm,其在后續(xù)熱處理加工中的演變及其對(duì)熱處理后材料組織力學(xué)性能的影響需要進(jìn)一步研究。
[1] 趙波. “高性能零件特種加工的表面完整性及抗疲勞性能研究”專題序言[J]. 表面技術(shù), 2019, 48(10): 4.
ZHAO Bo. Research on the Surface Integrity and Fatigue Resistance of Special Machining for High Performance Parts[J]. Surface Technology, 2019, 48(10): 4.
[2] 雷明凱, 郭東明. 高性能表面層制造: 基于可控表面完整性的精密制造[J]. 機(jī)械工程學(xué)報(bào), 2016, 52(17): 187-197.
LEI Ming-kai, GUO Dong-ming. High-Performance Sur-face Layer Manufacturing: A Precision Processing Me-thod Based on Controllable Surface Integrity[J]. Journal of Mechanical Engineering, 2016, 52(17): 187-197.
[3] 高玉魁, 趙振業(yè). 齒輪的表面完整性與抗疲勞制造技術(shù)的發(fā)展趨勢(shì)[J]. 金屬熱處理, 2014, 39(4): 1-6.
GAO Yu-kui, ZHAO Zhen-ye. Development Trend of Surface Integrity and Anti-Fatigue Manufacture of Gears [J]. Heat Treatment of Metals, 2014, 39(4): 1-6.
[4] LIAO Zhi-rong, ABDELHAFEEZ A, LI Hao-nan, et al. State-of-the-Art of Surface Integrity in Machining of Metal Matrix Composites[J]. International Journal of Ma-chine Tools and Manufacture, 2019, 143: 63-91.
[5] SALES W F, SCHOOP J, DA SILVA L R R, et al. A Review of Surface Integrity in Machining of Hardened Steels[J]. Journal of Manufacturing Processes, 2020, 58: 136-162.
[6] 崔鳳奎, 徐永福, 趙魏. 花鍵冷滾打和銑削加工的金屬組織變形研究[J]. 鍛壓技術(shù), 2008, 33(2): 70-74.
CUI Feng-kui, XU Yong-fu, ZHAO Wei. Research on Metal Microstructure Deformation of Splines Manufac-tured by Cold Rolling, milling and Cutting Processes[J]. Forging & Stamping Technology, 2008, 33(2): 70-74.
[7] 程明, 葉能永, 張士宏. GH4169合金主要塑性加工技術(shù)的研究進(jìn)展[J]. 中國(guó)材料進(jìn)展, 2016, 35(4): 241-250.
CHENG Ming, YE Neng-yong, ZHANG Shi-hong. Deve-lo-pment of Main Plastic Forming Technologies for GH4169 Alloy[J]. Materials China, 2016, 35(4): 241-250.
[8] 楊合, 孫志超, 詹梅, 等. 局部加載控制不均勻變形與精確塑性成形研究進(jìn)展[J]. 塑性工程學(xué)報(bào), 2008, 15(2): 6-14.
YANG He, SUN Zhi-chao, ZHAN Mei, et al. Advances in Control of Unequal Deformation by Locally Loading and Theories Related to Precision Plastic Forming[J]. Journal of Plasticity Engineering, 2008, 15(2): 6-14.
[9] GUPTA K, LAUBSCHER R F, DAVIM J P, et al. Recent Developments in Sustainable Manufacturing of Gears: A Review[J]. Journal of Cleaner Production, 2016, 112: 3320-3330.
[10] NEUGEBAUER R, PUTZ M, HELLFRITZSCH U. Imp-roved Process Design and Quality for Gear Manu-fac-turing with Flat and round Rolling[J]. CIRP Annals, 2007, 56(1): 307-312.
[11] 崔鳳奎, 蘇涌翔, 解克各, 等. 花鍵冷滾打成形表層殘余應(yīng)力分布規(guī)律研究[J]. 兵工學(xué)報(bào), 2018, 39(5): 1022- 1032.
CUI Feng-kui, SU Yong-xiang, XIE Ke-ge, et al. Rese-arch on Distribution Law of Residual Stress in Surface Layer of Cold Roll-Beating Spline[J]. Acta Armamentarii, 2018, 39(5): 1022-1032.
[12] 劉志奇, 宋建麗, 李永堂, 等. 漸開(kāi)線花鍵冷滾壓精密成形工藝分析及試驗(yàn)研究[J]. 機(jī)械工程學(xué)報(bào), 2011, 47(14): 32-38.
LIU Zhi-qi, SONG Jian-li, LI Yong-tang, et al. Analysis and Experimental Study on the Precision Cold Rolling Process of Involute Spline[J]. Journal of Mechanical Engi-neering, 2011, 47(14): 32-38.
[13] 梁小明, 姚梓萌, 吳神麗, 等. 冷滾打成形不同材料制件中殘余應(yīng)力分布研究[J]. 兵器材料科學(xué)與工程, 2020, 43(5): 103-111.
LIANG Xiao-ming, YAO Zi-meng, WU Shen-li, et al. Residual Stress Distribution of Different Cold Roll- Beating Materials[J]. Ordnance Material Science and Engineering, 2020, 43(5): 103-111.
[14] 李龍, 李言, 楊明順, 等. 冷滾打工藝參數(shù)對(duì)成形力及金屬變形影響研究[J]. 兵工學(xué)報(bào), 2019, 40(2): 420-429.
LI Long, LI Yan, YANG Ming-shun, et al. Influences of Cold Roll-Beating Forming Parameters on Forming Force and Metal Deformation[J]. Acta Armamentarii, 2019, 40(2): 420-429.
[15] TAKEMASU T, KOIDE T, SHINBUTSU T, et al. Effect of Surface Rolling on Load Bearing Capacity of Pre- Alloyed Sintered Steel Gears with Different Densities[J]. Procedia Engineering, 2014, 81: 334-339.
[16] ROY M J, KLASSEN R J, WOOD J T. Evolution of Plastic Strain during a Flow Forming Process[J]. Journal of Materials Processing Technology, 2009, 209(2): 1018- 1025.
[17] HAGHSHENAS M, JHAVER M, KLASSEN R J, et al. Plastic Strain Distribution during Splined-Mandrel Flow Forming[J]. Materials & Design, 2011, 32(6): 3629-3636.
[18] HAGHSHENAS M, WOOD J T, KLASSEN R J. Inve-stigation of Strain-Hardening Rate on Splined Mandrel Flow Forming of 5052 and 6061 Aluminum Alloys[J]. Materials Science and Engineering: A, 2012, 532: 287- 294.
[19] RYTTBERG K, WEDEL M K, RECINA V, et al. The Effect of Cold Ring Rolling on the Evolution of Micro-structure and Texture in 100Cr6 Steel[J]. Materials Sci-ence and Engineering: A, 2010, 527(9): 2431-2436.
[20] QIN Xiao-feng, LIU Jie, ZHAO Xing-guo, et al. Fracture Failure Analysis of Transmission Gear Shaft in a Bidire-ctional Gear Pump[J]. Engineering Failure Analysis, 2020, 118: 104886.
[21] WANG Bing, LIU Zhan-qiang, SU Guo-sheng, et al. Brittle Removal Mechanism of Ductile Materials with Ultrahigh-Speed Machining[J]. Journal of Manufacturing Science and Engineering, 2015, 137(6): 061002.
[22] 張豐收, 姚海波, 崔鳳奎, 等. 多接觸形態(tài)高速冷打材料動(dòng)態(tài)力學(xué)行為機(jī)理研究[J]. 現(xiàn)代制造工程, 2015(3): 1-6.
ZHANG Feng-shou, YAO Hai-bo, CUI Feng-kui, et al. Study on Mechanism of Dynamic Mechanical Behavior of Various Contact High Speed Cold Rolling Materials[J]. Modern Manufacturing Engineering, 2015(3): 1-6.
[23] TABOR D. The Hardness of Metals[M]. Oxford: Claren-don Press, 1951.
[24] HOLLOMON J H. Tensile Deformation[J]. Metals Tech-nology, 1945, 12: 268-290.
[25] ZHANG Meng, LIU Zhi-hua, DENG Jia, et al. Optimum Design of Compressive Residual Stress Field Caused by Ultrasonic Surface Rolling with a Mathematical Model[J]. Applied Mathematical Modelling, 2019, 76: 800-831.
[26] KONSTANTINOV D, PUSTOVOITOV D, PESIN A. Influence of Microstructure on Inhomogeneity of Stress and Strain in the Deformation Zone during Asymmetric Cold Rolling of Ferritic-Pearlitic Steels[J]. Procedia Ma-nu-facturing, 2020, 50: 514-519.
[27] 丁天勝. 超聲噴丸處理對(duì)2205雙相不銹鋼微觀組織演化及疲勞性能的影響[D]. 上海: 華東理工大學(xué), 2016.
DING Tian-sheng. Influence of Ultrasonic Shot Peening on the Microstructure Changes and Fatigue Properties in 2205 Duplex Stainless Steel[D]. Shanghai: East China University of Science and Technology, 2016.
Surface Integrity of Torsion Shaft Spline by Cold Roll Beating
1,2a,1,1,2b,1,1
(1. Beijing North Vehicle Group Corporation, Beijing 100072, China; 2. a. School of Mechanical Engineering, b. Key Laboratory of Fundamental Science for Advanced Machining, Beijing Institute of Technology, Beijing 100081, China)
In order to solve the problem that the surface integrity of torque shaft spline during cold beating is not clear, the evolution of geometry, mechanics and microstructure of spline surface after cold beating is studied, which provides reference for anti-fatigue manufacturing process of torque shaft spline. The surface morphology, surface roughness, residual stress, surface hardening and microstructure of the spline were tested and characterized. Based on the true stress-strain curve at high strain rate, the equivalent plastic strain of the surface was analyzed. The surface of the beginning and end regions of spline cold beating had the defects of “processing texture discontinuity” and “crack initiation”. The residual compressive stress on the tooth root surface was –928.5 MPa. The effect of surface work hardening was obvious. The depth of hardened layer was 1 mm. The microhardness and equivalent plastic strain were distributed gradiently along the layer depth. The microhardness increased by 24.2% and the equivalent plastic strain reached 175%. Severe plastic deformation occurred in the surface layer, which was “fibrous” with a depth of 500 μm. The surface quality of torque shaft spline is uneven in cold beating, and the two ends are weak areas. Surface rolling treatment of tooth root is an essential process in the follow-up. The residual compressive stress, work hardening and continuous microstructure deformation layer introduced by cold beating are of positive significance to surface integrity, which needs further attention due to the influence and evolution of subsequent processes.
torsion shaft spline; cold roll beating; surface integrity
TG376
A
1001-3660(2022)04-0255-08
10.16490/j.cnki.issn.1001-3660.2022.04.026
2021-05-08;
2021-11-03
2021-05-08;
2021-11-03
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFB1311100);基礎(chǔ)科研項(xiàng)目(JCKY2017208C005);國(guó)家自然科學(xué)基金(51975053)
The National Key Research and Development Program of China (2019YFB1311100); Industrial Technology Development Program of China(JCKY2017208C005) and the National Nature Science Foundation of China (51975053)
劉心藜(1978—),女,碩士,高級(jí)工程師,主要研究方向?yàn)闄C(jī)械加工工藝。
LIU Xin-li (1978—), Female, Master, Senior engineer, Research focus: machining technology.
梁志強(qiáng)(1984—),男,博士,副教授,主要研究方向?yàn)榫苣ハ?、微?xì)刀具設(shè)計(jì)與制造、抗疲勞制造技術(shù)。
LIANG Zhi-qiang (1984—), Male, Doctor, Associate professor. Research focus: precision grinding, micro tool design and manufacturing, and anti fatigue manufacturing technology.
劉心藜, 欒曉圣, 王芳, 等. 扭力軸花鍵冷打表面完整性研究[J]. 表面技術(shù), 2022, 51(4): 255-262.
LIU Xin-li, LUAN Xiao-sheng, WANG Fang, et al. Surface Integrity of Torsion Shaft Spline by Cold Roll Beating[J]. Surface Technology, 2022, 51(4): 255-262.
責(zé)任編輯:劉世忠