鄺杰華 馬 騫,2① 陳 剛,2① 毛非凡 周啟苓 黃建盛,2 施 鋼 張健東,2
軍曹魚基因cDNA克隆及其在性腺周年發(fā)育過程中的表達(dá)*
鄺杰華1馬 騫1,2①陳 剛1,2①毛非凡1周啟苓1黃建盛1,2施 鋼1張健東1,2
(1. 廣東海洋大學(xué)水產(chǎn)學(xué)院 廣東 湛江 524025;2. 南方海洋科學(xué)與工程廣東省實驗室(湛江) 廣東 湛江 524025)
軍曹魚;;基因克?。恍韵侔l(fā)育;表達(dá)分析
基因最初鑒定于斑馬魚()中(Weidinger, 2003),可編碼一種進(jìn)化上保守的RNA結(jié)合蛋白,作為脊椎動物生殖質(zhì)的重要組分之一,特異表達(dá)于生殖系細(xì)胞中,并在生殖細(xì)胞的發(fā)生及發(fā)育過程中發(fā)揮著重要作用(Gross-Thebing, 2017)?;诖颂匦?,基因常作為分子標(biāo)記物,廣泛應(yīng)用于魚類生殖細(xì)胞的相關(guān)研究(程琳等, 2020)。目前,已在多種脊椎動物中克隆和鑒定出的同源基因,包括小鼠() (Bhattacharya, 2007)、紅原雞() (Aramaki, 2009)、非洲爪蟾() (Horvay, 2006)、大西洋鱈魚() (?kugor, 2014)、大西洋鮭() (Wargelius, 2016)、泥鰍() (Fujimoto, 2010)、銀鯽() (Li, 2016)等。
據(jù)報道,基因的表達(dá)模式在不同物種中存在明顯的差異,如基因僅在小鼠精巢中特異表達(dá)(Bhattacharya, 2007);在非洲爪蟾中,基因則特異表達(dá)于卵巢(Horvay, 2006);而大黃魚() (陳仕海等, 2015)、大菱鲆() (Lin, 2013)和牙鲆() (Wang, 2015)基因均在性腺中特異表達(dá),但在卵巢中的表達(dá)水平要高于精巢。關(guān)于基因功能方面,小鼠基因發(fā)生突變后,將抑制原始生殖細(xì)胞(PGCs)的產(chǎn)生,導(dǎo)致部分特定遺傳背景的個體產(chǎn)生睪丸生殖細(xì)胞瘤(Youngren, 2005);抑制非洲爪蟾胚胎發(fā)育時期基因的表達(dá)將直接導(dǎo)致其PGCs的缺失(Horvay, 2006);敲除斑馬魚基因可引起PGCs的遷移發(fā)生異常,隨后調(diào)亡,部分雌性個體甚至出現(xiàn)性逆轉(zhuǎn)的現(xiàn)象(Weidinger, 2003)。以上研究結(jié)果表明,基因在PGCs發(fā)生、遷移及性別分化中發(fā)揮著重要的調(diào)節(jié)作用。
軍曹魚()隸屬鱸形目(Perciformes)、軍曹魚科(Rachycentridae)、軍曹魚屬(),為廣鹽暖水性海水魚類,俗稱海鱺、海龍魚,廣泛分布于熱帶和亞熱帶海域(東太平洋除外) (Castellanos-Galindo, 2016),在中國南海部分海域亦有少量分布(陳剛等, 2004)。由于軍曹魚具有生長速率快、易于馴化、抗病力強(qiáng)、肉厚質(zhì)地細(xì)膩等特點(Hamilton, 2013),近年來在南方沿海地區(qū)的養(yǎng)殖發(fā)展迅猛,隨著人工繁殖和大規(guī)模育苗技術(shù)的突破,軍曹魚已成為我國極具前景的海水網(wǎng)箱養(yǎng)殖魚類之一。
本研究克隆分析軍曹魚()基因cDNA全長序列,利用半定量RT-PCR和實時熒光定量PCR技術(shù)(qRT-PCR)檢測的組織表達(dá)分布及其在不同發(fā)育期性腺組織中的表達(dá)水平,利用原位雜交技術(shù)初步分析mRNA在配子形成過程中的表達(dá)定位分布,旨在從分子水平闡明基因在軍曹魚配子發(fā)生過程中的作用,同時也為進(jìn)一步研究魚類PGCs發(fā)生、遷移和分化的分子機(jī)理提供基礎(chǔ)理論資料。
實驗用軍曹魚于2019年6月—2020年4月采自廣東省茂名市電白縣某室內(nèi)養(yǎng)殖基地,軍曹魚幼魚飼養(yǎng)于直徑9 m、水深2.5 m的金屬圓形水池內(nèi),流水充氣,養(yǎng)殖鹽度27.0~30.5,溫度25.0℃~30.0℃,分別對90、120、150、185、210和360 dph體質(zhì)良好的軍曹魚進(jìn)行采樣,其中,實驗用雌魚共23尾,體重215.0~5050.0 g,體長29.8~68.5 cm;雄魚共18尾,體重230.0~4225.0 g,體長29.2~64.5 cm。
對隨機(jī)采集的軍曹魚活體進(jìn)行形態(tài)學(xué)指標(biāo)的測量,隨后立即解剖,取出性腺,鑒定其性別,將同一尾魚的兩葉性腺分開保存,其中一葉性腺于4℃在RNA Later中靜置過夜,最后轉(zhuǎn)移至–80℃超低溫冰箱保存,用于qRT-PCR實驗;另外一葉性腺從中間剪為兩段,分別放入4%多聚甲醛(PFA)中,固定24 h后轉(zhuǎn)入焦碳酸二乙酯(DEPC)配制的70%乙醇中,用于切片原位雜交實驗。此外,選取150 dph軍曹魚雌雄各1尾,將其腦、肌肉、鰓、肝、腸、胃、脾、體腎、心、皮膚、眼睛、精巢和卵巢分離,經(jīng)DEPC水沖洗后放入RNA Later中,–80℃保存待用。
將采集的軍曹魚卵巢放入液氮中研磨,采用Trizol法(Invitrogen)提取總RNA。通過SimpliNano超微量核酸蛋白測定儀檢測總RNA的濃度和純度,并以1.5%瓊脂糖凝膠電泳檢測其完整性。參考EasyScript One-step cDNA Synthesis試劑盒(TransGen)說明書,將2 μg總RNA反轉(zhuǎn)錄合成第一鏈cDNA,另取2 μg總RNA,按照SMARTer?RACE 5′/3′試劑盒(Clontech)說明書,合成5′/3′ RACE-Ready cDNA。
從課題組前期獲得的軍曹魚全基因組數(shù)據(jù)庫(暫未上傳至NCBI數(shù)據(jù)庫)中提取基因的CDS序列信息,分別在序列兩端設(shè)計上下游特異性引物Rcdnd-F和Rcdnd-R(表1),PCR反應(yīng)條件:95℃ 5 min;95℃ 30 s,67℃ 30 s,72℃ 1 min 20 s,共35個循環(huán);72℃ 10 min,PCR產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳檢測,確定為目的片段后用膠回收試劑盒(TransGen)純化回收,并將純化產(chǎn)物連接到pMD-18T (TaKaRa)載體,進(jìn)而轉(zhuǎn)化至DH-5α感受態(tài)細(xì)胞,篩選挑取單克隆陽性菌落由生工生物工程(上海)股份有限公司測序。根據(jù)測序片段,分別在靠近序列5′和3′末端各設(shè)計2條RACE引物Rcdnd 5′-R1/R2和Rcdnd 3′-F1/F2 (表1),采用巢式PCR獲取基因5′和3′末端序列。
使用NCBI數(shù)據(jù)庫上的BLASTP對克隆所得Rcdnd氨基酸序列進(jìn)行比對,下載其他硬骨魚類及高等脊椎動物的dnd氨基酸序列,利用GenDoc進(jìn)行氨基酸序列多重比對分析。利用MEGA 5.0軟件,以鄰接法(neighbour-joining, NJ)構(gòu)建系統(tǒng)進(jìn)化樹,針對進(jìn)化樹各分支結(jié)點均進(jìn)行1000次重復(fù)計算檢驗。
通過組織學(xué)觀察并參照國內(nèi)學(xué)者(劉筠, 1993)對魚類性腺的分期方法,依據(jù)性腺中生殖細(xì)胞的種類、成熟度、數(shù)量占比及排列方式進(jìn)行發(fā)育分期的劃分,提取不同發(fā)育時期軍曹魚的性腺以及150 dph軍曹魚個體各組織的總RNA,按照反轉(zhuǎn)錄試劑盒說明書合成cDNA。基于測序獲得的基因序列,設(shè)計一對特異性擴(kuò)增引物Rcdnd-F1/R1,并以軍曹魚作為內(nèi)參基因(表1)。PCR反應(yīng)條件:94℃ 5 min;94℃ 30 s,62℃ 30 s,72 ℃ 20 s,35個循環(huán);72℃ 10 min。通過瓊脂糖凝膠電泳檢測在不同組織中的半定量RT-PCR結(jié)果,利用Tanon 4100凝膠成像系統(tǒng)采集圖像。qRT-PCR實驗流程按照SYBR?Premix ExTM試劑盒(TaKaRa)說明書進(jìn)行操作,使用ABI 7500型實時熒光定量PCR儀檢測在不同發(fā)育時期精巢和卵巢中的表達(dá),每個實驗樣品設(shè)置3個重復(fù)。根據(jù)測得的值,采用2–ΔΔCt法(Schmittgen, 2008)計算的相對表達(dá)量。所得數(shù)據(jù)結(jié)果均以平均值±標(biāo)準(zhǔn)差(Mean±SD,=3)表示,利用統(tǒng)計學(xué)軟件SPSS 19.0進(jìn)行單因素方差分析(one-way ANOVA)及Duncan′s多重比較,<0.05表示有顯著性差異。
根據(jù)已獲得的基因序列,利用Primer Premier 6.0軟件設(shè)計具有特異性的寡核苷酸探針序列(表1),探針的5′和3′端用地高辛(DIG)標(biāo)記,由武漢賽維爾生物科技有限公司合成。
將石蠟包埋的120、210和360 dph軍曹魚精巢和卵巢樣品進(jìn)行組織切片(5~6 μm),具體雜交過程綜合參考相關(guān)研究中的方法(李曉妮等, 2017; 史寶等, 2017)。滴加BCIP/NBT顯色液進(jìn)行化學(xué)顯色,顯微觀察陽性后再滴加核固紅染核,中性樹膠封片,最后顯微鏡檢,采集圖像分析。
表1 本研究所用引物
Tab.1 Primers used in this study
圖1 軍曹魚dnd cDNA全長序列和氨基酸序列分析
下劃線指示起始密碼子和終止密碼子,粗體斜體指示加尾信號,灰色陰影指示RRM識別基序
The initiation codon ATG and stop codon TAA are underlined. The polyadenylation signal AATTAAA are in bold and italic. The RNA recognition motif (RRM) are highlighted in grey shadow
采用半定量RT-PCR檢測了在150 dph軍曹魚各組織中的表達(dá)水平,結(jié)果表明,在性腺中特異表達(dá),且卵巢和精巢中均檢測到較高的表達(dá)水平,在性腺外的其他組織中均無表達(dá)(圖4)。
在精巢發(fā)育過程中,的表達(dá)水平呈逐漸上升趨勢,其在90 dph (Ⅱ期)的表達(dá)量最低,120 dph (Ⅱ~Ⅲ期)時表達(dá)量無顯著變化,而在150 dph (Ⅲ期)~ 360 dph (Ⅴ期)的表達(dá)量均出現(xiàn)顯著升高,其中,185 dph (Ⅲ期)時表達(dá)量上升至90 dph的2.68倍,210 dph (Ⅳ期)的表達(dá)量與185 dph (Ⅲ期)無顯著差異,而360 dph (Ⅴ期)時表達(dá)量進(jìn)一步顯著升高并達(dá)到最大值,約為90 dph的3.33倍(圖5A)。
卵巢發(fā)育過程中,的表達(dá)水平先顯著升高后趨于平穩(wěn),90 dph (Ⅰ期)時的表達(dá)量最低,隨后在120 dph (Ⅰ~Ⅱ期)~360 dph (Ⅲ期)的表達(dá)量均顯著高于90 dph,其中,150 dph表達(dá)量上升至最大值,約為90 dph的2.25倍,185 dph (Ⅱ期)和210 dph (Ⅱ期)的表達(dá)量均較150 dph顯著降低,而185、210和360 dph發(fā)育時間點的相對表達(dá)量無顯著差異(圖5B)。
利用切片原位雜交技術(shù)檢測mRNA在軍曹魚不同發(fā)育期性腺中的表達(dá)定位,結(jié)果顯示,120 dph軍曹魚的精巢中,mRNA的雜交信號主要分布于精原細(xì)胞、初級精母細(xì)胞和次級精母細(xì)胞的周緣,其中,在精原細(xì)胞和初級精母細(xì)胞中檢測到的雜交信號最強(qiáng),次級精母細(xì)胞中的雜交信號明顯減弱,而精細(xì)胞中幾乎檢測不到雜交信號(圖6A1)。mRNA在210 dph和360 dph軍曹魚精巢中的表達(dá)定位模式與120 dph相似,雜交信號主要分布于精子形成過程中的精原細(xì)胞和精母細(xì)胞,在精細(xì)胞和成熟精子中的表達(dá)極其微弱(圖6B1、C1)。
圖2 軍曹魚dnd氨基酸序列的多重比對
方框表示5個氨基酸特異性保守結(jié)構(gòu)域
The frame regions indicate the five amino acid specific conserved regions
圖3 基于dnd氨基酸序列構(gòu)建的系統(tǒng)進(jìn)化樹(NJ樹)
Bootstrap檢驗的重復(fù)次數(shù)為1000次,標(biāo)尺0.05為進(jìn)化距離
The tree is based on a 1000 bootstrap procedure, the scale bar 0.05 in terms of genetic distance is indicated below the tree
圖4 RT-PCR分析Rcdnd在軍曹魚不同組織中的表達(dá)
圖5 軍曹魚性腺周年發(fā)育過程中Rcdnd mRNA的表達(dá)水平
上標(biāo)不同字母表示差異顯著(<0.05)
Different superscripts indicate significant difference (<0.05)
在卵巢發(fā)育過程中,mRNA主要在生殖細(xì)胞中表達(dá),雜交信號均勻分布于細(xì)胞質(zhì)及核仁內(nèi)。mRNA在卵原細(xì)胞中的表達(dá)最強(qiáng),而在初級卵母細(xì)胞中的表達(dá)相對較弱,且隨著卵母細(xì)胞的生長發(fā)育,在第Ⅰ、Ⅱ和Ⅲ時相卵母細(xì)胞中檢測到的雜交信號強(qiáng)度無明顯變化(圖6A1、B1和C1)。
圖6 原位雜交法分析不同發(fā)育期性腺中Rcdnd mRNA的定位
A1、B1和C1:120 dph、210 dph和360 dph精巢切片;A2、B2和C2:120 dph、210 dph和360 dph卵巢切片SG:精原細(xì)胞;PSC:初級精母細(xì)胞;SSC:次級精母細(xì)胞;ST:精細(xì)胞;SP:精子;OG:卵原細(xì)胞;Ⅰ:第Ⅰ時相卵母細(xì)胞;Ⅱ:第Ⅱ時相卵母細(xì)胞;Ⅲ:第Ⅲ時相卵母細(xì)胞
A1, B1 and C1: Sections of testis at 120 dph, 210 dph and 360 dph; A2, B2 and C2: Sections of ovary at 120 dph, 210 dph and 360 dph SG: Spermatogonia; PSC: Primary spermatocyte; SSC: Secondary spermatocyte; ST: Spermatid; SP: Spermatozoa; OG: Oogonium; Ⅰ: Oocyte at Stage Ⅰ; Ⅱ: Oocyte at Stage Ⅱ; Ⅲ: Oocyte at Stage Ⅱ
本研究采集的軍曹魚精巢樣品包含了性腺發(fā)育分期的Ⅱ~Ⅴ期,其中,90 dph時,精巢處于精母細(xì)胞增長期(Ⅱ期);120 dph時,精巢處于Ⅱ~Ⅲ期;150 dph和185 dph時,精巢均處于精母細(xì)胞成熟期(Ⅲ期),而210和360 dph精巢分別處于精子細(xì)胞變態(tài)期(Ⅳ期)和精子成熟期(Ⅴ期)。這些樣品中,的表達(dá)量隨著精巢的發(fā)育呈逐漸上升趨勢,在精子成熟期達(dá)到最大值,表明在軍曹魚精子發(fā)生過程中發(fā)揮一定的調(diào)控作用,這與大菱鲆(Lin, 2013)和藍(lán)鰭金槍魚(Yazawa, 2013)的研究結(jié)果相似。采集的卵巢樣品包含3個發(fā)育分期,其中,90 dph卵巢屬于卵原細(xì)胞增殖期(Ⅰ期),120 dph卵巢處于Ⅰ~Ⅱ期,150、185和210 dph卵巢均屬于卵母細(xì)胞小生長期(Ⅱ期),360 dph卵巢發(fā)育至初級卵母細(xì)胞大生長期(Ⅲ期)。表達(dá)量在卵原細(xì)胞增殖期最低,隨著卵巢的發(fā)育,表達(dá)量顯著升高并趨于穩(wěn)定,卵巢由Ⅰ期發(fā)育至Ⅲ期的過程中,卵母細(xì)胞通過積累糖類、蛋白質(zhì)、核酸等原生質(zhì),細(xì)胞體積不斷增大(Nishimura, 2014),因此,在卵巢發(fā)育過程中較高的表達(dá)水平可能與生殖細(xì)胞原生質(zhì)的積累密切相關(guān)。此外,大菱鲆卵巢發(fā)育過程中,基因的表達(dá)量在由Ⅰ期發(fā)育至Ⅱ期時出現(xiàn)顯著的升高,但隨著卵巢進(jìn)一步發(fā)育至Ⅲ、Ⅳ期,其表達(dá)量呈下降趨勢(Lin, 2013),這與基因在軍曹魚卵巢發(fā)育過程中的表達(dá)模式存在一定差異,由此推測,基因在卵巢發(fā)育過程中的表達(dá)模式存在物種差異性。
ARAMAKI S, KUBOTA K, SOH T,. Chicken dead end homologue protein is a nucleoprotein of germ cells including primordial germ cells. Journal of Reproduction and Development, 2009, 55(2): 214–218
BHATTACHARYA C, AGGARWAL S, ZHU R,. The mousegene isoform α is necessary for germ cell and embryonic viability. Biochemical and Biophysical Research Communications, 2007, 355(1): 194–199
CASTELLANOS-GALINDO G A, BAOS R, ZAPATA L A. Mariculture-induced introduction of cobia(Linnaeus, 1766), a large predatory fish, in the tropical eastern Pacific. BioInvasions Records, 2016, 5(1): 55–58
CHEN G, ZHANG J D, YE N,. Introduction of culture technology of cobia,(Ⅰ). Scientific Fish Farming, 2004(1): 10–11 [陳剛, 張健東, 葉寧, 等. 軍曹魚的養(yǎng)殖技術(shù)介紹(上). 科學(xué)養(yǎng)魚, 2004(1): 10–11]
CHEN K R, DING T Y, LI M Y. Cloning and expression analysis ofandgenes in minifish. Genomics and Applied Biology, 2018, 37(7): 2795–2803 [陳克讓, 丁天宜, 李名友. Minifish和基因的克隆及表達(dá)分析. 基因組學(xué)與應(yīng)用生物學(xué), 2018, 37(7): 2795–2803]
CHEN S H, CAI M Y, ZHANG Z P,. Preliminary studies on specification and development of the primordial germ cells from large yellowcroaker bygene. Journal of Fisheries of China, 2015, 39(9): 1273–1282 [陳仕海, 蔡明夷, 張子平, 等. 基于基因標(biāo)記的大黃魚原始生殖細(xì)胞發(fā)生發(fā)育的初步研究. 水產(chǎn)學(xué)報, 2015, 39(9): 1273–1282]
CHENG L, HUANG T Q, LIU C B,Research perspectives: Marker genes of primordial germ cells in fishes. Chinese Journal of Fisheries, 2020, 33(6): 80–88 [程琳, 黃天晴, 劉晨斌, 等. 魚類原始生殖細(xì)胞標(biāo)記基因研究進(jìn)展. 水產(chǎn)學(xué)雜志, 2020, 33(6): 80–88]
DUAN J D, FENG G Q, CHANG P,. Germ cell-specific expression of() in rare minnow (). Fish Physiology and Biochemistry, 2015, 41(2): 561–571
FUJIMOTO T, NISHIMURA T, GOTO-KAZETO R,. Sexual dimorphism of gonadal structure and gene expression in germ cell-deficient loach, a teleost fish. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40): 17211–17216
GROSS-THEBING T, YIGIT S, PFEIFFER J,The vertebrate protein Dead End maintains primordial germ cell fate by inhibiting somatic differentiation. Development Cell, 2017, 43(6): 704–715
HAMILTON S, SEVERI W, CAVALLI R O. Biology and aquaculture of cobia: A review. Boletim do Instituto de Pesca, 2013, 39(4): 461–477
HONG N, LI M Y, YUAN Y M,.is a critical specifier of primordial germ cells in the medaka fish. Stem Cell Reports, 2016, 6(3): 411–421
HORVAY K, CLAUBEN M, KATZER M,. XenopusmRNA is a localized maternal determinant that serves a conserved function in germ cell development. Developmental Biology, 2006, 291(1): 1–11
JIN Y H, DAVIE A, MIGAUD H. Expression pattern of,,,andgenes during ontogenic development in Nile tilapia. Gene, 2019, 688: 62–70
LI S Z, LIU W, LI Z,. Molecular characterization and expression pattern of a germ cell marker genein gibel carp (). Gene, 2016, 591(1): 183–190
LI X N, LIU X Z, SHI B,. The expression patterns of membrane progestin receptor α () during oocytes maturation in. Progress in Fishery Sciences, 2017, 38(1): 25–33 [李曉妮, 柳學(xué)周, 史寶, 等. 膜孕激素受體()在半滑舌鰨()卵母細(xì)胞成熟過程中的表達(dá)特征. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(1): 25–33]
LIN F, ZHAO C Y, XU S H,. Germline-specific and sexually dimorphic expression of agene homologue in turbot (). Theriogenology, 2013, 80(6): 665–672
LIU C B, XU G F, HUANG T Q,. A review of research progress on gonadal development in fish. Chinese Journal of Fisheries, 2019, 32(1): 46–54 [劉晨斌, 徐革鋒, 黃天晴, 等. 魚類性腺發(fā)育研究進(jìn)展. 水產(chǎn)學(xué)雜志, 2019, 32(1): 46–54]
LIU L X, HONG N, XU H Y,. Medakaencodes a cytoplasmic protein and identifies embryonic and adult germ cells. Gene Expression Patterns, 2009, 9(7): 541–548
LIU Y. Propagation physiology of main cultivated fish in China. Beijing: Agricultural Publishing Press, 1993, 20–42 [劉筠.中國養(yǎng)殖魚類繁育生理學(xué). 北京: 農(nóng)業(yè)出版社, 1993, 20–42]
NISHIMURA T, TANAKA M. Gonadal development in fish. Sexual Development, 2014, 8(5): 252–261
SCHMITTGEN T D, LIVAK K J. Analyzing realtime PCR data by the comparative C(T) method. Nature Protocols, 2008, 3(6): 1101–1108
SHI B, LIU X Z, XU T,. Expression characterization of the novel membrane progestin receptor () gene during the oocyte maturation of half-smooth tongue sole (). Progress in Fishery Sciences, 2017, 38(1): 10–17 [史寶, 柳學(xué)周, 徐濤, 等.半滑舌鰨()新型膜孕激素受體基因()在卵母細(xì)胞成熟過程中的表達(dá)特征. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(1): 10–17]
?KUGOR A, TVEITEN H, KRASNOV A,. Knockdown of the germ cell factorinduces multiple transcriptional changes in Atlantic cod () hatchlings. Animal Reproduction Science, 2014, 144(3/4): 129–137
WANG X Y, LIU Q H, XIAO Y S,. TheRNA identifies germ cell origin and migration in olive flounder (). BioMed Research International, 2015: 428591
WARGELIUS A, LEININGER S, SKAFTNESMO K O,.knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Scientific Reports, 2016, 6: 21284
WEIDINGER G, JüRG S, SLANCHEV K,., a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Current Biology, 2003, 13(16): 1429–1434
YANG X G, YUE H M, YE H,. Identification of a germ cell marker gene, thehomologue, in Chinese sturgeon. Gene, 2015, 558(1): 118–125
YAZAWA R, TAKEUCHI Y, MORITA T,. The Pacific bluefin tuna ()gene is suitable as a specific molecular marker of type A spermatogonia. Molecular Reproduction and Development, 2013, 80(10): 871–880
YOUNGREN K, COVENEY D, PENG X,. The Ter mutation in thegene causes germ cell loss and testicular germ cell tumours. Nature, 2005, 435(7040): 360–364
ZHANG H W, WANG Z R, ZHANG S C. Developmental Biology. Beijing: Higher Education Press, 2006, 399–407 [張紅衛(wèi), 王子仁, 張士璀. 發(fā)育生物學(xué). 北京: 高等教育出版社, 2006, 399–407]
Cloning and Expression Analysis ofDuring Annual Gonadal Development of Cobia ()
KUANG Jiehua1, MA Qian1,2①, CHEN Gang1,2①, MAO Feifan1, ZHOU Qiling1, HUANG Jiansheng1,2, SHI Gang1, ZHANG Jiandong1,2
(1. College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; 2. Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong 524025, China)
In this study, the full length cDNA sequence of() was cloned using RACE technology for the first time. In total, the sequence comprises 1339 bp, including a 5′-UTR of 59 bp, a 3′-UTR of 173 bp, and an open reading frame of 1107 bp, encoding a protein of 368 amino acids. The deduced amino acid sequence contains a conserved RNA recognition motif and four conserved regions (CR1~4). Comparisons of the deduced amino acid sequence with those of other teleosts revealed the highest percentage identity (72.3%) with.Phylogenetic tree analysis also showed that the dnd ofwas most closely related to the homologous proteins ofReverse transcription polymerase chain reaction (RT-PCR) resultsindicated thatwas specifically expressed in the gonads, but not in other tissues. The results of real-time quantitative PCR (qRT-PCR) revealed thatexpression tended to gradually increase as the testis developed (Stages Ⅱ to Ⅴ). During the development of the ovary (Stage Ⅰ to Ⅲ),expressionfirst increased substantially and then stabilized; the highest expression level was found at 150 days post hatching (dph) (Stage Ⅱ). Furthermore, the results of chemical in situ hybridization revealed thatmRNA was mainly expressed in germ cells but barely detected in somatic cells. In the testis,mRNA signals were concentrated in the periphery of spermatogonia and primary spermatocytes; they were only weakly detected in secondary spermatocytes and barely detected in spermatids and spermatozoa. In the ovary,mRNA was highly expressed in oogonia, and the signals became weak in primary oocytes dispersed in the perinuclear cytoplasm. There were no significant differences inmRNA signals detected in oocytes in phases Ⅰ, Ⅱ, and Ⅲ. In conclusion, these findings suggest that thegene may play an important role in gonadal development and provide a theoretical reference for revealing the regulatory mechanism of germ cell differentiation during gametogenesis in.
;; Gene cloning; Gonadal development; Expression analysis
MA Qian, E-mail: maq@gdou.edu.cn; CHEN Gang, E-mail: cheng@gdou.edu.cn
Q785; S917
A
2095-9869(2022)02-0119-10
10.19663/j.issn2095-9869.20210107002
* 財政部和農(nóng)業(yè)農(nóng)村部: 國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項資金、南方海洋科學(xué)與工程廣東省實驗室(湛江)(ZJW-2019-06)和廣東海洋大學(xué)科研啟動經(jīng)費資助項目(R19022)共同資助 [This work was funded by China Agriculture Research System of MOF and MARA, Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) (ZJW-2019-06), and Program for Scientific Research Start-up Funds of Guangdong Ocean University (R19022)]. 鄺杰華,E-mail: 3242864479@qq.com
馬 騫,副研究員,E-mail: maq@gdou.edu.cn;陳 剛,教授,E-mail: cheng@gdou.edu.cn
2021-01-07,
2021-02-05
鄺杰華, 馬騫, 陳剛, 毛非凡, 周啟苓, 黃建盛, 施鋼, 張健東. 軍曹魚基因cDNA克隆及其在性腺周年發(fā)育過程中的表達(dá). 漁業(yè)科學(xué)進(jìn)展, 2022, 43(2): 119–128
KUANG J H, MA Q, CHEN G, MAO F F, ZHOU Q L, HUANG J S, SHI G, ZHANG J D. Cloning and expression analysis ofduring annual gonadal development of cobia (). Progress in Fishery Sciences, 2022, 43(2): 119–128
(編輯 馮小花)