亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于形態(tài)學(xué)和高通量測(cè)序的海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物多樣性比較*

        2022-04-11 06:52:52常志強(qiáng)任成喆
        漁業(yè)科學(xué)進(jìn)展 2022年2期
        關(guān)鍵詞:藻屬養(yǎng)殖池浮游

        喬 玲 常志強(qiáng) 李 健 任成喆

        基于形態(tài)學(xué)和高通量測(cè)序的海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物多樣性比較*

        喬 玲1常志強(qiáng)2李 健2①任成喆3

        (1. 浙江省海洋水產(chǎn)研究所 浙江省海洋漁業(yè)資源可持續(xù)利用技術(shù)研究重點(diǎn)實(shí)驗(yàn)室 浙江 舟山 316021;2. 中國(guó)水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海水養(yǎng)殖病害防治重點(diǎn)實(shí)驗(yàn)室 青島海洋科學(xué)與技術(shù)試點(diǎn)國(guó)家實(shí)驗(yàn)室海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實(shí)驗(yàn)室 山東 青島 266071;3. 浙江海洋大學(xué)海洋科學(xué)與技術(shù)學(xué)院 浙江 舟山 316022)

        利用形態(tài)學(xué)鑒定方法結(jié)合高通量測(cè)序技術(shù),對(duì)2018年12月海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物群落組成及多樣性進(jìn)行研究,結(jié)果顯示,2種方法共鑒定浮游植物8個(gè)門,綠藻門(Chlorophyta)和隱藻門(Cryptophyta)為主要優(yōu)勢(shì)類群。共鑒定浮游植物39個(gè)屬,僅有5個(gè)屬,包括裸藻屬()、顫藻屬()、擬菱形藻屬()、塔胞藻屬()和全溝藻屬()為2種方法的共有鑒定結(jié)果。一些微微型(≤2 μm)和較小的微型浮游植物(>2 μm且≤10 μm)僅在高通量測(cè)序結(jié)果中發(fā)現(xiàn),其中,微微型浮游植物占總浮游植物序列豐度的25.24%,較小的微型浮游植物占60.42%。形態(tài)學(xué)方法調(diào)查的浮游植物多樣性指數(shù)低于高通量測(cè)序方法。因此,利用形態(tài)學(xué)鑒定方法結(jié)合高通量測(cè)序技術(shù),更能全面、準(zhǔn)確地了解養(yǎng)殖生態(tài)系統(tǒng)中浮游植物群落結(jié)構(gòu)及多樣性。

        生態(tài)養(yǎng)殖;浮游植物;多樣性;形態(tài)學(xué)分析;高通量測(cè)序

        海水池塘養(yǎng)殖歷來是我國(guó)沿海水產(chǎn)養(yǎng)殖的主要方式,主要以養(yǎng)殖蝦、蟹等甲殼類為主。2019年全國(guó)海水池塘養(yǎng)殖面積為376 091 hm2,約占海水養(yǎng)殖總面積的18%左右,海水池塘養(yǎng)殖產(chǎn)量為250.35萬t,約占總產(chǎn)量的12%以上(中國(guó)漁業(yè)統(tǒng)計(jì)年鑒, 2020)。傳統(tǒng)池塘養(yǎng)殖易受氣候條件、環(huán)境變化和病害等因素的影響。近年來,傳統(tǒng)海水池塘養(yǎng)殖面臨底質(zhì)老化和水域環(huán)境惡化等突出問題,導(dǎo)致養(yǎng)殖容納量下降,多種病害頻繁暴發(fā)。與此同時(shí),池塘養(yǎng)殖尾水排放對(duì)周邊水域生態(tài)環(huán)境造成的壓力日益凸顯,嚴(yán)重威脅產(chǎn)業(yè)的穩(wěn)定和可持續(xù)發(fā)展(王武, 2009)。隨著國(guó)家對(duì)生態(tài)環(huán)境的重視程度越來越高,未來的水產(chǎn)養(yǎng)殖要著眼于可持續(xù)發(fā)展,在提高產(chǎn)量的同時(shí)要保證質(zhì)量,又要注意環(huán)境保護(hù),研究和開發(fā)“高效、生態(tài)、安全”的健康養(yǎng)殖技術(shù)和模式已成為國(guó)內(nèi)外漁業(yè)生產(chǎn)的重要發(fā)展方向。

        海水池塘生態(tài)養(yǎng)殖模式是一種新興的養(yǎng)殖理念(馬雪健等, 2016),通過基礎(chǔ)食物網(wǎng)的建立,利用不同營(yíng)養(yǎng)級(jí)生物的生活習(xí)性,使系統(tǒng)中投餌性養(yǎng)殖單元(如魚、蝦類)產(chǎn)生的殘餌、糞便、營(yíng)養(yǎng)鹽等有機(jī)或無機(jī)物質(zhì)成為其他類型養(yǎng)殖單元(如濾食性貝類)的食物或營(yíng)養(yǎng)物質(zhì)來源,將系統(tǒng)內(nèi)多余的營(yíng)養(yǎng)物質(zhì)轉(zhuǎn)化到養(yǎng)殖生物體內(nèi),達(dá)到系統(tǒng)內(nèi)營(yíng)養(yǎng)物質(zhì)的高效循環(huán)利用,在減輕養(yǎng)殖對(duì)環(huán)境壓力的同時(shí),提高養(yǎng)殖種類的多樣性和經(jīng)濟(jì)效益(Chopin, 2008; Troell, 2009; Chang, 2020)。該養(yǎng)殖模式已經(jīng)在世界多個(gè)國(guó)家,如中國(guó)、加拿大、智利、南非、挪威、以色列等廣泛實(shí)踐,并取得了諸多積極效果。

        浮游植物是養(yǎng)殖生態(tài)系統(tǒng)的重要組成部分,不僅可以通過光合作用利用環(huán)境中的氮、磷等營(yíng)養(yǎng)物質(zhì),起到調(diào)控水質(zhì)的作用(Harrison, 2005),還可以作為養(yǎng)殖生物的直接或間接餌料(Pulz, 2004)。研究發(fā)現(xiàn),以綠藻和硅藻為優(yōu)勢(shì)種的養(yǎng)殖池水質(zhì)相對(duì)穩(wěn)定,養(yǎng)殖生物生長(zhǎng)較好,而以藍(lán)藻為優(yōu)勢(shì)種的養(yǎng)殖池中,養(yǎng)殖生物生長(zhǎng)緩慢且易發(fā)生病害(蘇永金等, 1994)。綠藻和硅藻不僅對(duì)養(yǎng)殖水體有重要的調(diào)節(jié)作用,而且含有豐富的蛋白質(zhì)、碳水化合物、維生素等重要營(yíng)養(yǎng)成分,可滿足養(yǎng)殖生物的營(yíng)養(yǎng)需求(張繼紅等, 2016);而藍(lán)藻,如在養(yǎng)殖后期占優(yōu)勢(shì)的顫藻()、微囊藻(),在富營(yíng)養(yǎng)化水體中能迅速生長(zhǎng)繁殖,釋放大量羥胺、硫化物等物質(zhì),致使水體散發(fā)腥臭味,有些藻可分泌毒素,危害養(yǎng)殖生物健康生長(zhǎng)(Paerl, 1995)。目前,針對(duì)原位監(jiān)測(cè)水體中浮游植物的研究更多集中在利用傳統(tǒng)鏡檢鑒定方法(Soares, 2011; 常孟陽(yáng)等, 2019; 潘玉龍等, 2019)。鏡檢鑒定方法主要基于細(xì)胞形態(tài)對(duì)浮游植物進(jìn)行鑒定分類,不僅費(fèi)時(shí)耗力,且容易遺漏個(gè)體較小或豐度較低的物種(Manoylov, 2014),不能全面、準(zhǔn)確地評(píng)價(jià)水生生態(tài)系統(tǒng)中浮游植物群落結(jié)構(gòu)及多樣性。近年來,隨著分子生物學(xué)技術(shù)的發(fā)展,高通量測(cè)序技術(shù)被廣泛應(yīng)用于浮游植物群落結(jié)構(gòu)和多樣性研究(Penna, 2017; Oliveira, 2018)。與形態(tài)學(xué)方法相比,高通量測(cè)序技術(shù)省時(shí)節(jié)力、靈敏度高、檢出限低(Reuter, 2015),可檢測(cè)到豐度低、個(gè)體小的物種,甚至可能會(huì)發(fā)現(xiàn)新物種(de Vargas, 2015; Oliveira, 2018)。但高通量測(cè)序不能對(duì)浮游植物進(jìn)行絕對(duì)定量,且可能會(huì)高估某些物種的相對(duì)豐度,因此,僅利用高通量測(cè)序評(píng)價(jià)浮游植物群落結(jié)構(gòu)也是不準(zhǔn)確的(Quince, 2009)。

        本研究利用形態(tài)學(xué)鑒定方法結(jié)合高通量測(cè)序技術(shù)調(diào)查養(yǎng)殖末期蝦–蟹–魚混養(yǎng)池塘和貝養(yǎng)殖池中浮游植物群落組成和多樣性,比較分析2種檢測(cè)方法獲得的結(jié)果,探討基于形態(tài)學(xué)和高通量測(cè)序檢獲的浮游植物群落組成和多樣性的異同,為更全面、準(zhǔn)確研究浮游植物群落結(jié)構(gòu)及多樣性提供理論依據(jù)。

        1 材料與方法

        1.1 樣品采集

        樣品于2018年12月采自山東省日照開航水產(chǎn)有限公司。該海水池塘生態(tài)養(yǎng)殖系統(tǒng)由蝦–蟹–魚混養(yǎng)池塘和貝養(yǎng)殖池組成,混養(yǎng)池塘中混養(yǎng)品種分別為中國(guó)對(duì)蝦()、三疣梭子蟹()和羅非魚(),貝養(yǎng)殖池中養(yǎng)殖品種為文蛤()。用YSI手持式多參數(shù)水質(zhì)分析儀(YSI Incorporated,美國(guó))現(xiàn)場(chǎng)測(cè)定水溫、鹽度、溶解氧和pH;取1 L水樣,加入5 mL魯格試劑固定后用于浮游植物形態(tài)學(xué)鑒定與計(jì)數(shù);取100 mL水樣經(jīng)0.22 μm微孔濾膜過濾,濾膜用于高通量測(cè)序分析浮游植物群落組成,濾液用于氨氮(NH4+)、硝態(tài)氮(NO3–)、亞硝態(tài)氮(NO2–)、磷酸鹽(DIP)、硅酸鹽(DSi)、總?cè)芙獾?DTN)和總?cè)芙饬?DTP)濃度的測(cè)定。

        1.2 水質(zhì)參數(shù)測(cè)定

        養(yǎng)殖水體中NH4+、NO3–、NO2–、DIP和DSi濃度采用QuAAtro營(yíng)養(yǎng)鹽自動(dòng)分析儀(Seal Analytical Ltd., 德國(guó))測(cè)定;先用堿性過硫酸鹽消化,用營(yíng)養(yǎng)鹽自動(dòng)分析儀測(cè)定DTN和DTP濃度;溶解無機(jī)氮(DIN)濃度為NH4+、NO3–和NO2–濃度之和;溶解有機(jī)氮(DON)和溶解有機(jī)磷(DOP)濃度分別為DTN與DIN和DTP與DIP濃度之差。

        1.3 浮游植物形態(tài)學(xué)分析

        采集1 L未過濾水樣,加5 mL魯格試劑固定,樣品帶回實(shí)驗(yàn)室后,濃縮至50 mL,然后用光學(xué)顯微鏡進(jìn)行物種鑒定和計(jì)數(shù)。

        1.4 浮游植物高通量測(cè)序和生物信息分析

        采用土壤DNA提取試劑盒(MP Biomedicals, 美國(guó))提取樣品總DNA。用23S rDNA引物p23SrV_f1 (5′-GGA CAG AAA GAC CCT ATG AA-3′)和p23SrV_r1 (5′-TCA GCC TGT TAT CCC TAG AG-3′) (Sherwood, 2007)對(duì)樣品DNA進(jìn)行PCR擴(kuò)增,反應(yīng)產(chǎn)物用2%瓊脂糖凝膠電泳檢測(cè),然后用PCR產(chǎn)物純化試劑盒(Axygen Biosciences, 美國(guó))純化上述所得的PCR產(chǎn)物,利用QuantiFluor?-ST (Promega, 美國(guó))進(jìn)行定量檢測(cè),純化后的PCR產(chǎn)物送美吉測(cè)序公司采用Illumina MiSeq平臺(tái)進(jìn)行PE300測(cè)序。本研究測(cè)序得到的23S rDNA基因核酸序列已上傳至美國(guó)國(guó)立生物技術(shù)信息中心(NCBI)高通量測(cè)序數(shù)據(jù)庫(kù)Sequence Read Archive (SRA),登錄號(hào)為SRP185765。

        下機(jī)后的數(shù)據(jù)用軟件QIIME (V1.70)處理。使用Trimmomatic軟件對(duì)原始數(shù)據(jù)進(jìn)行質(zhì)量控制,并用FLASH軟件進(jìn)行拼接,使用UPARSE軟件(V7.1 http://drive5.com/uparse/)以99%的相似度對(duì)序列進(jìn)行OTU聚類,并用UCHIME軟件去除嵌合體,利用BLAST在NCBI數(shù)據(jù)庫(kù)對(duì)每條序列進(jìn)行物種分類注釋。保留所有注釋到真核浮游藻類和藍(lán)藻的序列,用于后續(xù)浮游植物群落組成分析。

        1.5 浮游植物群落分析

        浮游植物在門水平和屬水平上的相對(duì)豐度以該類別的細(xì)胞密度或序列數(shù)占總細(xì)胞密度或總序列數(shù)的比例來表征;浮游植物群落結(jié)構(gòu)多樣性則是用香農(nóng)–威納多樣性指數(shù)來衡量。本研究中,浮游植物按粒徑大小分為微微型浮游植物(≤2 μm)、較小的微型浮游植物(>2 μm且≤10 μm)、較大的微型浮游植物(>10 μm且≤20 μm)和小型浮游植物(>20 μm且<200 μm)。

        2 結(jié)果

        2.1 水質(zhì)分析

        海水池塘生態(tài)養(yǎng)殖系統(tǒng)的水質(zhì)參數(shù)見表1。該海水池塘生態(tài)養(yǎng)殖系統(tǒng)中的平均水溫、鹽度、pH分別為4.87℃、26.01 g/L和9.03;蝦–蟹–魚混養(yǎng)池塘中的溶解氧濃度高于貝養(yǎng)殖池,分別為10.29 mg/L和9.08 mg/L?;祓B(yǎng)池塘中的NH4+、NO3–和NO2–濃度均低于貝養(yǎng)殖池,而DON濃度則是混養(yǎng)池塘中的高;混養(yǎng)池塘和貝養(yǎng)殖池中的DIP濃度均為0.02 mg/L,DOP濃度分別為0.02 mg/L和0.03 mg/L;混養(yǎng)池塘中DSi濃度低于貝養(yǎng)殖池,分別為0.55 mg/L和0.95 mg/L。

        表1 海水池塘生態(tài)養(yǎng)殖系統(tǒng)中的水質(zhì)參數(shù)

        Tab.1 Quality parameters of water in the ecological aquaculture system in marine pond

        2.2 高通量測(cè)序結(jié)果分析

        對(duì)蝦–蟹–魚混養(yǎng)池塘和貝養(yǎng)殖池中浮游生物的23S rDNA進(jìn)行Illumina高通量測(cè)序,分別獲得71 097和70 324條原始序列,通過質(zhì)量控制分別得到64 298和60 599條高質(zhì)量序列,平均序列長(zhǎng)度為388 bp,在99%相似性水平上劃分OTU,共得到283個(gè)OTU (表2)。利用BLAST在NCBI數(shù)據(jù)庫(kù)對(duì)每個(gè)OTU的代表序列進(jìn)行物種分類注釋,注釋到真核生物和細(xì)菌的序列數(shù)分別占總序列數(shù)的54%和43%。在門水平上,變形菌門(Proteobacteria)和隱藻門(Cryptophyta)的相對(duì)豐度最高,分別為38.33%和33.33%,其次為綠藻門(Chlorophyta, 11.12%)、硅藻門(Bacillariophyta, 7.99%)和疣微菌門(Verrucomicrobia, 2.85%),其余門的相對(duì)豐度均低于1% (圖1)。保留所有注釋到真核浮游藻類和藍(lán)藻的序列,共得到72個(gè)OTU、66 300條序列,混養(yǎng)池塘和貝養(yǎng)殖池中OTU數(shù)分別為51和37,序列數(shù)分別為41 247和25 053,混養(yǎng)池塘高于貝養(yǎng)殖池(表2)。

        表2 不同池塘樣品中序列數(shù)和OTU數(shù)

        Tab.2 Number of sequences and OTUs from different ponds

        圖1 海水池塘生態(tài)養(yǎng)殖系統(tǒng)中真核生物和細(xì)菌組成

        2.3 浮游植物多樣性分析

        利用形態(tài)學(xué)方法和高通量測(cè)序技術(shù)分析蝦–蟹–魚混養(yǎng)池和貝養(yǎng)殖池中浮游植物多樣性發(fā)現(xiàn),混養(yǎng)池塘中浮游植物多樣性指數(shù)低于貝養(yǎng)殖池,且形態(tài)學(xué)方法調(diào)查的浮游植物多樣性指數(shù)低于高通量測(cè)序方法(圖2)。

        2.4 浮游植物群落結(jié)構(gòu)

        門水平上,利用形態(tài)學(xué)鑒定方法共鑒定浮游植物6個(gè)門,分別為隱藻門、綠藻門、硅藻門、藍(lán)藻門(Cyanophyta)、甲藻門(Dinophyta)和裸藻門(Euglenophyta),其中,綠藻門平均相對(duì)豐度最高,達(dá)90%以上。蝦–蟹–魚混養(yǎng)池和貝養(yǎng)殖池中綠藻門的細(xì)胞密度分別為1.03×107cells/L和3.51×105cells/L,分別占總細(xì)胞密度的99.85%和91.05%。利用高通量測(cè)序技術(shù)共鑒定浮游植物8個(gè)門,除形態(tài)學(xué)方法鑒定出的6個(gè)門,還包括定鞭藻門(Haptophyta)和金藻門(Chrysophyta),8個(gè)門中,隱藻門的平均相對(duì)豐度最高,為60.11%,其次為綠藻門(26.64%)和硅藻門(12.20%)。混養(yǎng)池中,隱藻門的相對(duì)豐度最高(70.57%),其次為硅藻門(24.10%)和綠藻門(3.59%);貝養(yǎng)殖池中,綠藻門和隱藻門的相對(duì)豐度較高,分別為49.68%和49.64%(圖3)。

        圖2 海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物多樣性

        圖3 海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物在門水平和屬水平上的相對(duì)豐度

        屬水平上,利用形態(tài)學(xué)鑒定方法共鑒定浮游植物14個(gè)屬,其中,塔胞藻屬的平均相對(duì)豐度最高,蝦–蟹–魚混養(yǎng)池塘和貝養(yǎng)殖池中的相對(duì)豐度分別為99.85%和91.05%。利用高通量測(cè)序技術(shù)共鑒定浮游植物30個(gè)屬,其中,全溝藻屬()的平均相對(duì)豐度最高(58.31%),其次為微球藻屬() (17.62%)、輻環(huán)藻屬() (7.87%)、微胞藻屬() (7.25%)、海鏈藻屬() (3.40%)、蛋白藻屬()(1.78%)和(1.62%),其余屬的相對(duì)密度均低于1%?;祓B(yǎng)池塘中全溝藻屬的相對(duì)豐度最高(68.81%),其次為輻環(huán)藻屬(15.69%)和海鏈藻屬(6.79%);貝養(yǎng)殖池中,全溝藻屬的相對(duì)豐度最高,為47.81%,其次為微球藻屬(35.23%)和微胞藻屬(14.35%) (圖3)。

        種水平上,利用形態(tài)學(xué)鑒定方法共鑒定浮游植物16種(表3),混養(yǎng)池塘中塔胞藻的細(xì)胞密度最高,為1.03×107cells/L,其次是裸甲藻,達(dá)8.00×103cells/L;貝養(yǎng)殖池中也是塔胞藻細(xì)胞密度最高,細(xì)胞密度為3.51×105cells/L,其次是尖尾藍(lán)隱藻和菱形藻,細(xì)胞密度分別為9.00×103cells/L和8.00×103cells/L。對(duì)比發(fā)現(xiàn),混養(yǎng)池中浮游植物種數(shù)低于貝養(yǎng)池。

        表3 形態(tài)學(xué)鑒定方法揭示的浮游植物及其細(xì)胞密度

        Tab.3 Phytoplankton cell density revealed by morphological analysis

        3 討論

        池塘養(yǎng)殖是我國(guó)傳統(tǒng)的養(yǎng)殖模式,在我國(guó)水產(chǎn)養(yǎng)殖發(fā)展中占據(jù)舉足輕重的地位。近年來,傳統(tǒng)海水池塘養(yǎng)殖面臨著底質(zhì)老化和水域環(huán)境惡化等突出問題,導(dǎo)致養(yǎng)殖容納量下降,多種病害頻繁暴發(fā),養(yǎng)殖尾水的排出還可能加劇周邊區(qū)域的水體富營(yíng)養(yǎng)化,嚴(yán)重制約著海水池塘養(yǎng)殖產(chǎn)業(yè)的可持續(xù)發(fā)展(王武, 2009)。隨著國(guó)家對(duì)生態(tài)環(huán)境的重視程度越來越高,海水池塘生態(tài)養(yǎng)殖模式因環(huán)境友好、生態(tài)高效的特點(diǎn)得到了迅速發(fā)展(馬雪健等, 2016)。浮游植物是養(yǎng)殖生態(tài)系統(tǒng)中的重要組成部分,一些浮游植物,如硅藻和綠藻,營(yíng)養(yǎng)價(jià)值高且無毒害作用,對(duì)養(yǎng)殖是有益的(Roy, 2015; Brito, 2016);一些浮游植物,如藍(lán)藻和甲藻,營(yíng)養(yǎng)價(jià)值低且可能會(huì)產(chǎn)生毒素,不利于養(yǎng)殖生物的生長(zhǎng)(Sinden, 2016; Pérez-Morales, 2017)。因此,了解浮游植物群落,對(duì)如何構(gòu)建經(jīng)濟(jì)、安全、有效的生態(tài)養(yǎng)殖模式有重要的科學(xué)依據(jù)和現(xiàn)實(shí)意義。

        本研究中,利用形態(tài)學(xué)鑒定方法結(jié)合高通量測(cè)序技術(shù)研究了海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物群落結(jié)構(gòu),共鑒定浮游植物8個(gè)門,形態(tài)學(xué)鑒定結(jié)果中,綠藻門的平均相對(duì)豐度最高,達(dá)90%以上,而高通量測(cè)序結(jié)果中,綠藻門和隱藻門的相對(duì)豐度較高;8個(gè)門中有2個(gè)門(定鞭藻門和金藻門)僅在高通量測(cè)序結(jié)果中出現(xiàn),鏡檢并未檢測(cè)到(圖3)。屬水平上,2種方法共鑒定浮游植物39個(gè)屬,僅有5個(gè)屬是2種方法鑒定結(jié)果中共有的,包括裸藻屬()、顫藻屬()、擬菱形藻屬()、塔胞藻屬()和全溝藻屬()(圖3)。此外,形態(tài)學(xué)方法調(diào)查的浮游植物多樣性指數(shù)低于高通量測(cè)序方法(圖2)。

        形態(tài)學(xué)鑒定結(jié)果和高通量測(cè)序結(jié)果產(chǎn)生差異的原因包括以下幾個(gè)方面。首先,形態(tài)學(xué)鑒定方法主要基于細(xì)胞形態(tài)對(duì)浮游植物進(jìn)行鑒定分類,對(duì)一些形態(tài)相似、細(xì)胞較小或豐度較低的類群,該方法難以識(shí)別和鑒定(Manoylov, 2014)。而高通量測(cè)序技術(shù)檢測(cè)速度快、檢出限低,可以極大地?cái)U(kuò)展對(duì)水生生態(tài)系統(tǒng)中浮游植物多樣性的認(rèn)識(shí)(Reuter, 2015)。本研究中,利用高通量測(cè)序檢測(cè)到一些微微型和較小的微型浮游植物,但在顯微鏡鑒定結(jié)果中并未出現(xiàn)(表4),其中,微微型浮游植物占總浮游植物序列豐度的25.24%,較小的微型浮游植物占總浮游植物序列豐度的60.42%。其次,高通量測(cè)序不能對(duì)物種進(jìn)行絕對(duì)定量,利用物種的相對(duì)豐度對(duì)物種進(jìn)行定量分析可能會(huì)高估其豐度,一方面,浮游植物基因組的rDNA序列包含大量重復(fù)序列(Schippers, 2006),基因拷貝數(shù)的變化可能會(huì)影響物種的相對(duì)豐度(Reeder, 2010);另一方面,通過高通量測(cè)序還可以檢測(cè)到某些類群的休眠細(xì)胞、死亡細(xì)胞或分子碎片,從而高估其相對(duì)豐度。第三,23S rDNA的數(shù)據(jù)庫(kù)不完整,分類信息并不能覆蓋所有物種,通過核苷酸搜索發(fā)現(xiàn),該數(shù)據(jù)庫(kù)中缺少雙眉藻屬()等的23S rDNA序列,因此,需要進(jìn)一步完善23S rDNA參考數(shù)據(jù)庫(kù),提高其物種分類信息的覆蓋率。綜上所述,利用傳統(tǒng)的形態(tài)學(xué)鑒定方法結(jié)合分子生物學(xué)技術(shù)更能全面地揭示養(yǎng)殖系統(tǒng)中浮游植物群落組成和多樣性。

        利用形態(tài)學(xué)鑒定方法調(diào)查海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物群落組成及多樣性發(fā)現(xiàn),塔胞藻為絕對(duì)優(yōu)勢(shì)種,其在蝦–蟹–魚混養(yǎng)池和貝養(yǎng)殖池中的細(xì)胞密度分別為1.03×107cells/L和3.51×105cells/L,分別占總細(xì)胞密度的99.85%和91.05% (圖3)。塔胞藻屬于綠藻門,易培養(yǎng),溫度耐受性好,且細(xì)胞內(nèi)含有豐富的蛋白質(zhì)、多糖和不飽和脂肪酸等營(yíng)養(yǎng)物質(zhì)(張福綏等, 1983; 繆錦來等, 2005),被廣泛應(yīng)用于雙殼類的養(yǎng)殖及養(yǎng)蝦前期培樣中(張福綏等, 1984; 王廷貴, 2011)。研究表明,塔胞藻對(duì)貽貝()幼蟲、蝦夷扇貝()幼蟲和櫛孔扇貝()幼蟲的飼養(yǎng)效果比常用的褐指藻、扁藻及小球藻等的效果要好(張福綏等, 1983)。本研究中,貝養(yǎng)殖池中塔胞藻的細(xì)胞密度比蝦–蟹–魚混養(yǎng)池中低了2個(gè)數(shù)量級(jí),可能與文蛤?qū)λ宓聰z食有關(guān)。此外,塔胞藻對(duì)海水中的苯、苯酚、二甲苯等有機(jī)物及敵敵畏、氧化樂果、辛硫磷等常見農(nóng)藥具有較強(qiáng)的吸附作用,對(duì)有機(jī)物和農(nóng)藥造成的污染有一定的凈化作用,且藻細(xì)胞密度達(dá)到1.0×104cells/mL時(shí),凈化效果最顯著(張建民等, 2006、2007)。塔胞藻還含有抗植物病原菌成分,抑菌效果非常明顯(江紅霞等, 2008、2009)。

        利用高通量測(cè)序技術(shù)調(diào)查海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物群落組成及多樣性發(fā)現(xiàn),雙尖全溝藻()的平均相對(duì)豐度最高,為52.30% (表4)。雙尖全溝藻屬于隱藻門,廣泛分布于許多國(guó)家的沿海地區(qū)(Yoo, 2017)。研究發(fā)現(xiàn),雙尖全溝藻可以以完整細(xì)胞形式在紅色中縊蟲()(赤潮種)體內(nèi)進(jìn)行內(nèi)共生,紅色中縊蟲一方面幫助隱藻從環(huán)境中吸收營(yíng)養(yǎng)物質(zhì)供隱藻細(xì)胞增殖所用,另一方面又從隱藻的光合產(chǎn)物中獲益,而鰭藻()又通過攝食紅色中縊蟲而獲得隱藻的葉綠體(Kim, 2015; Qiu, 2016)。因此,雙尖全溝藻在海洋食物網(wǎng)中占有重要地位。微球藻屬和微胞藻屬是通過高通量測(cè)序檢測(cè)到的2種微微型綠藻,分別占總浮游植物序列豐度的17.62%和7.25% (圖3)。研究發(fā)現(xiàn),它們廣泛分布在世界各地的沿海地區(qū)(Foulon, 2010; Rodríguez, 2010; Kilias, 2014; Rashid, 2018),微球藻屬甚至?xí)纬啥虝旱脑迦A(O’Kelly, 2003),但在以往對(duì)黃海海域的浮游植物調(diào)查中并未發(fā)現(xiàn)該藻(黃備等, 2018)。這可能是因?yàn)槲⑶蛟鍖俸臀鍖俚募?xì)胞均< 3 μm,利用光學(xué)顯微鏡難以辨別。因此,僅利用形態(tài)學(xué)鑒定方法并不能全面、準(zhǔn)確地評(píng)價(jià)水生生態(tài)系統(tǒng)中浮游植物群落結(jié)構(gòu)及多樣性。

        水產(chǎn)養(yǎng)殖的關(guān)鍵環(huán)境問題之一是營(yíng)養(yǎng)物質(zhì)的積累,這會(huì)導(dǎo)致水質(zhì)惡化和有害藻的繁殖(Huang, 2016)。研究表明,海水池塘生態(tài)養(yǎng)殖模式不僅比傳統(tǒng)的單種養(yǎng)殖具有更高的營(yíng)養(yǎng)物質(zhì)利用效率,而且可以提高水產(chǎn)養(yǎng)殖的產(chǎn)量(Li, 2019),但池塘養(yǎng)殖的經(jīng)濟(jì)效益和生態(tài)影響很大程度上取決于養(yǎng)殖品種的組成(Jena, 2002; Rahman, 2007)。本研究中,蝦–蟹–魚混養(yǎng)池塘中的混養(yǎng)品種為中國(guó)對(duì)蝦、三疣梭子蟹和羅非魚,貝養(yǎng)殖池中養(yǎng)殖品種為文蛤。羅非魚是一種濾食雜食性魚類,其選擇性攝食對(duì)浮游植物的豐度及組成有很大影響(Menezes, 2010; Sun, 2011)。研究表明,羅非魚的攝食選擇性隨體重的增加而略有變化(Abdel-Tawwab, 2011),羅非魚在整個(gè)生長(zhǎng)過程中均可攝食藍(lán)藻和裸藻類,體重較大的魚對(duì)綠藻和硅藻的選擇性較弱,這個(gè)可能是混養(yǎng)池塘中綠藻和硅藻相對(duì)豐度較高的原因之一(圖3)。貝類的生長(zhǎng)對(duì)溫度和餌料的變化具有很強(qiáng)的適應(yīng)性,是池塘生態(tài)養(yǎng)殖模式中的常見物種(Troell, 2009)。濾食性貝類具有很發(fā)達(dá)的濾水系統(tǒng),可以通過生物過濾作用攝食水體中的微藻及顆粒有機(jī)物,從而對(duì)浮游植物豐度產(chǎn)生影響。本研究中,貝養(yǎng)殖池中浮游植物總密度為3.86×105cells/L(表3),比混養(yǎng)池低2個(gè)數(shù)量級(jí),這可能與貝類攝食有關(guān)。研究表明,貝類對(duì)浮游植物的攝食也具有選擇性,從而影響浮游植物群落結(jié)構(gòu)(Newell, 2004)。本研究中,貝養(yǎng)殖池中微微型浮游植物如微球藻屬和微胞藻屬的序列豐度較高,占總浮游植物序列豐度的35.23%和14.25% (圖3)。研究發(fā)現(xiàn),與個(gè)體較小的微微型浮游植物(< 2 μm)相比,微型浮游植物(2~20 μm)更容易被攝食(Newell, 2004),從而有利于微微型浮游植物的生長(zhǎng)繁殖(Newell, 2009)。除了細(xì)胞大小,取食的選擇性還取決于浮游植物的游動(dòng)能力(Zhuang, 2004)。全溝藻有鞭毛,可以自由移動(dòng)(Laza-Martínez, 2012),從而不易被攝食,這可能是其相對(duì)豐度較高的原因之一。

        綜上所述,利用形態(tài)學(xué)鑒定方法結(jié)合高通量測(cè)序技術(shù)研究海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物群落組成及多樣性,2種方法共鑒定浮游植物8個(gè)門,綠藻門和隱藻門為主要優(yōu)勢(shì)類群;共鑒定浮游植物39個(gè)屬,僅有5個(gè)屬是2種方法鑒定結(jié)果中共有的,包括裸藻屬、顫藻屬、擬菱形藻屬、塔胞藻屬和全溝藻屬;一些微微型(≤2 μm)和較小的微型浮游植物(>2 μm且≤10 μm)僅在高通量測(cè)序結(jié)果中發(fā)現(xiàn),其中,微微型浮游植物占總浮游植物序列豐度的25.24%,較小的微型浮游植物占總浮游植物序列豐度的60.42%;形態(tài)學(xué)方法調(diào)查的浮游植物多樣性指數(shù)低于高通量測(cè)序方法。因此,利用形態(tài)學(xué)鑒定方法結(jié)合高通量測(cè)序技術(shù),更能全面、準(zhǔn)確地了解養(yǎng)殖生態(tài)系統(tǒng)中浮游植物群落結(jié)構(gòu)及多樣性。本研究?jī)H對(duì)該養(yǎng)殖系統(tǒng)進(jìn)行了一次取樣調(diào)查,未對(duì)海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物群落動(dòng)態(tài)進(jìn)行描述。因此,有必要進(jìn)行連續(xù)監(jiān)測(cè)調(diào)查,以探索海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物群落的演替規(guī)律,并闡明該演替的主要驅(qū)動(dòng)因素。本研究結(jié)果為后續(xù)利用形態(tài)學(xué)結(jié)合分子手段進(jìn)行海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物群落演替規(guī)律及其關(guān)鍵驅(qū)動(dòng)因素的研究奠定了基礎(chǔ)。

        ABDEL-TAWWAB M. Natural food selectivity changes with weights of Nile tilapia,(Linnaeus), reared in fertilized earthen ponds. Journal of Applied Aquaculture, 2011, 23(1): 58–66

        AMSPOKER M C.sp. nov. a marine epipsammic diatom from Southern California, USA. Diatom Research, 2016, 31(4): 1–7

        BERGHOLTZ T, DAUGBJERG N, MOESTRUP ?,. On the identity ofand description ofsp. nov. (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. Journal of Phycology, 2010, 42(1): 170–193

        BRITO LO, DOS SANTOS I G S, DE ABREU JL. Effect of the addition of Bacillariophyta (spp.) and rotifers () on water quality and growth of thepostlarvae reared in a biofloc system. Aquaculture Research, 2016, 47(12): 3990–3997

        CHANG M Y, LI C L, DONG J,. Dynamic changes of phytoplankton composition during cyanobacteria blooms in aquaculture ponds. Progress in Fishery Sciences, 2019, 40(1): 36–45 [常孟陽(yáng), 李晨露, 董靜, 等. 藍(lán)藻水華暴發(fā)期間養(yǎng)殖池塘浮游藻類動(dòng)態(tài)變化. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(1): 36–45]

        CHANG Z Q, NEORI A, HE Y Y,. Development and current state of seawater shrimp farming, with an emphasis on integrated multi-trophic pond aquaculture farms, in China: A review. Reviews in Aquaculture, 2020, 12(4): 2544–2558

        CHOPIN T, ROBINSON S M C, TROELL M,. Multitrophic integration for sustainable marine aquaculture. Encyclopedia of Ecology, 2008, 2463–2475

        DE VARGAS C, AUDIC S, HENRY N,. Eukaryotic plankton diversity in the sunlit ocean. Science, 2015, 348(17): 1261605

        DROOP M R. Some new supra-littoral Protista. Journal of the Marine Biological Association of the United Kingdom, 1955, 34(2): 233–245

        Fishery Administration Bureau of Ministry of Agriculture and Rural Affairs, National Aquatic Technology Extension Station, China Society of Fisheries. China fishery statistical yearbook. Beijing: China Agriculture Publishing House, 2020 [農(nóng)業(yè)農(nóng)村部漁業(yè)漁政管理局, 全國(guó)水產(chǎn)技術(shù)推廣總站, 中國(guó)水產(chǎn)學(xué)會(huì). 中國(guó)漁業(yè)統(tǒng)計(jì)年鑒. 北京: 中國(guó)農(nóng)業(yè)出版社, 2020]

        FOULON E, NOT F, JALABERT F,. Ecological niche partitioning in the picoplanktonic green alga: Evidence from environmental surveys using phylogenetic probes. Environmental Microbiology, 2010, 10(9): 2433–2443

        HARRISON W G, PERRY T, LI W K W. Ecosystem indicators of water quality Part I. Plankton biomass, primary production and nutrient demand. In Anderson R (Ed.), Environmental Effects of Marine Finfish Aquaculture. Berlin Heidelberg: Springer, 2005, 59–82

        HEIMANN K, BENTING J, TIMMERMANN S,. The flagellar developmental cycle in algae: Two types of flagellar development in uniflagellate algae. Protoplasma, 1989,153(1/2): 14–23

        HERDMAN M, CASTENHOLZ R W, WATERBURY J B,. Form-genus XIII. Synechococcus. In: Boone DR, Castenholz RW (Eds.), Bergey’s Manual of Systematic Bacteriology, Springer-Verlag, New York, 2001, 508–512

        HUANG B, WEI N, TANG J L,. Changes of phytoplankton community structure and diversity in the south Yellow Sea during 2007–2017. Environmental Monitoring in China, 2018, 34(6): 137–148 [黃備, 魏娜, 唐靜亮, 等. 南黃海2007–2017年浮游植物群落結(jié)構(gòu)及多樣性變化. 中國(guó)環(huán)境監(jiān)測(cè), 2018, 34(6): 137–148]

        HUANG S, WU M, ZANG C,. Dynamics of algae growth and nutrients in experimental enclosures culturing bighead carp and common carp: Phosphorus dynamics. International Journal of Sediment Research, 2016, 31(2): 173–180

        JENA JK, AYYAPPAN S, ARAVINDAKSHAN P K,. Evaluation of production performance in carp polyculture with different stocking densities and species combinations. Journal of Applied Ichthyology, 2002, 18(3): 165–171

        JIANG H X, LEI H J, XUAN W J. Studies on antimicrobial activities against three plant pathogen by using eleven microalgae extracts. Journal of Anhui Agricultural Sciences, 2008, 38(10): 4167–4169 [江紅霞, 雷紅娟, 軒文娟. 11種微藻提取物對(duì)3種植物病原菌抗菌活性的研究. 安徽農(nóng)業(yè)科學(xué), 2008, 38(10): 4167–4169]

        JIANG H X, ZHOU X Y, LEI M Y,. Antimicrobial activities and chemical compositions of liposoluble compounds in. Journal of Henan Agricultural Sciences, 2009(8): 88–91 [江紅霞, 周曉楊, 雷夢(mèng)云, 等. 嬌柔塔胞藻脂溶性化合物抗植物病原菌活性及成分分析. 河南農(nóng)業(yè)科學(xué), 2009(8): 88–91]

        KILIAS E S, N?THIG E M, WOLF C,. Picoeukaryote plankton composition off West Spitsbergen at the entrance to the Arctic Ocean. Journal of Eukaryotic Microbiology, 2014, 61(6): 569–579

        KIM J I, YOON H S, YI G,. The plastid genome of the cryptomonad. PLoS One, 2015, 10(6): e0129284

        LAZA-MARTíNEZ A, ARLUZEA J, MIGUEL I,. Morphological and molecular characterization ofsp. nov. andsp. nov.(Cryptophyceae). Phycologia, 2012, 36(1): 37–52

        LI Y, QIN J, ZHENG X,. Production performance of largemouth bassand water quality variation in monoculture, polyculture and integrated culture. Aquaculture Research, 2019, 50(2): 423–430

        MA X J, LIU D H, HU G B,. Development of integrated multi trophic aquaculture mode and its application on management. Ocean Development and Management, 2016, 33(4): 74–78 [馬雪健, 劉大海, 胡國(guó)斌, 等. 多營(yíng)養(yǎng)層次綜合養(yǎng)殖模式的發(fā)展及其管理應(yīng)用研究. 海洋開發(fā)與管理, 2016, 33(4): 74–78]

        MANOYLOV K M. Taxonomic identification of algae (morphological and molecular): Species concepts, methodologies, and their implications for ecological bioassessment. Journal of Phycology, 2014, 50(3): 409–424

        MEDLIN L K, ELWOOD H J, STICKEL S,. Morphological and genetic variation within the diatom(Bacillariophyta): Evidence for a new species,. Journal of Phycology, 2010, 27(4): 514–524

        MENEZES R F, ATTAYDE J L, VASCONCELOS F R. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshwater Biology, 2010, 55(4): 767–779

        MIAO J L, WANG B, KAN G F,. The influence of environment factors on lipid content and fatty acid composition in two species of Antarctic green microalga. Marine Sciences, 2005, 29(1): 4–11 [繆錦來, 王波, 闞光鋒, 等. 環(huán)境因子對(duì)2種南極綠藻脂肪含量和脂肪酸組成的影響. 海洋科學(xué), 2005, 29(1): 4–11]

        MOESTRUP ?, ETTL H. A light and electron microscopical study of(Prasinophyceae). Opera Botanica, 1979, 49: 1–40

        MOESTRUP ?, THRONDSEN J. Light and electron microscopical studies on, a primitive scaly green flagellate (Prasinophyceae) with posterior flagella. Canadian Journal of Botany, 1988, 66(7): 1415–1434

        NEWELL R I E, TETTELBACH S T, GOBLER C J,. Relationships between reproduction in suspension-feeding hard clamsand phytoplankton community structure. Marine Ecology Progress, 2009, 387(12): 179–196

        NEWELL R I E. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: A review. Journal of Shellfish Research, 2004, 23(1): 51–62

        O’KELLY C J, SIERACKI M E, THIER E C. A transient bloom of(Chlorophyta, Prasinophyceae) in west Neck Bay, Long Island, New York. Journal of Phycology, 2003, 39(5): 850–854

        OLIVEIRA M C, REPETTI S I, IHA C,. High-throughput sequencing for algal systematics. European Journal of Phycology, 2018,53(3): 1–17

        PAERL H W, TUCKER C S. Ecology of blue-chlorophyta in aquaculture ponds. Journal of the World Aquaculture Society, 1995, 26(2): 109–131

        PAN Y L, LIU X, SHA J J,. Influence of environmental factors on phytoplankton community structure and its relationship with coastal aquaculture in the waters adjacent to Rongcheng. Progress in Fishery Sciences, 2019, 40(5): 26–33 [潘玉龍, 劉瀟, 沙婧婧, 等. 榮成近岸養(yǎng)殖海域浮游植物群落結(jié)構(gòu)及與環(huán)境因子的關(guān)系. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(5): 26–33]

        PENNA A, CASABIANCA S, GUERRA A F,. Analysis of phytoplankton assemblage structure in the Mediterranean Sea based on high-throughput sequencing of partial 18S rRNA sequences. Marine Genomics, 2017,36: 49–55

        PéREZ-MORALES A, BAND-SCHMIDT C J, MARTíNEZ-DíAZ S F. Mortality on zoea stage of the Pacific white shrimpcaused by(Dinophyceae) andspp. (Raphidophyceae). Marine Biology, 2017, 164(3): 57

        PULZ O, GROSS W. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 2004, 65(6): 635–648

        QIAO H, WANG G, ZHANG X. Isolation and characterization ofGXNN01 (Chlorophyta) with the properties of heterotrophic and microaerobic growth. Journal of Phycology, 2009, 45(5): 1153–1162

        QIU D, HUANG L, LIN S. Cryptophyte farming by symbiotic ciliate host detected in situ.eedings of the Nationalemy ofences of the USA, 2016, 113(43): 12208–12213

        QUINCE C, LANZéN A, CURTIS T P,. Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods, 2009, 6(9): 639–641

        RAHMAN M M, VERDEGEM M C. Multi-species fishpond and nutrients balance. In: van der Zijpp A J, Verreth J A J, Tri L Q,. (eds.) Fishponds in farming systems. Wageningen Academic Publishers, Netherlands, 2007, 79–88

        RASHID J, KOBIYAMA A, REZA M S,. Seasonal changes in the communities of photosynthetic picoeukaryotes in Ofunato Bay as revealed by shotgun metagenomic sequencing. Gene, 2018, 665: 127–132

        REEDER J, KNIGHT R. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nature Methods, 2010, 7(9): 668–669

        REUTER J, SPACEK D V, SNYDER M. High-throughput sequencing technologies. Molecular Cell, 2015, 58(4): 586– 597

        RIPPKA R, CASTENHOLZ R W, HERDMAN M. Form- Cyanobium. Bergey's manual of systematics of archaea and bacteria. John Wiley & Sons, Ltd, 2015

        RODRíGUEZ F, DERELLE E, GUILLOU L,. Ecotype diversity in the marine picoeukaryote(Chlorophyta, Prasinophyceae). Environmental Microbiology, 2010, 7(6): 853–859

        ROY S S, PAL R. Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proceedings of the Zoological Society, 2015, 68(1): 1–8

        SCHIPPERS A, NERETIN L N. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environmental Microbiology, 2006, 8(7): 1251–1260

        SHERWOOD AR, PRESTING G G. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. Journal of Phycology, 2010, 43(3): 605–608

        SINDEN A, SINANG S C. Cyanobacteria in aquaculture systems: Linking the occurrence, abundance and toxicity with rising temperatures. International Journal of Environmental Science and Technology, 2016, 13(12): 1–8

        SLANKIS T, GIBBS S P. The fine structure of mitosis and cell division in the Chrysophycean alga. Journal of Phycology, 2008, 8(3): 243–256

        SOARES M C S, LúCIA M L, VIDAL L O,. Light microscopy in aquatic ecology: Methods for plankton communities studies. Methods in Molecular Biology, 2011, 689: 215–227

        SU Y J, CAI X Y, WANG J,. A preliminary study on water quality affected by algae in shrimp ponds.Journal of Fisheries Research, 1994(4): 36–39 [蘇永金, 蔡心一, 王軍, 等. 藻類影響蝦池若干水質(zhì)因子初探. 漁業(yè)研究, 1994(4): 36–39]

        SUBIRANA L, PéQUIN B, MICHELY S,. Morphology, genome plasticity, and phylogeny in the genusreveal a cryptic species,sp. nov. (Mamiellales, Mamiellophyceae). Protist, 2013, 164(5): 643–659

        SUN W, DONG S, JIE Z,. The impact of net-isolated polyculture of tilapia () on plankton community in saline-alkaline pond of shrimp (). Aquaculture International, 2011, 19(4): 779–788

        SYM S D, PIENAAR R N. Taxonomy ofand other observations on the subgenus Vestigifera of(Prasinophyceae, Chlorophyta). Phycological Research, 1995, 43(1): 17–32

        TOMAS C R. Identifying marine phytoplankton. Academic Press, New York, 1997

        TROELL M, JOYCE A, CHOPIN T,. Ecological engineering in aquaculture-potential for integrated multi- trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 2009, 297(1): 1–9

        VAULOT D, EIKREM W, VIPREY M,. The diversity of small eukaryotic phytoplankton (≤3 μm) in marine ecosystems. FEMS Microbiology Reviews, 2008,32(5): 795–820

        WANG T G. Overwintering cultivation technique of bay scallop. Hebei Fisheries, 2011(12): 42–43 [王廷貴. 海灣扇貝種貝越冬培育技術(shù). 河北漁業(yè), 2011(12): 42–43]

        WANG W. Current situation and development trend of aquaculture industry in China. Fishery Guide to be Rich, 2009, 271(7): 12–18 [王武. 我國(guó)水產(chǎn)養(yǎng)殖業(yè)的現(xiàn)狀與發(fā)展趨勢(shì). 漁業(yè)致富指南, 2009, 271(7): 12–18]

        WEI Y X. Chrysochromulina parva lackey (Prymnesiophyceae): New record in China and its seasonal fluctuation in Lake Donghu, Wuhan. Acta Hydrobiologica Sinica, 1996, 20(4): 317–321 [魏印心. 中國(guó)新記錄: 小金色藻在武漢東湖的季節(jié)消長(zhǎng). 水生生物學(xué)報(bào), 1996, 20(4): 317–321]

        YOO Y, SEONG K A, JEONG H J,. Mixotrophy in the marine red-tide cryptophyteand ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae, 2017, 68: 105–117

        ZHANG F S, HE Y C, MA J H,. The introduction of the Japanese scallop,(Jay), into China, its spat-rearing and experimental cultivation. Marine Sciences, 1984, 8(5): 38–45 [張福綏, 何義朝, 馬江虎, 等. 蝦夷扇貝的引種、育苗及試養(yǎng). 海洋科學(xué), 1984, 8(5): 38–45]

        ZHANG F S, LI S Y. Discovery ofsp. in China seas and its application in feeding bivalve larvae. Marine Sciences, 1983, 7(6): 49–50 [張福綏, 李淑英. 塔胞藻在中國(guó)海的發(fā)現(xiàn)與應(yīng)用. 海洋科學(xué), 1983, 7(6): 49–50]

        ZHANG J M, HAN X D, JIA H F. The study of decontamination of microalgae to organic compound in the ocean. Journal of Linyi Teachers′ College, 2006, 28(3): 79–82 [張建民, 韓曉弟, 賈宏福. 海洋微藻對(duì)海水中有機(jī)物的凈化作用研究. 臨沂師范學(xué)院學(xué)報(bào), 2006, 28(3): 79–82]

        ZHANG J M, HAN X D, WANG X W,. The study of decontamination of microalgae to pesticide in the ocean. Journal of Yunnan Agricultural University, 2007, 22(3): 462–465 [張建民, 韓曉弟, 王相偉, 等. 塔胞藻對(duì)海水中農(nóng)藥的響應(yīng)及凈化作用初步研究. 云南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2007, 22(3): 462–465]

        ZHANG J H, REN D D, JIANG Y S,. Microalgae in aquaculture: A review to nutritional value and rotifers enrichment. Science and Technology of Food Industry, 2016, 37(20): 371–376 [張繼紅, 任丹丹, 姜玉聲, 等. 微藻營(yíng)養(yǎng)價(jià)值及其在水產(chǎn)生物營(yíng)養(yǎng)強(qiáng)化中的應(yīng)用. 食品工業(yè)科技, 2016, 37(20): 371–376]

        ZHUANG S H, WANG Z Q. Influence of size, habitat and food concentration on the feeding ecology of the bivalve,Linnaeus. Aquaculture, 2004, 241(1/2/3/4): 689–699

        Comparison of Phytoplankton Community Diversity in the Ecological Aquaculture System of a Marine Pond Using Morphological Analysis and High-Throughput Sequencing

        QIAO Ling1, CHANG Zhiqiang2, LI Jian2①, REN Chengzhe3

        (1. Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, Zhejiang 316012, China; 2. Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Sciences and Technology (Qingdao), Qingdao, Shandong 266071, China; 3. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China)

        With increasing concern over the negative environmental impact of mariculture, ecological aquaculture based on multi-trophic systems has received extensive attention in recent years. Phytoplankton are important components of aquaculture ecosystems. They are useful in maintaining water quality by uptake of nutrients during photosynthesis and serve as a direct or indirect food source for cultured organisms. Some phytoplankton, such as diatoms and green algae, are conducive to the growth of shrimp, crab, shellfish, and fish, whereas others (such as cyanophytes and dinoflagellates) may be toxic to aquatic organisms in aquaculture systems. In the present study, a combination of traditional morphological analysis and high-throughput sequencing was used to comprehensively assess phytoplankton community composition and diversity in the ecological aquaculture system of a marine pond in December 2018. Eight phyla were detected using two methods, Chlorophyta and Cryptophyta being the most frequently recorded. Notably, the phyla Haptophyta and Chrysophyta were only found via high-throughput sequencing. Additionally, a total of 39 genera were detected using two methods, but only five genera,,,,, andwere shared in both methods. Some picophytoplankton (≤2 μm) and small nanophytoplankton (>2 μm and≤10 μm) were detected via high-throughput sequencing, but were not observed via morphological analysis. Picophytoplankton represented 25.24% of the total phytoplankton sequence abundance, and small nanophytoplankton accounted for 60.42%. Phytoplankton diversity revealed upon morphological analysis was lower than that revealed via high-throughput sequencing. Therefore, the combination of traditional morphological analysis and high-throughput sequencing will be useful for obtaining a comprehensive understanding of phytoplankton community composition and diversity in aquatic ecosystems. This study serves as a foundation for the characterization of phytoplankton community dynamics in the ecological aquaculture systems of marine ponds for future research.

        Ecological aquaculture; Phytoplankton community; Diversity; Morphological analysis; High-throughput sequencing

        LI Jian, E-mail: lijian@ysfri.ac.cn

        S917.3

        A

        2095-9869(2022)02-0032-12

        10.19663/j.issn2095-9869.20201229001

        * 國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2018YFD0900702-4)、國(guó)家自然科學(xué)基金資助項(xiàng)目(31873039)、浙江省海洋水產(chǎn)研究所博士啟動(dòng)基金項(xiàng)目(2020B01)和浙江海洋大學(xué)博士啟動(dòng)基金項(xiàng)目(11034150220004)共同資助 [This work was supported by the National Key Research and Development Program of China (2018YFD0900702-4), National Natural Science Foundation of China (31873039), Start-up Foundation for Doctors of Zhejiang Marine Fisheries Research Institute (2020B01), and Start-up Foundation for Doctors of Zhejiang Ocean University (11034150220004)]. 喬 玲,E-mail: qiaoling1990123@126.com

        李 健,研究員,E-mail: lijian@ysfri.ac.cn

        2020-12-29,

        2021-02-02

        喬玲, 常志強(qiáng), 李健, 任成喆. 基于形態(tài)學(xué)和高通量測(cè)序的海水池塘生態(tài)養(yǎng)殖系統(tǒng)中浮游植物多樣性比較. 漁業(yè)科學(xué)進(jìn)展, 2022, 43(2): 32–43

        QIAO L, CHANG Z Q, LI J, REN C Z. Comparison of phytoplankton community diversity in the ecological aquaculture system of a marine pond using morphological analysis and high-throughput sequencing. Progress in Fishery Sciences, 2022, 43(2): 32–43

        (編輯 馮小花)

        猜你喜歡
        藻屬養(yǎng)殖池浮游
        水體消毒防病用藥稱量分配的簡(jiǎn)捷方法
        相對(duì)弧寬比對(duì)雙通道方形養(yǎng)殖池的流場(chǎng)優(yōu)化研究
        京杭大運(yùn)河通航段水域硅藻分布
        持續(xù)陰雨期間鱖魚養(yǎng)殖池常見問題及管理措施
        1989—2019年環(huán)渤海地區(qū)養(yǎng)殖池的空間變化特征
        浞河浮游藻類的調(diào)查研究與水質(zhì)評(píng)價(jià)
        《浮游》
        流行色(2019年10期)2019-12-06 08:13:26
        藻類光競(jìng)爭(zhēng)模型構(gòu)建及水體紊動(dòng)對(duì)競(jìng)爭(zhēng)的影響
        成都市主城區(qū)水中尸體多發(fā)河流區(qū)段硅藻分布
        浮游藻類在水體PAHs富集與降解中的研究
        中文字幕精品一区二区三区| 国产高清a| 久久精品国产亚洲av高清蜜臀| 国产精品性色av麻豆| 国产日韩精品欧美一区喷水| 久久午夜无码鲁丝片直播午夜精品 | 国产黄大片在线观看画质优化| 国产午夜精品久久久久免费视 | 日本高清视频wwww色| 国产一区二区不卡老阿姨| 高潮喷水无遮挡毛片视频| 精品亚洲一区二区三区在线播放| 国产综合色在线精品| 欧美综合自拍亚洲综合图片区| 熟妇人妻不卡中文字幕| 人妻少妇偷人精品一区二区| 精品久久久久久久久午夜福利| 国产精品美女久久久浪潮av| 亚洲AⅤ乱码一区二区三区| 美女露出奶头扒开内裤的视频| av中文字幕潮喷人妻系列| 国产精品99久久精品爆乳| 国产不卡一区二区三区视频| 国产av久久在线观看| 国产乱码一二三区精品| 麻豆国产巨作AV剧情老师| 亚洲中文字幕免费精品| 国产三级a三级三级| 久久久久久久久888| 人妻系列影片无码专区| 在线观看国产白浆一区三区| av 日韩 人妻 黑人 综合 无码| 国产精选免在线观看| 操老熟妇老女人一区二区| 国产玉足榨精视频在线观看| 毛茸茸的中国女bbw| 亚洲综合国产成人丁香五月小说| 少妇爽到高潮免费视频| 日本最大色倩网站www| 国产成+人+综合+亚洲专| 熟女少妇av一区二区三区|