亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        猴歡喜葉綠體全基因組及杜英科系統(tǒng)地位分析

        2022-03-17 01:05:46王一麾謝宜飛張志翔金佳怡邱相東童陽
        廣西植物 2022年1期

        王一麾 謝宜飛 張志翔 金佳怡 邱相東 童陽

        摘 要:? 最新的分子系統(tǒng)發(fā)育(APG IV)研究中以猴歡喜屬(Sloanea L.)為代表的杜英科(Elaeocarpaceae)所在的酢漿草目(Oxalidales)被置于豆類分支(Fabids),且與衛(wèi)矛目(Celastrales)、金虎尾目(Malpighiales)組成一支(COM分支),但支持率較低。為提高COM分支支持率,該文以杜英科猴歡喜屬猴歡喜(Sloanea sinensis)為材料,應用Illumina Hiseq 2500對猴歡喜葉綠體基因組進行測序,并通過Geneious 11.0,PGA和Shiny軟件進行組裝,注釋和繪制基因組圖譜,之后使用MISA和IRscope軟件對葉綠體基因組特征進行分析,并使用PhyloSuite軟件構(gòu)建豆類分支系統(tǒng)發(fā)育樹。結(jié)果表明:(1)猴歡喜葉綠體基因組全長157 546 bp,GC含量為37.0%,包含一對25 984 bp的反向重復區(qū)、大單拷貝區(qū)(87 903 bp)和小單拷貝區(qū)(17 675 bp)。(2)在猴歡喜葉綠體基因組中有113個非重復基因,包括79個蛋白質(zhì)編碼基因、4個rRNA基因和30個tRNA基因;共檢測到81個SSR位點,其中大部分是單核苷酸重復序列;通過IR邊界區(qū)比較分析,發(fā)現(xiàn)日本杜英(Elaeocarpus japonicus)和猴歡喜在LSC/IRb和IRa/LSC邊界上存在明顯差異。(3)構(gòu)建豆類分支葉綠體全基因組最大似然法系統(tǒng)發(fā)育樹,猴歡喜同日本杜英親緣關(guān)系最近,與酢漿草科(Oxaliadaceae)陽桃(Averrhoa carambola)、紅花酢漿草(Oxalis corymbosa)和O. drummondii聚為一支,支持杜英科歸于酢漿草目并且處在豆類分支中,且衛(wèi)矛目、酢漿草目和金虎尾目演化支(COM分支)支持率高達100%。該研究基于猴歡喜葉綠體基因組進一步確定了杜英科和COM分支的系統(tǒng)地位。

        關(guān)鍵詞: 猴歡喜, 葉綠體基因組, 系統(tǒng)發(fā)育分析, 基因組比較, COM分支

        中圖分類號:? Q941

        文獻標識碼:? A

        文章編號:? 1000-3142(2022)01-0039-10

        收稿日期:? 2021-04-23

        基金項目:? 國家自然科學基金(31110103911, J1310002)[Supported by the National Natural Science Foundation of China(31110103911, J1310002)]。

        第一作者: 王一麾(1997-),碩士研究生,主要從事被子植物系統(tǒng)發(fā)育學研究,(E-mail)535401842@qq.com。

        *通信作者:? 謝宜飛,博士,講師,主要從事木本被子植物系統(tǒng)發(fā)育學研究,(E-mail)xiey-f@foxmail.com。

        The complete chloroplast genome of Sloanea sinensis

        and the systematic status of Elaeocarpaceae

        WANG Yihui1, XIE Yifei1,2*, ZHANG Zhixiang3, JIN Jiayi1, QIU Xiangdong1, TONG Yang1

        ( 1. School of Life Sciences, Gannan Normal University, Ganzhou 341000, Jiangxi, China; 2. Nanling Herbarium, Gannan Normal University,

        Ganzhou 341000, Jiangxi, China; 3. School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China )

        Abstract:? Angiosperm Phylogeny Group IV (APG IV) revealed Elaeocarpaceae represented by Sloanea sinensis belonging to Oxalidales includes the COM clade with Celastrales and Malpighiales,? while the status of COM clade is not well supported based on phylogenetic calculation results of multi-molecular fragments. In order to improve the bootstrap of COM clade, with Sloanea sinensis (genus Sloanea, family Elaeocarpaceae) as materials, we used Illumina Hiseq 2 500 platform to sequence, and then assembled, annotated, and analyzed by Geneious 11.0 PGA and Shiny. Analysis of chloroplast genome characteristics was used by MISA and IRscope. The phylogenetic tree of Fabids was reconstructed by using PhyloSuite. The results were as follows: (1) The complete chloroplast genome of Sloanea sinensis was 157 546 bp in length including two inverted repeats (IRs) of 25 984 bp, which were separated by large single copy (LSC) and short single copy (SSC) of 87 904 bp and 17 674 bp, respectively. The GC content was 37.0%. (2) The genome encoded 113 functional genes, including 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. 81 SSR loci were detected in the S. sinensis genome, and most of SSR was composed of nucleobase A and T. Through IR expansion and contraction analysis, we found that there were obvious differences between Elaeocarpus japonicus and Sloanea sinensis in LSC/IRB and IRA/LSC boundaries. (3) The whole chloroplast genome phylogenetic studies showed Sloanea sinensis and Elaeocarpus japonicus were sister to Averrhoa carambola, Oxalis corymbosa and O. drummondii. Sloanea sinensis and Elaeocarpus japonicus representing Elaeocarpaceae belonged to Oxalidales, Fabids, and a strongly support for COM clade in Fabids group. Based on the chloroplast genome of genus Sloanea, the phylogenetic status of Elaeocarpaceae and the COM clade is confirmed.

        Key words: Sloanea sinensis, chloroplast genome, phylogenetic analysis, genome comparison, COM clade

        葉綠體是色素、脂類物質(zhì)、激素和核糖體等合成的重要細胞器(Palmer 1985; Shinozaki et al., 1986)。葉綠體的遺傳物質(zhì)為葉綠體基因組,通常表現(xiàn)為四聯(lián)體結(jié)構(gòu),由兩個倒位形成的高度保守的重復區(qū)域(IRa和IRb),一個大單拷貝區(qū)域和另一個小單拷貝區(qū)域(分別為LSC和SSC)組成(Pogson et al., 1847; Raman & Park, 2015; Cheng et al., 2017)。葉綠體基因組因其結(jié)構(gòu)保守,同核基因更易于獲得且葉綠體基因組一般是單親遺傳,易于分析(陶曉麗等,2017;Li et al., 2018;Zhang et al., 2018;Jeon & Kim, 2019)。隨著NCBI數(shù)據(jù)庫中葉綠體基因組數(shù)據(jù)的日益增長,為葉綠體比較基因組學提供了豐富的材料,特別是系統(tǒng)發(fā)育分析、分子系統(tǒng)地理學、單倍型分析和轉(zhuǎn)基因遺傳改良方面應用潛力極大(Zhang et al., 2017)。楊亞蒙等(2019)基于34個葡萄屬(Vitis)葉綠體全基因組數(shù)據(jù)重建系統(tǒng)發(fā)育樹,結(jié)果與傳統(tǒng)分類一致;Bhati等(2018)應用Illumina Miseq平臺對茴香(Foeniculum vulgare)葉綠體基因組進行測序比較,共獲得23對分子標記引物,其中21對引物是傘形科植物的有效微衛(wèi)星;Marechal & Brisson(2010)研究發(fā)現(xiàn)IR邊界區(qū)的擴張與收縮是葉綠體基因組結(jié)構(gòu)的重要特征;Su等(2020)比較小麥屬的葉綠體基因組結(jié)構(gòu)中發(fā)現(xiàn)IR區(qū)較其他物種的遺傳差異大,變異明顯,這可能與二粒系小麥的遺傳多樣性相關(guān)。

        以形態(tài)學特征為主的解剖學證據(jù)曾將杜英科歸屬于錦葵目、紅樹目等(Takhtajan, 1980;張宏達, 1989;Thorne, 2000)。Crayn等(2006)基于分子數(shù)據(jù)推斷杜英科(Elaeocarpaceae)與瓶子草科(Cephalotaceae)、槽柱花科(Brunelliaceae)的親緣關(guān)系最近,應隸屬于豆類酢漿草目。最新的APG IV系統(tǒng)把包括杜英科的酢漿草目、衛(wèi)矛目、金虎尾目(COM分支)放置于豆類中,但COM分支的支持率較低(Chase et al., 2016)。

        近年來有學者開展了杜英科屬間的系統(tǒng)發(fā)育關(guān)系研究,利用rbcL片段和trnL-trnF間隔區(qū)構(gòu)建了杜英科Aceratium、Elaeocarpus、Plotytheca、Crinodendron、Valea和Sloanea 的屬間系統(tǒng)發(fā)育關(guān)系,劃分為(Crinodendron + Valea)+ Sloanea 分支和(Aceratium + Elaeocarpus)+ Plotytheca分支(Bradford & Barnes, 2011)。根據(jù)形態(tài)和分子證據(jù),將杜英科分為Sloanea alliance (Vallea, Aristotelia and Sloanea)、Tremandraceous genera (Platytheca, Tetratheca and Tremandra)和Elaeocarpus alliance (Sericolea, Aceratium and Elaeocarpus)三個分支(Phoon, 2015;謝宜飛, 2018)。Sloanea alliance (Vallea, Aristotelia and Sloanea) 分支主要分布在南美洲西部和北部、東南亞和澳洲東部。本研究以猴歡喜為材料,通過葉綠體基因組高通量測序、組裝和基因注釋,利用猴歡喜和日本杜英葉綠體全基因組系統(tǒng)發(fā)育樹進一步確定杜英科和COM分支的位置。

        1 材料與方法

        1.1 實驗材料

        測序材料為猴歡喜(Sloanea sinensis),于2017年4月22日在云南省麻栗坡縣天保鄉(xiāng)(104°43′12″ E、23°0′36″ N)采摘其新鮮嫩葉。材料憑證標本保存于北京林業(yè)大學標本館(BJFC),采集號為謝宜飛、王磊XW1956,鑒定人為謝宜飛。

        1.2 基因組DNA提取及測序

        采用改良的十六烷基三甲基溴化銨(CTAB)法提取猴歡喜總DNA(Li et al., 2009),之后利用瓊脂糖凝膠電泳和NanoDrop-2000微量分光光度計檢測DNA純度和濃度并將猴歡喜的DNA送至北京睿博興科生物技術(shù)有限公司,并使用Illumina HiSeq (TM) 2000進行高通量測序。將得到的原始圖像數(shù)據(jù)文件經(jīng)CASAVA堿基識別(base calling)分析轉(zhuǎn)化為原始測序序列(raw data),將原始測序序列過濾掉帶接頭的、低質(zhì)量的reads,獲得6.04 Gb的clean reads,并且命名為DMS14627-S.fq.gz文件(Cock et al., 2010; Hansen et al., 2010)。

        1.3 基因組組裝與注釋

        經(jīng)Geneious 11.0軟件Trim Ends去除接頭兩端低質(zhì)量序列后的高質(zhì)量分析序列,以Brunellia trianae (槽柱花科槽柱花屬,GenBank登錄號:MN585217)葉綠體基因組為參考序列進行組裝和注釋。利用SPAdes v3.6.1在默認參數(shù)下進行從頭拼接,并生成一系列Contigs (Prjibelski et al., 2020),將長度大于1 000 bp的Contigs用于葉綠體基因組組裝,匹配連接構(gòu)建完整的葉綠體基因組序列(Kearse et al., 2012),二代測序技術(shù)補齊組裝后的空缺。使用PGA基因組注釋工具對猴歡喜葉綠體基因組進行功能注釋,并使用Shiny軟件繪制猴歡喜葉綠體基因組圖譜(Liu et al., 2018; Zheng et al., 2020)。測序后的clean reads上傳至NCBI的SRA數(shù)據(jù)庫(PRJNA661695, SRR12599358),使用Bankit將注釋好的序列提交至NCBI,獲得Genbank登錄號:MW004670。

        1.4 葉綠體基因組特征分析

        猴歡喜葉綠體基因組序列為材料,使用MISA軟件(http://pgrc.ipk-gatersleben.de/misa/misa.ht-ml)鑒定猴歡喜葉綠體基因組中簡單重復序列(SSR),參數(shù)采用默認值,即單核苷酸、二核苷酸、三核苷酸、四核苷酸、五核苷酸和六核苷酸的最小重復次數(shù)分別為 10、6、5、5、5、5,2 個 SSR之間的最小距離為 100 bp (Sahu et al., 2012)。使用IRscope (https: ∥irscope.shinyapps.io/irapp/) 繪制猴歡喜、陽桃、Oxalis corniculate、O. drummondii和日本杜英葉綠體基因組邊界(Amiryousefi et al., 2018)。

        1.5 序列比對和系統(tǒng)發(fā)育分析

        從NCBI數(shù)據(jù)庫下載榛(Corylus heterophylla)、天臺鵝耳櫪(Carpinus tientaiensis)、沼樺(Betula nana)等52個物種完整葉綠體基因組序列。其中,9個物種來自殼斗目,4個物種來自葫蘆目,9個物種來自薔薇目,2個物種來自豆目,4個物種來自酢漿草目,2個物種來自衛(wèi)矛目,19個物種來自金虎尾目,3個物種來自木蘭目(表1)。利用MEGA 7.0軟件比對序列,去除兩端不整齊序列(Kumar et al., 2016)。使用PhyloSuite軟件ModelFinder進行模型分析,并構(gòu)建最大似然法系統(tǒng)發(fā)育樹。按照自展值bootstrap為1 000,運行最長時間為168 h,其他參數(shù)為默認值進行計算。Tree文件使用軟件FigTree v1.3讀?。≒rice et al., 2009; Zhang et al., 2020)。

        2 結(jié)果與分析

        2.1 基因組基本特征

        猴歡喜葉綠體基因組全長157 546 bp, LSC、SSC與IR的長度分別為87 903 bp、17 675 bp、25 984 bp。全基因組的GC含量為37.0%,其中GC含量最高的是反向重復區(qū)(42.9%),大單拷貝區(qū)和小單拷貝區(qū)分別為35.1%和31.4%(表2,圖1)。猴歡喜葉綠體基因組共包括132個基因,非重復基因113個(表3)。

        2.2 SSR分析

        本研究發(fā)現(xiàn)猴歡喜葉綠體基因組中存在81個SSR(Simple Sequence Repeat,簡單重復序列標記),其中大部分是單核苷酸重復序列(76個,93.83%),二核苷酸重復序列有4個(4.94%),三核苷酸重復序列只有1個(1.23%),未檢測到四核苷酸、五核苷酸和六核苷酸序列。88.89%的SSR由A或T組成,這表明SSR基因組偏向A/T基因。SSR以長度10~12 bp的短序列為主,占全部的75.31%,16 bp以上的僅占9.88%(表4)。LSC區(qū)域內(nèi)核苷酸重復序列達65個(80.25%),其中大部分是單核苷酸重復序列。SSC區(qū)域內(nèi)核苷酸重復序列有10個(12.35%),且都是單核苷酸重復序列,而兩個IR區(qū)內(nèi)有6個(7.41%)單核苷酸重復序列。

        2.3 IR邊界區(qū)分析

        借助IRscope工具生成5種酢漿草目植物的邊界圖(圖2),5種植物IRa/SSC邊界的基因分布相似。其中,猴歡喜和日本杜英的ndhF基因距離IRb/SSC邊界較遠。在LSC/IRb和IRa/LSC邊界上,猴歡喜同3種酢漿草屬植物所含基因相同(rps19和rpl2),而日本杜英在這兩個邊界上是rps3和rpl22。

        2.4 系統(tǒng)發(fā)育分析

        將猴歡喜、楊梅等53種植物葉綠體基因組序列利用最大似然法構(gòu)建系統(tǒng)發(fā)育樹(圖3),運行的最佳模型為GTR+F+I+G4。系統(tǒng)發(fā)育分析表明猴歡喜同日本杜英聚在一支,分支支持率達100%,屬于杜英科。此外,猴歡喜與陽桃、紅花酢漿草和Oxalis drummondii聚為一支,分支支持率為100%,說明猴歡喜同酢漿草科具有較近的親緣關(guān)系。

        3 討論與結(jié)論

        猴歡喜葉綠體基因組包含157 546 bp堿基,IR的長度為25 984 bp,GC含量為37.0%, 與被子植物葉綠體基因組已有數(shù)據(jù)(120 000 ~ 180 000 bp)相符(Wolf et al., 2010)。猴歡喜葉綠體基因組共注釋了113個基因,與被子植物葉綠體基因組通常為120個左右的基因接近(楊芳,2019)。對比日本杜英的葉綠體基因結(jié)構(gòu),發(fā)現(xiàn)猴歡喜存在infA和ndhK兩個基因。在被子植物中有部分物種的葉綠體基因組infA和ndh基因轉(zhuǎn)移到核糖體,如朝鮮唐松草(Thalictrum ichangense)葉綠體基因組中infA基因轉(zhuǎn)移至核糖體(Millen et al., 2001; Park & Jansen, 2015),蝴蝶蘭(Phaiaenopsis aphrodite)中三個ndh基因(ndhA, ndhF和ndhH)轉(zhuǎn)移到核糖體內(nèi)(Chang et al., 2006)。此外,ndh基因在鞭寄生屬(Hydnora)、菟絲子屬(Cuscuta)等寄生植物和部分蕨類植物中缺失,可能是進化過程中適應水分過多環(huán)境的結(jié)果(DePamphilis & Palmer, 1990; McNeal et al., 2007; Wickett, 2008; Wicke et al., 2011; Kim, 2015; Naumann, 2016)。日本杜英在適應進化過程中葉綠體全基因組丟失了ndhK和infA兩個基因,可能經(jīng)歷了不同的生境擴張。

        SSR比較分析發(fā)現(xiàn)猴歡喜A/T堿基重復比G/C堿基重復多,SSR在非編碼區(qū)比編碼區(qū)更多,符合真核生物的SSR分布(Toth et al., 2000; Morgante et al., 2002; Zhao et al., 2014; Srivastava et al., 2019)。猴歡喜A/T堿基重復較多可能與減數(shù)分裂的重組熱點有關(guān)(Heissl et al., 2018)。在基因組中,GC含量越高則DNA密度越大,基因序列越穩(wěn)定。猴歡喜IR區(qū)的GC含量為42.9%,SSC區(qū)的GC含量較LSC區(qū)和IR區(qū)低,推測其SSC區(qū)有更多的SSR突變位點(Ohme-Takagi et al., 2000)。不同物種的葉綠體基因組ycf基因通常存在高頻率的SSR,造成基因的高度變異,例如在爵床屬(Justicia)中出現(xiàn)多態(tài)性位點次數(shù)最多的是ycf1基因(Kim & Lee, 2004;鈕崢洋, 2020)。在猴歡喜葉綠體基因組的編碼區(qū)中,ycf3基因的多態(tài)性位點最多,存在T和A兩種重復類型,基因變異的幾率大??傮w來看,猴歡喜的葉綠體SSR呈現(xiàn)出分布不均勻、具有豐富變異性的特點,這些SSR可以作為猴歡喜屬植物種內(nèi)遺傳變異和物種鑒定的微衛(wèi)星分子標記。因此,猴歡喜葉綠體基因組的發(fā)表有助于杜英科植物的QTL分析、親緣關(guān)系鑒定和遺傳多樣性研究(劉列釗和林吶,2004)。

        有研究發(fā)現(xiàn)葉綠體基因組的大小不同會導致IR/SC邊界區(qū)出現(xiàn)擴張或者收縮現(xiàn)象,而IR/SC邊界的擴張與收縮又與植物進化有密切的關(guān)系。IR邊界區(qū)大的擴張或收縮可能與雙鏈DNA的斷裂修復有關(guān),小的擴張或收縮與基因轉(zhuǎn)化有關(guān)(Kim & Lee, 2004;Khakhlova & Bock, 2006;Hansen et al., 2007;Wang et al., 2008;Ma et al., 2013;梁鳳萍等,2018;馬麗,2020)。通過比較酢漿草目5種植物葉綠體全基因組的IR邊界區(qū),發(fā)現(xiàn)猴歡喜在IR/SC邊界區(qū)存在較大的擴張,這可能與雙鏈DNA的斷裂修復有關(guān);并且其邊界區(qū)域與日本杜英相比,反而同酢漿草科的邊界區(qū)域更加相似,可能反映猴歡喜屬與酢漿草科的起源時間更接近,經(jīng)歷了相似的地質(zhì)進化事件。對比IR邊界區(qū),猴歡喜的rps19基因橫跨LSC/IRb區(qū),而日本杜英則是rps3基因。研究結(jié)果表明rps19、 rps3基因在單、 雙子葉植物葉綠體基因組中存在一定差異,在部分雙子葉植物中rps19基因僅部分存在于IR區(qū),而rps3基因橫跨LSC/IRb區(qū)的現(xiàn)象僅在重樓屬(Paris,藜蘆科)和黑藥花科(Melanthiaceae)植物中發(fā)現(xiàn)(Lin et al., 2012;Sarah et al., 2013;楊麗芳, 2019)。由此可見,杜英科的猴歡喜屬與杜英屬向東亞擴散的過程中經(jīng)歷了完全不同的復雜進化事件。

        構(gòu)建的系統(tǒng)發(fā)育樹表明猴歡喜同日本杜英聚為一支,同屬于杜英科酢漿草目,與之前Heibl & Renner (2012)和Magallon等(2015)構(gòu)建的系統(tǒng)發(fā)育樹相吻合。酢漿草目、衛(wèi)矛目與金虎尾目聚為COM分支,與APG IV系統(tǒng)一致(Chase et al., 2016)。COM分支又與固氮分支(殼斗目、葫蘆目、薔薇目、豆目)同屬于豆類分支(Fabids),這一結(jié)果進一步確定了COM分支的系統(tǒng)位置,也印證了葉綠體基因組系統(tǒng)發(fā)育分析方法在系統(tǒng)發(fā)育分析中的重要作用。

        參考文獻:

        AMIRYOUSEFI A, HYVNEN J, POCZAI P, 2018. IRscope: An online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 34(17): 3030-3031.

        BHATI R, KUMAR S, PAREKH MJ, 2018. Development of genomic simple sequence repeat (gSSR) markers in cumin and their application in diversity analyses and cross-transferability [J]. Ind Crop Product, 111(1): 158-164.

        BRADFORD JC, BARNES RW, 2001. Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology [J]. Syst Bot, 26(2): 354-385.

        CHANG CC, LIN HC, LIN L, et al.,2006. The chloroplast genome of Phalaenopsis aphrodite(Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications [J]. Mol Biol Evol, 23(2): 279-291.

        CHANG HT(ZHANG HD), 1989. Flora Reipublicae Popularis Sinicae [M]. Beijing: Science Press, 49: 1-46. [張宏達, 1989. 中國植物志 [M]. 北京: 科學出版社, 49: 1-46.]

        CHASE MW, CHRISTENHUSZ MJ, FAY MF, et al., 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV [J]. Bot J Linn Soc,181(1): 1-20.

        CHENG H, LI J, ZHANG H, et al.,2017. The complete chloroplast genome sequence of strawberry (Fragaria×ananassa Duch.) and comparison with related species of Rosaceae [J]. Peer J, 5(10): e3919-e3945.

        COCK PJA, FIELDS CJ, GOTO N, et al.,2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants [J]. Nucl Acid Res, 38(6): 1767-1771.

        CRAYN DM, DARREN M, ROSSETTO, et al.,2006. Molecular phylogeny and dating reveals an Oligo-Miocene radiation of dry-adapted shrubs (former Tremandraceae) from rainforest tree progenitors (Elaeocarpaceae) in Australia [J]. Amer J Bot, 93(9): 1328-1342.

        DEPAMPHILIS CW, PALMER JD, 1990. Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant [J]. Nature, 348(6299): 337-339.

        HANSEN DR, DASTIDAR SG, CAI Z, et al., 2007. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae) [J]. Mol Phylogenet Evol, 45(2): 547-563.

        HANSEN KD, BRENNER SE, DUDOIT S, 2010. Biases in Illumina transcriptome sequencing caused by random hexamer priming [J]. Nucl Acid Res, 38(12): e131-e137.

        HEIBL C, RENNER SS, 2012. Distribution models and a date phylogeny for chilean Oxalis species reveal occupation of new habits by different lineages, not rapid adaptive radiation [J]. Syst Biol, 61(5): 823-834.

        HEISSL A, BETANCOURT AJ, HERMANN P, et al.,2018. Length asymmetry and heterozygosity strongly influences the evolution of poly-A microsatellites at meiotic recombination hotspots [J]. BioRxiv, 18(1): 431841-431871.

        JEON JH, KIM SC, 2019. Comparative analysis of the complete chloroplast genome sequences of three closely related east-Asian wild roses (Rosa sect. Synstylae; Rosaceae) [J]. Genes, 10(1): 23-36.

        KEARSE M, MOIR R, WILSON A, et al.,2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data [J]. Bioinformatics, 28(12): 1647-1649.

        KHAKHLOVA O, BOCK R, 2006. Elimination of deleterious mutations in plastid genomes by gene conversion [J]. Plant J, 46(1): 85-94.

        KIM HT, 2015. Seven new complete plastome sequences reveal rampant independent loss of the ndh gene family across orchids and associated instability of the inverted repeat/small single-copy region boundaries [J]. PLoS ONE, 10(11): e0142215-e014232.

        KIM KJ, LEE HL, 2004. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants [J]. DNA Res, 11(4): 247-261.

        KUMAR S, STECHER G, TAMURA K, 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 33(7): 1870-1874.

        LI D, ZHOU X, LI D, 2009. Extraction of hyperoside from Hypericum perforatum L. using CTAB reversed micelles [J]. Can J Chem Eng, 87(4): 584-590.

        LI YT, ZHANG J, LI LF, GAO LJ, et al., 2018. Structural and comparative analysis of the complete chloroplast genome of Pyrus hopeiensis—“wild plants with a tiny population”—and three other Pyrus species [J]. Int J Mol Sci, 19(10): 3262-3280.

        LIANG FP, WEN XN, GAO HY, et al., 2018. Analysis of chloroplast genomes features of Asteraceae species [J]. Genom Appl Biol, 37(12): 5437-5447. [梁鳳萍, 文祥寧, 高赫一, 等, 2018. 菊科植物葉綠體基因組特征分析 [J]. 基因組學與應用生物學, 37(12): 5437-5447.]

        LIN CP, WU CS, HUANG YY, et al., 2012. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction [J]. Genome Bio Evol, 4(3): 374-381.

        LIU H, HE J, DING C, et al., 2018. Comparative analysis of complete chloroplast genomes of Anemoclema, Anemone, Pulsatilla, and Hepatica revealing structural variations among genera in tribe Anemoneae (Ranunculaceae) [J]. Front Plant Sci, 9(1): 1097-1112.

        LIU LZ, LIN N, 2004. Research advance of SSR(simple sequence repeat) in canola [J]. Chin Bull Life Sci, 3(1): 173-176.? [劉列釗, 林吶, 2004. 油菜簡單重復序列SSR(simple sequence repeat)研究進展 [J]. 生命科學, 3(1): 173-176.]

        MA J, YANG B, ZHU W, et al., 2013. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms [J]. Gene, 528(2): 120-131.

        MA L, 2020. Comparative chloroplast genomics and DNA barcoding of Lagerstroemia species [D]. Hangzhou: Zhejiang A & F University: 26-27.? [馬麗, 2020. 紫薇屬葉綠體比較基因組學及DNA條形碼研究 [D]. 杭州: 浙江農(nóng)林大學: 26-27.]

        MAGALLON S,GMEZ-ACEVEDO S, REYES LLS, et al., 2015. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity [J]. New Phytol, 207(2): 437-453.

        MARECHAL A, BRISSON N, 2010. Recombination and the maintenance of plant organelle genome stability [J].New Phytol, 186(2): 299-317.

        MCNEAL JR, KUEHL JV, BOORE JL, et al., 2007. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta [J]. BMC Plant Biol, 7(1): 57-78.

        MILLEN RS, OLMSTEAD RG, ADAMS KL, et al., 2001. Many parallel losses of infA from chloroplast angiosperm evolution with multiple independent transfers to the nucleus [J]. Plant Cell, 13(3): 645-658.

        MORGANTE M, HANAFEY M, POWELL W, 2002. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes [J]. Nat Genet, 30(1): 194-200.

        NAUMANN J, 2016. Detecting and characterizing the highly divergent plastid genome of the nonphotosynthetic parasitic plant Hydnora visseri (Hydnoraceae) [J]. Genome Biol Evol, 8(2): 345-363.

        NIU ZY, 2020. Phylogenomics of Asian Justicia L. based on complete chloroplast genomes [D]. Nanjing: Nanjing Forestry University: 61-65. [鈕崢洋, 2020. 亞洲廣義爵床屬葉綠體系統(tǒng)發(fā)育基因組學研究 [D]. 南京: 南京林業(yè)大學: 61-65.]

        OHME-TAKAGI M, SUZUKI K, SHINSHI H, 2000. Regulation of ethylene-induced transcription of defense genes [J]. Plant Cell Physiol, 41(11): 1187-1192.

        PALMER JD, 1985. Comparative organization of chloroplast genomes [J]. Ann Rev Genet, 19(1): 325-354.

        PARK S, JANSEN RK, 2015. Complete plastome sequence of Thalictrum coreanum (Ranunculaceae) and transfer of the rpl32 gene to the nucleus in the ancestor of the subfamily Thalictroideae [J]. BMC Plant Biol, 15(1): 40-52.

        PHOON SN, 2015. Systematics and biogeography of Elaeocarpus (Elaeocarpaceae) [D]. Townsville: James Cook University: 82-85.

        POGSON BJ, GANGULY D, ALBRECHT-BORTH V, 1847. Insights into chloroplast biogenesis and development [J]. BBA-Bioenergetics, 1847(9): 1017-1024.

        PRICE MN, DEHAL PS, ARKIN AP, 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix [J]. Mol Biol Evol, 26(7): 1641-1650.

        PRJIBELSKI A, ANTIPOV D, MELESHKO D, et al., 2020. Using SPAdes de novo assembler [J]. Curr Protoc Bioinform, 70(1): e102-e130.

        RAMAN G, PARK S, 2015. Analysis of the complete chloroplast genome of a medicinal plant, Dianthus superbus var. longicalyncinus, from a comparative genomics perspective [J]. PLoS ONE, 10(10): e0141329-e0141349.

        SAHU J, SARMAH R, DEHURY B, et al., 2012. Mining for SSRs and FDMs from expressed sequence tags of Camellia sinensis [J]. Bioinformation, 8(6): 260-266.

        SARAH S, KIM JH, JUNG SK, et al., 2013. Complete chloroplast genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae): comparative genomics and evaluation of universal primers for Liliales [J]. Plant Mol Biol Rep, 31(6): 1407-1421.

        SHINOZAKI K, OHME M, TANAKA M, et al., 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression [J]. EMBO J, 5(9): 2029-2043.

        SRIVASTAVA S, AVVARU AK, SOWPATI DT, et al., 2019. Patterns of microsatellite distribution across eukaryotic genomes [J]. BMC Genomics, 20(1): 153-166.

        SU N, HE ZF, OU PH, et al., 2020. Comparative analysis of the chloroplast genome in Triticum species [J]. J Tritic Crops, 40(1): 55-64. [蘇寧, 何兆峰, 歐平和, 等, 2020.小麥屬植物葉綠體基因組結(jié)構(gòu)的比較分析 [J].麥類作物學報, 40(1):55-64.]

        TAKHTAJAN AL, 1980. Outline of the classification of flowering plants (Magnoliophyta) [J]. Bot Rev, 46(3): 225-359.

        TAO XL, MA LC, NIE B, et al., 2017. The draft and characterization of the complete chloroplast genome of Vicia sativa cv. Lanjian No.3 [J]. Prat Sci, 34(2): 321-330. [陶曉麗, 馬利超, 聶斌, 等, 2017. ‘蘭箭3號’春箭筈豌豆葉綠體全基因組草圖及特征分析 [J]. 草業(yè)科學, 34(2): 321-330.]

        THORNE RF, 2000. The classification and geography of the flowering plants: Dicotyledons of the class Angiospermae [J]. Bot Rev, 66(4): 441-647.

        TOTH G, GASPARI Z, JURKA J, 2000. Microsatellites in different eukaryotic genomes survey and analysis [J]. Genome Res, 10(7): 967-981.

        WANG RJ, CHENG CL, CHANG CC, et al., 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots? [J]. BMC Evol Biol, 8(1): 36-49.

        WICKE S, SCHNEEWEISS GM, DEPAMPHILIS CW, et al., 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function [J]. Plant Mol Biol, 76(3): 273-297.

        WICKETT NJ, 2008. Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis [J]. Mol Biol Evol, 25(2): 393-401.

        WOLF PG, DER J, DUFFY A, et al., 2010. The evolution of chloroplast genes and genomes in ferns [J]. Plant Mol Biol, 76(3): 251-261.

        XIE YF, 2018. Ataxonomic study of Elaeocarpaceae in East Asia and the Pan-Himalayas [D]. Beijing: Beijing Forestry University: 14-15. [謝宜飛, 2018.東亞及泛喜馬拉雅地區(qū)杜英科的分類研究 [D]. 北京: 北京林業(yè)大學: 14-15.]

        YANG F, 2019. Sequencing andstuctural analysis of chloroplast genome in Rosa banksias [J]. Genom Appl Biol, 38(8): 3586-3594. [楊芳, 2019. 七里香薔薇葉綠體基因組測序及結(jié)構(gòu)分析 [J]. 基因組學與應用生物學, 38(8): 3586-3594.]

        YANG LF, 2019. Plastid phyogenomics and biogeography of Paris [D]. Kunming: Yunnan University: 44-45. [楊麗芳, 2019. 重樓屬葉綠體系統(tǒng)發(fā)育基因組學與生物地理學研究 [D]. 昆明: 云南大學: 44-45.]

        YANG YM, JIAO J, FAN XC, et al., 2019. Complete chloroplast genome sequence and characteristics analysis of Vitis ficifolia [J]. Acta Hort Sin, 46(4): 635-648.? [楊亞蒙, 焦健, 樊秀彩, 等, 2019. 桑葉葡萄葉綠體基因組及其特征分析 [J]. 園藝學報, 46(4): 635-648.]

        ZHANG D, GAO F, JAKOVLI I, et al., 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol Ecol Resour, 20(1): 348-355.

        ZHANG X, RONG C, QIN L, et al., 2018. Complete chloroplast genome sequence of Malus hupehensis: genome structure, comparative analysis, and phylogenetic relationships [J]. Molecules, 23(11): 2917-2929.

        ZHANG X, ZHOU T, KANWAL N, et al., 2017. Completion of eight gynostemma bl. (cucurbitaceae) chloroplast genomes: characterization, comparative analysis, and phylogenetic relationships [J]. Front Plant Sci, 8(1): 1583-1595.

        ZHAO ZX, GUO C, SUTHARZAN S, et al., 2014. Genome-wide analysis of tandem repeats in plants and green algae [J]. G3 Genes, 4(1): 67-78.

        ZHENG SY, POCZAI P, HYVNENJ, et al., 2020. Chloroplot: an online program for the versatile plotting of organelle genomes [J]. Front Genet, 11(1): 1-8.

        (責任編輯 何永艷)

        1943501186371

        亚洲av成人中文无码专区| 国产爽快片一区二区三区| 国产三级久久精品三级91| 曰韩亚洲av人人夜夜澡人人爽| 少妇人妻偷人精品无码视频| 狠狠色欧美亚洲综合色黑a | 波多野结衣有码| 中文字幕人成乱码中文乱码| 激情久久黄色免费网站| 亚洲av成人噜噜无码网站| 国产成人精品日本亚洲18 | 一区二区三区国产天堂| 人人妻人人澡人人爽人人精品av | 亚洲精品一区二区国产精华液| 亚洲av无码国产剧情| 在线成人tv天堂中文字幕| 亚洲丝袜美腿精品视频| 亚洲精品中文字幕乱码三区| 久久精品人成免费| 国产美女av一区二区三区| 中文字幕午夜精品久久久| 午夜福利理论片高清在线观看| 国产在线美女| 国产精品久久一区二区蜜桃| 无套内谢孕妇毛片免费看| 丰满少妇大力进入av亚洲| 国产精品18久久久久久首页| 精品国产乱子伦一区二区三| 欧美亚洲国产一区二区三区| 国产成人亚洲精品91专区手机| 精品少妇后入一区二区三区| 免费久久久一本精品久久区| 色老板精品视频在线观看| 草草影院国产| 久久久亚洲av成人乱码| 强奷乱码中文字幕| 精品亚洲日韩国产一二三区亚洲| 亚洲精品一区二区三区日韩 | 中文字幕人妻被公上司喝醉| 国产成人亚洲综合无码DVD| 中文字幕精品人妻丝袜|