陳芳如
三維MHD方程軸對稱弱解的正則準(zhǔn)則
陳芳如
(溫州大學(xué)數(shù)理學(xué)院,浙江溫州 325035)
MHD方程組;正則性準(zhǔn)則;軸對稱;Besov空間
本文考慮的三維粘性不可壓縮磁流體動力學(xué)方程(Magnetohydrodynamics,MHD)形式如下:
He等人在文獻[1]中僅根據(jù)速度場建立了基本的Serrin型規(guī)律性準(zhǔn)則,準(zhǔn)確地說,表明了速度場若滿足
或
得到方程組(1)的弱解是光滑的.
得到方程組(1)的弱解是光滑的.同時,也有軸對稱Navier-Stokes方程的分量正則性準(zhǔn)則,如文獻[10],正則性準(zhǔn)則只作用于渦場的兩個分量.受Navier-Stokes方程結(jié)果的啟發(fā),我們將注意力轉(zhuǎn)向軸對稱MHD方程.Liu等人在文獻[11]中構(gòu)造了具有特定形式磁場的三維不可壓縮MHD方程的一類軸對稱解的正則性判據(jù).
定理1的證明.
首先對(1)式進行先驗估計.更準(zhǔn)確地說,我們將展示下面的一個先驗估計.
在(1)式上求其旋度,得到:
(17)式右側(cè)第一項可估計為:
將(20)式―(22)式加起來,可得:
同樣地,有以下估計
由此可得:
然后將(23)式、(24)式和(25)式代入(18)式,就得到了
現(xiàn)在估計(17)式右邊的第二項,
得到:
它遵循類似的方法,
組合(17)式、(26)式、(27)式、(28)式得到:
同樣地,得到
證明完成.
[1] He C, Xin Z. On the Regularity of Solutions to the Magnetohydrodynamic Equations[J]. Journal Differential Equations, 2005, 213(2): 235-254.
[2] Zhou Y. Remarks on Regularities for the 3D MHD Equations, Discrete Contin [J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 2005, 12: 881-886.
[3] Chen Q, Miao C, Zhang Z. On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-hydrodynamics Equations, Commun [J].Communications in Mathematical Physics, 2008, 284: 919-930.
[4] Wu J. Bounds and New Approaches for the 3D MHD Equations [J]. Journal of Nonlinear Science, 2002, 12: 395-413.
[5] Wu J. Regularity Results for Weak Solutions of the 3D MHD Equations, Discrete Contin [J]. Journal of Dynamic Systems Measurement and Control-Transactions of the Asme, 2004,10: 543-556.
[6] Gala S, Guo Z, Ragusa M. A Regularity Criterion for the Three-dimensional MHD Equations in Terms of One Directional Derivative of the Pressure [J]. Computers and Mathematics with Applications, 2015, 70(12): 3057-3061.
[7] Tong D, Wang W. Conditional Regularity for the 3D MHD Equations in the Critical Besov Space [J]. Applied Mathematics Letters, 2020, 102: 106119.
[8] Chae D, Choe J. Regularity of solutions to the Navier-Stokes Equations [J]. Electronic Journal of Differential Equations, 1999, 56: 1-7.
[9] Kozono H, Ogawa T, Taniuchi Y. The Critical Sobolev Inequalities in Besov Spaces and Regularity Criterion to Some Semi-linear Evolutions [J]. Mathematische Zeitschrift, 2002, 242: 251-278.
[10] Chae D, Lee J. On the Regularity of the Axisymmetric Solutions of the Navier-Stokes Equations [J]. Mathematische Zeitschrift, 2002, 239: 645-671.
[11] Liu J. On Regularity Criterion to the 3D Axisymmetric Incompressible MHD Equations [J]. Mathematical Methods in the Applied Sciences, 2016, 39: 4535-4544.
[12] Stein E M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Interals [M]. Princeton: Princeton University Press, 1993:285-288.
Regularity Criteria of Axisymmetric Weak Solutions to the 3D MHD Equations
CHEN Fangru
(College of Mathematics and Physics, Wenzhou University, Wenzhou, China 325035)
MHD Equations; Regularity Criteria; Axisymmetric; Besov Space
O175
A
1674-3563(2022)01-0025-09
10.3875/j.issn.1674-3563.2022.01.004
本文的PDF文件可以從www.wzu.edu.cn/wzdxxb.htm獲得
2020-10-21
陳芳如(1995― ),甘肅定西人,碩士研究生,研究方向:微分方程與動力系統(tǒng)
(編輯:王一芳)
(英文審校:黃璐)