亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        副凋亡在腫瘤中的研究進展*

        2022-03-04 09:17:28焦肖寧方肇勤盧濤
        中國病理生理雜志 2022年2期
        關(guān)鍵詞:細胞質(zhì)空泡內(nèi)質(zhì)網(wǎng)

        焦肖寧, 方肇勤, 盧濤

        副凋亡在腫瘤中的研究進展*

        焦肖寧, 方肇勤, 盧濤△

        (上海中醫(yī)藥大學,上海 201203)

        細胞程序性死亡;副凋亡;內(nèi)質(zhì)網(wǎng)應(yīng)激;細胞質(zhì)空泡化

        腫瘤是嚴重危害人類健康的疾病之一,流行病學數(shù)據(jù)顯示,2018年全球約有1 810萬腫瘤新發(fā)病例以及960萬腫瘤死亡病例;腫瘤的發(fā)病率和死亡率在全球范圍內(nèi)迅速增長,其難治性及危害性使得腫瘤成為全球最重要的生命科學領(lǐng)域之一[1]。細胞死亡方式的研究對于腫瘤有重要意義,如細胞凋亡的發(fā)現(xiàn)對腫瘤細胞的清除及腫瘤治療學產(chǎn)生了巨大影響,但單一方式的治療常常伴隨耐藥性的產(chǎn)生[2-4];與此同時,誘導腫瘤細胞其它死亡形式在臨床抗腫瘤治療中也發(fā)揮重要的作用[5]。

        副凋亡(paraptosis)描述了一種細胞死亡形式,因其受基因表達調(diào)控故認為是一種細胞程序性死亡。當細胞發(fā)生副凋亡時,可在形態(tài)學上觀察到細胞質(zhì)空泡化(內(nèi)質(zhì)網(wǎng)和/或線粒體擴張),且形態(tài)學的差異表明副凋亡不同于細胞壞死、凋亡和自噬,其發(fā)生機制至今仍未被完全揭示。本文對副凋亡的特征及其調(diào)控機制進行綜述,以期為臨床抗腫瘤藥物的研發(fā)和應(yīng)用提供參考資料。

        1 副凋亡發(fā)生時的特征性改變

        x

        1.1細胞質(zhì)空泡化是副凋亡的典型形態(tài)學特征 Sperandio等[6-7]于2000年對副凋亡進行了特征性描述:在細胞發(fā)生副凋亡過程中,細胞質(zhì)出現(xiàn)空泡化和細胞死亡,但卻不伴隨細胞凋亡(核碎裂、凋亡小體形成和染色質(zhì)濃縮)、自噬(自噬體)和壞死的形態(tài)學改變,且不受凋亡抑制劑調(diào)控。早在1973年就已有學者在研究中觀察到類似的細胞形態(tài)學變化[8]。1995年,Samaha等[9]首次使用para-apoptosis一詞描述核固縮、核碎裂、細胞密度增加和細胞質(zhì)空泡化的細胞死亡形式的發(fā)生,其中的形態(tài)學改變和生化特征可能包含細胞凋亡和副凋亡。細胞副凋亡時的形態(tài)變化見圖1。

        Figure 1.Cell morphological changes during paraptosis.

        1.2膜定位是副凋亡的重要特征Sperandio等[6]首先發(fā)現(xiàn)膜定位在誘導細胞副凋亡過程中發(fā)揮了重要的作用,他們將人胰島素樣生長因子1受體(insulin-like growth factor 1 receptor,IGF1R)序列和用于膜定位的十四烷基化信號序列插入質(zhì)粒載體中,獲得野生型IGF1R構(gòu)建體,并誘導獲得突變構(gòu)建體IGF1R胞內(nèi)結(jié)構(gòu)域(IGF1R intracellular domain,IGF1R-IC),用于防止配體結(jié)合誘導的信號轉(zhuǎn)導;十四烷基化的IGF1R/IGF1R-IC構(gòu)建體誘導了副凋亡的形態(tài)學改變和細胞死亡,同時非十四烷基化IGF1R/IGF1R-IC構(gòu)建體不誘導細胞副凋亡,表明膜定位在副凋亡發(fā)生的過程中是必要的。Ye等[10]發(fā)現(xiàn),誘導腫瘤細胞副凋亡的靶向組蛋白脫乙酰酶磷光錸(I)復合物[histone deacetylase-targeted phosphorescent rhenium(I) complex]定位于細胞線粒體中。

        1.3副凋亡與其他細胞程序性死亡的差異與其他細胞程序性死亡相比,細胞發(fā)生副凋亡時,在形態(tài)、關(guān)鍵生化分子及關(guān)鍵環(huán)節(jié)上均有差異,見表1。

        表1 副凋亡與其他細胞程序性死亡之間的差異

        TNFR1: tumor necrosis factor receptor 1; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand; mTORC1: mammalian target of rapamycin complex 1; ATG: autophagy-related gene; LC3: microtubule-associated protein 1 light chain 3; CYPD: cyclophilin D; RIPK: receptor-interacting protein kinase; MLKL: mixed lineage kinase domain-like protein; CHIP: carboxyl terminus of heat shock protein 70 (HSP70)-interacting protein; NF-κB: nuclear factor-κB; AIP-1/Alix: apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1/apoptosis-linked gene-2 (ALG-2)-interacting protein X; MAPK: mitogen-activated protein kinase; TAJ/TROY: an orphan tumor necrosis factor receptor family member; BAP31: B-cell receptor-associated protein 31.

        2 副凋亡的檢測方法

        目前針對副凋亡的研究多聚焦在副凋亡發(fā)生時細胞形態(tài)學上的改變,使用顯微鏡和電鏡可以從形態(tài)學上觀察到細胞質(zhì)空泡化、線粒體和(或)內(nèi)質(zhì)網(wǎng)腫脹,這與細胞凋亡時所發(fā)生的核固縮有所區(qū)別。在哺乳動物細胞中,特定蛋白質(zhì)和復合物的轉(zhuǎn)運通過介導細胞器中的信號肽實現(xiàn),因而使用可以與多個細胞器信號肽偶聯(lián)而成的融合蛋白,如增強型黃色熒光蛋白(enhanced yellow fluorescent protein,EYFP),分別標記線粒體和內(nèi)質(zhì)網(wǎng),在熒光顯微鏡下,可觀察細胞質(zhì)空泡化的產(chǎn)生是否來源于線粒體和內(nèi)質(zhì)網(wǎng)的改變[11]。同時副凋亡發(fā)生時其標志性蛋白AIP-1/Alix[apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1/apoptosis-linked gene-2 (ALG-2)-interacting protein X]表達顯著下調(diào)[7]。

        副凋亡的檢測通常與凋亡、自噬等檢測相鑒別。在細胞發(fā)生副凋亡時,凋亡相關(guān)蛋白胱天蛋白酶3(caspase-3)、多腺苷二磷酸核糖聚合酶[poly(ADP-ribose) polymerase,PARP]、Bcl家族等,自噬相關(guān)蛋白微管相關(guān)蛋白1輕鏈3 (microtubule-associated protein 1 light chain 3,LC3)等均無明顯變化或僅有輕微的變化;使用DNA原位末端標記法(end-labeling,ISEL)和末端脫氧核苷酸轉(zhuǎn)移酶介導的dUTP缺口末端標記法(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling,TUNEL)等并未觀察到細胞有明顯變化;使用瓊脂糖凝膠電泳并未觀察到階梯狀DNA,即染色質(zhì)DNA未被核糖體內(nèi)切酶降解;而使用caspase蛋白酶抑制劑、Bcl家族、自噬抑制劑等都不能抑制副凋亡細胞死亡,這進一步佐證了細胞副凋亡的發(fā)生。

        3 調(diào)控副凋亡發(fā)生的相關(guān)機制

        細胞副凋亡的發(fā)生是一個復雜、動態(tài)持續(xù)的過程。副凋亡的誘導依賴關(guān)鍵蛋白質(zhì)的合成、內(nèi)質(zhì)網(wǎng)應(yīng)激、錯誤折疊蛋白積累、蛋白酶體受損、內(nèi)質(zhì)網(wǎng)Ca2+釋放與線粒體Ca2+超載、活性氧(reactive oxygen species,ROS)的產(chǎn)生等。在多種化合物(表2)、蛋白如TAJ/TROY (an orphan TNF receptor family member)或質(zhì)粒構(gòu)建體如IGF1R等誘導細胞副凋亡的研究中顯示,副凋亡發(fā)生時,其信號轉(zhuǎn)導與絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、Wnt/β-catenin等通路密切相關(guān),信號轉(zhuǎn)導的改變影響關(guān)鍵蛋白分子如AIP-1/Alix、親環(huán)蛋白(cyclophilin)、C/EBP同源蛋白(C/EBP homologous protein,CHOP)、葡萄糖調(diào)節(jié)蛋白78(glucose-regulated protein 78,GRP78)、基質(zhì)金屬蛋白酶7(matrix metalloproteinase 7,MMP7)、cyclin D1、c-Jun、熱休克蛋白70(heat shock protein 70,HSP70)、B細胞受體相關(guān)蛋白31(B-cell receptor-associated protein 31,BAP31)等,詳見圖2。具體闡述如下。

        表2 天然產(chǎn)物誘導副凋亡的相關(guān)研究

        AIP-1/Alix: apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1/apoptosis-linked gene-2 (ALG-2)-interacting protein X; ERK2: extracellular signal-regulated kinases 2; JNK: c-Jun N-terminal kinase; ERS: endoplasmic reticulum stress; CHOP: C/EBP homologous protein; MAPK: mitogen-activated protein kinase; LC3: microtubule-associated protein 1 light chain 3; MEK: MAPK kinase; NF-κB: nuclear factor-κB; MMP7: matrix metalloproteinase 7; SAPK1: stress-activated protein kinase 1,also called JNK; XBP-1: X-box binding protein 1; BAP31: B-cell receptor-associated protein 31; TRAM: translocating chain-associated membrane protein; CFTR: cystic fibrosis transmembrane conductance regulator.

        Figure 2.The signal transduction pathway of paraptosis in tumor. IGF1R: insulin-like growth factor 1 receptor; TAJ/TROY: an orphan tumor necrosis factor receptor family member; MAPK: mitogen-activated protein kinase; JNK: c-Jun N-terminal kinase; ERK: extracellular signal-regulated kinases; CHOP: C/EBP homologous protein; GRP78: glucose-regulated protein 78; BAP31: B-cell receptor-associated protein 31; MMP7: matrix metalloproteinase 7; AIP-1/Alix: apoptosis signal-regulating kinase 1 (ASK1)-interacting protein-1/apoptosis-linked gene-2 (ALG-2)-interacting protein X.

        3.1 MAPK通路參與副凋亡的信號轉(zhuǎn)導過程 MAPK是一個絲氨酸/蘇氨酸蛋白激酶家族,參與細胞增殖、分化、凋亡等過程,還與細胞運動性和應(yīng)激反應(yīng)有關(guān),也參與副凋亡的信號轉(zhuǎn)導過程。典型MAPK包括細胞外信號調(diào)節(jié)激酶1/2(extracellular signal-regulated kinases 1/2,ERK1/2;即p44/42)、c-Jun氨基末端激酶1-3(c-Jun N-terminal kinases 1-3,JNK1-3/JNKs)/應(yīng)激活化蛋白激酶(stress-activated protein kinase,SAPK)1A/1B/1C、p38異構(gòu)體(p38α、β、γ和δ)及ERK5。非典型MAPK[如Nemo樣激酶(Nemo-like kinase,NLK)、ERK3/4和ERK7/8]的研究較少。

        3.1.1 ERK2和JNKs在副凋亡發(fā)生時激活 Sperandio等[6-7]的研究顯示,MAPK家族中ERK1/2和JNKs通路在所有能夠誘導細胞副凋亡的IGF1R-IC的構(gòu)建體中都參與了表達,而在缺乏細胞死亡活性的構(gòu)建體中卻不參與。使用MAPK激酶(MAPK kinase,MEK)-1/2活性抑制劑U0126則可以抑制細胞副凋亡,但類似的抑制劑PD98059(對MEK-1的選擇性遠強于MEK-2)則幾乎完全無效,表明IGF1R-IC通過MEK-2介導副凋亡。

        電力系統(tǒng)主要可以分為發(fā)電、輸電、變電、配電、用電幾個環(huán)節(jié)。配電網(wǎng)是電網(wǎng)的末端,直接與用戶相連,也是輻射面積最廣的網(wǎng)絡(luò)。配電線路是電網(wǎng)向用戶提供電能的最終路徑,其運行關(guān)系到配電網(wǎng)的可靠性、電能質(zhì)量、輸送效率等多方面。因此,配電線路設(shè)計顯得十分重要。

        姜黃素(curcumin)和雷公藤紅素(celastrol)可顯著激活ERK2和JNKs信號通路,誘導細胞發(fā)生副凋亡[11-14]。MEK-1/2活性抑制劑U0126則可以抑制雷公藤紅素和人參皂苷Rh2誘導的細胞質(zhì)空泡的形成,ERK1/2抑制劑PD98057完全阻斷了1-硝基芘誘導的細胞質(zhì)空泡化[13-16]。ERK2和JNKs并沒有表現(xiàn)出絕對一致的變化趨勢:當蝦夷扇貝毒素誘導細胞副凋亡時,可觀察到JNKs激活;當使用苯磷硫胺誘導副凋亡時,則可以觀察到ERK1/2活性降低,但JNK1/2卻呈現(xiàn)激活狀態(tài)[17-18]。

        3.1.2 p38在副凋亡發(fā)生時激活 雷公藤紅素誘導細胞副凋亡的發(fā)生伴隨有p38信號通路的激活,而當使用p38抑制劑SB203580則可以阻滯副凋亡誘導的細胞質(zhì)空泡形成,同時抑制副凋亡的發(fā)生[13-14]。

        細胞副凋亡發(fā)生與ERK1/2、JNKs和(或)p38的激活相關(guān),抑制ERK1/2或其上游的MEK-2均可以抑制細胞副凋亡;下調(diào)JNK1或p38也在一定程度上抑制細胞副凋亡。MAPK的另外一條ERK5通路目前沒有被報道,其與副凋亡是否具有一定的關(guān)聯(lián)性有待進一步研究。

        3.2 GRP78和CHOP在副凋亡發(fā)生時上調(diào) 在細胞副凋亡過程中,常可觀察到內(nèi)質(zhì)網(wǎng)應(yīng)激,通常表現(xiàn)為內(nèi)質(zhì)網(wǎng)應(yīng)激標記蛋白GRP78和CHOP的上調(diào),siRNA抑制CHOP后顯著減弱二甲氧基姜黃素誘導的細胞質(zhì)空泡化[11-12],但siRNA抑制CHOP后并未改變衣霉素誘導的細胞空泡化[19]。這也說明CHOP在細胞副凋亡發(fā)生時的作用仍未明確。

        3.3 AIP-1/Alix抑制副凋亡的發(fā)生 AIP-1/Alix是一種副凋亡的抑制劑[7]。姜黃素、醉茄素A、環(huán)孢菌素A、皮質(zhì)類固醇等誘導副凋亡的過程中,AIP-1/Alix表達逐漸下調(diào);AIP-1/Alix過表達減弱了姜黃素和皮質(zhì)類固醇誘導的細胞質(zhì)空泡化和細胞死亡[11,20-22]。

        3.4 Wnt/β-catenin通路在副凋亡發(fā)生時下調(diào) Wnt/β-catenin信號通路包括經(jīng)典Wnt通路(調(diào)節(jié)基因轉(zhuǎn)錄)、非經(jīng)典的Wnt平面細胞極性通路(調(diào)節(jié)細胞形狀和細胞骨架)和非經(jīng)典的Wnt鈣通路(調(diào)節(jié)細胞內(nèi)的鈣離子)[23-24]。γ-生育三烯酚誘導副凋亡時,下調(diào)了Wnt和β-catenin蛋白表達,并下調(diào)了其下游靶蛋白cyclin D1和c-Jun的表達;β-catenin、cyclin D1和c-Jun的mRNA水平下調(diào)而Wnt的mRNA未變化[25]。δ-生育三烯酚誘導副凋亡時,抑制了β-catenin、Wnt-1、cyclin D1、c-Jun和MMP7的表達[26]。Wnt/β-Catenin信號通路在副凋亡被誘導時發(fā)揮的作用仍有待深入研究,其蛋白變化可能與蛋白泛素化有關(guān)。

        3.5 p53信號通路在副凋亡發(fā)生時被激活 用人參皂苷Rh2處理后,細胞出現(xiàn)副凋亡和凋亡;同時發(fā)現(xiàn)細胞p53途徑激活;促凋亡調(diào)節(jié)劑Bax的水平顯著增加及抗凋亡調(diào)節(jié)劑Bcl-2的水平降低。抑制p53后顯著阻斷Rh2誘導的細胞質(zhì)空泡化及細胞死亡,表明由人參皂苷Rh2誘導的凋亡和副凋亡是由p53介導的[15]。既往研究表明,p53蛋白是一種轉(zhuǎn)錄因子,發(fā)揮抑制腫瘤的作用,在細胞處于應(yīng)激狀態(tài)時可被誘導表達,從而促進細胞進入細胞周期的停滯階段,繼而誘導凋亡或衰老[27]。

        3.7 TAJ/TROY表達可誘導副凋亡 腫瘤壞死因子受體超家族成員TAJ/TROY的過表達誘導細胞副凋亡;由TAJ/TROY觸發(fā)的細胞死亡伴隨著磷脂酰絲氨酸外翻,線粒體跨膜電位的缺失并且不依賴于caspase活化。PDCD5(programmed cell death protein 5;一種促凋亡蛋白)的過度表達增強了TAJ/TROY誘導的細胞副凋亡;此外,響應(yīng)于TAJ/TROY過表達,細胞內(nèi)源性PDCD5蛋白顯著上調(diào)[32]。

        3.8細胞發(fā)生副凋亡伴隨LC3-I向LC3-II轉(zhuǎn)換雷公藤紅素誘導HeLa細胞發(fā)生副凋亡時,伴有自噬標志物LC3由LC3-I向LC3-II轉(zhuǎn)換,并觀察到LC3點狀物形成;有趣的是,自噬抑制劑巴佛洛霉素A1(bafilomycin A1)和3-甲基腺嘌呤(3-methyladenine,3-MA)可阻斷LC3轉(zhuǎn)化,卻不能減弱反而增強了細胞質(zhì)空泡化的誘導[13]。xanthohumol (XN)誘導細胞質(zhì)空泡化時,LC3-II和p62的表達水平增加但beclin-1未增加,其可能通過阻斷自噬體成熟而導致LC3-II積累,bafilomycin A1和3-MA未影響XN誘導的細胞死亡情況和細胞質(zhì)空泡化情況[33]。苯并[a]喹啉并吡啶衍生物22b誘導細胞空泡化時,LC3和p62上調(diào),并觀察到LC3B-I向LC3B-II轉(zhuǎn)化;處理過程中LC3B-II和p62水平隨時間沒有降低,表明自噬體可能不能與溶酶體有效融合;3-MA和E-64d(一種溶酶體酶抑制劑)不能改善細胞質(zhì)空泡化情況卻稍緩解由苯并[a]喹啉并吡啶衍生物22b造成的細胞死亡;敲減幾乎完全消除了苯并[a]喹啉并吡啶衍生物22b誘導的細胞空泡化。LC3-II和p62的持續(xù)上調(diào)以及3-MA和E-64d保護作用的缺乏表明苯并[a]喹啉并吡啶衍生物22b誘導的空泡化不依賴于典型的自噬和溶酶體降解,但LC3對于細胞空泡形成非常重要[34]。上述研究提示副凋亡不同于自噬,但二者存在相互影響,其具體機制仍有待進一步研究。

        3.9BAP31(p20)的異位表達啟動副凋亡BAP31是一個定位于內(nèi)質(zhì)網(wǎng)的跨膜蛋白,是一個在內(nèi)質(zhì)網(wǎng)內(nèi)對新合成的膜蛋白進行分選時的陪伴因子,在內(nèi)質(zhì)網(wǎng)相關(guān)降解、內(nèi)質(zhì)網(wǎng)蛋白運輸?shù)榷鄠€過程中發(fā)揮作用[35]。在凋亡信號傳導過程中,BAP31受到caspase-8的早期切割,得到的p20BAP31片段,表現(xiàn)出啟動內(nèi)質(zhì)網(wǎng)-線粒體-Ca2+轉(zhuǎn)運體,并對內(nèi)質(zhì)網(wǎng)蛋白運輸發(fā)揮顯性負性(dominant negative,DN)作用。在E1A/DNp53轉(zhuǎn)化的小鼠腎上皮細胞中p20的異位表達啟動了副凋亡,并發(fā)現(xiàn)早期內(nèi)質(zhì)網(wǎng)Ca2+儲存上升。敲除對細胞空泡化沒有影響,并延緩但不阻止細胞死亡,提示副凋亡誘導的死亡不依賴凋亡途徑。在敲除的情況下,再敲減-則延遲了細胞質(zhì)空泡化,同時延緩了細胞死亡。Bcl-2的這種促存活作用不依賴其對Bax的抑制,且與其降低內(nèi)質(zhì)網(wǎng)Ca2+儲存的能力相關(guān)[36]。

        3.10 HSP70在副凋亡發(fā)生時上調(diào) 將轉(zhuǎn)染膜型巨噬細胞集落刺激因子的膠質(zhì)瘤T9-C2和U251MG細胞在小鼠皮下接種后,會出現(xiàn)類似副凋亡樣改變,同時觀察到HSP70的上調(diào);在未分化甲狀腺癌ATC細胞中,HSP70抑制劑VER155008增加細胞死亡和空泡化細胞的百分率,即誘導了副凋亡[37-39]。

        4 小結(jié)與展望

        腫瘤細胞似乎更容易發(fā)生副凋亡,這可能是因為快速而無限的增殖是腫瘤細胞的典型特征之一,由于腫瘤細胞高代謝需求和有限的蛋白質(zhì)折疊能力之間的不平衡,腫瘤細胞的內(nèi)質(zhì)網(wǎng)往往會因未折疊和錯誤折疊的蛋白質(zhì)而過載。因此,腫瘤細胞常常遭受比正常細胞更高的內(nèi)質(zhì)網(wǎng)應(yīng)激。腫瘤細胞中表達的許多突變蛋白可能存在折疊挑戰(zhàn)并且需要高水平的降解,這一假說有待進一步的驗證[40]。

        副凋亡的發(fā)生和發(fā)展是由多個通路和蛋白交互作用的結(jié)果,這提示副凋亡發(fā)生的多靶點性。研究表明多種天然化合物通過增強內(nèi)質(zhì)網(wǎng)應(yīng)激和氧化應(yīng)激則可以誘導細胞副凋亡,而副凋亡的發(fā)生更容易在腫瘤細胞中實現(xiàn),對正常細胞的則沒有顯著的影響[12]。天然化合物誘導的細胞副凋亡不僅僅呈現(xiàn)出濃度依賴性,同時還具有時間依賴性,可降低腫瘤細胞增殖性。如何更好的闡明副凋亡發(fā)生的相關(guān)機制;如何更好的將已發(fā)現(xiàn)的化合物使用合理的濃度和合理的治療時間應(yīng)用于臨床;如何更快地發(fā)掘和研發(fā)更多具有誘導副凋亡、抗腫瘤作用的天然化合物和傳統(tǒng)中藥;如何將發(fā)掘的藥物與臨床一線用藥結(jié)合,用于抗腫瘤、抗耐藥、減輕一線臨床藥物的毒副作用,均是亟待解決的重要問題。

        [1] Bray F,F(xiàn)erlay J,Soerjomataram I,et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2018,68(6):394-424.

        [2] J??ttel? M. Escaping cell death: survival proteins in cancer[J]. Exp Cell Res,1999,248(1):30-43.

        [3] Carneiro BA,El-Deiry WS. Targeting apoptosis in cancer therapy[J]. Nat Rev Clin Oncol,2020,17(7):395-417.

        [4] Jiang L,Wang YJ,Zhao J,et al. Direct tumor killing and immunotherapy through anti-SerpinB9 therapy[J]. Cell,2020,183(5):1219-1233.

        [5] Tait SW,Ichim G,Green DR. Die another way: non-apoptotic mechanisms of cell death[J]. J Cell Sci,2014,127(Pt 10):2135-2144.

        [6] Sperandio S,De Belle I,Bredesen DE. An alternative,nonapoptotic form of programmed cell death[J]. Proc Natl Acad Sci U S A,2000,97(26):14376-14381.

        [7] Sperandio S,Poksay K,de Belle I,et al. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix[J]. Cell Death Differ,2004,11(10):1066-1075.

        [8] Schweichel JU,Merker HJ. The morphology of various types of cell death in prenatal tissues[J]. Teratology,1973,7(3):253-266.

        [9] Samaha HS,Asher E,Payne CM,et al. Evaluation of cell death in EBV-transformed lymphocytes using agarose gel electrophoresis,light microscopy and electron microscopy. I. Induction of classic apoptosis by the bile salt,sodium deoxycholate[J]. Leuk Lymphoma,1995,19(1/2):95-105.

        [10] Ye RR,Tan CP,Lin YN,et al. A phosphorescent rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction[J]. Chem Commun (Camb),2015,51(39):8353-8356.

        [11] Yoon MJ,Kim EH,Lim JH,et al. Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells[J]. Free Radic Biol Med,2010,48(5):713-726.

        [12] Yoon MJ,Kang YJ,Lee JA,et al. Stronger proteasomal inhibition and higher CHOP induction are responsible for more effective induction of paraptosis by dimethoxycurcumin than curcumin[J]. Cell Death Dis,2014,5:e1112.

        [13] Wang WB,F(xiàn)eng LX,Yue QX,et al. Paraptosis accompanied by autophagy and apoptosis was induced by celastrol,a natural compound with influence on proteasome,ER stress and Hsp90[J]. J Cell Physiol,2012,227(5):2196-2206.

        [14] Yoon MJ,Lee AR,Jeong SA,et al. Release of Ca2+from the endoplasmic reticulum and its subsequent influx into mitochondria trigger celastrol-induced paraptosis in cancer cells[J]. Oncotarget,2014,5(16):6816-6831.

        [15] Li B,Zhao J,Wang CZ,et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53[J]. Cancer Lett,2011,301(2):185-192.

        [16] Asare N,Landvik NE,Lagadic-Gossmann D,et al. 1-Nitropyrene (1-NP) induces apoptosis and apparently a non-apoptotic programmed cell death (paraptosis) in Hepa1c1c7 cells[J]. Toxicol Appl Pharmacol,2008,230(2):175-186.

        [17] Korsnes MS,Espenes A,Hetland DL,et al. Paraptosis-like cell death induced by yessotoxin[J]. Toxicol In Vitro,2011,25(8):1764-1770.

        [18] Sugimori N,Espinoza JL,Trung LQ,et al. Paraptosis cell death induction by the thiamine analog benfotiamine in leukemia cells[J]. PLoS One,2015,10(4):e0120709.

        [19] Kim SH,Shin HY,Kim YS,et al. Tunicamycin induces paraptosis potentiated by inhibition of BRAFV600E in FRO anaplastic thyroid carcinoma cells[J]. Anticancer Res,2014,34(9):4857-4868.

        [20] Ghosh K,De S,Das S,et al. Withaferin ainduces ROS-mediated paraptosis in human breast cancer cell-lines MCF-7 and MDA-MB-231[J]. PLoS One,2016,11(12):e0168488.

        [21] Ram BM,Ramakrishna G. Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition[J]. Biochim Biophys Acta,2014,1843(11):2497-2512.

        [22] Valamanesh F,Torriglia A,Savoldelli M,et al. Glucocorticoids induce retinal toxicity through mechanisms mainly associated with paraptosis[J]. Mol Vis,2007,13:1746-1757.

        [23] Nusse R,Varmus HE. Wnt genes[J]. Cell,1992,69(7):1073-1087.

        [24] Zhang H,Zhang H,Zhang Y,et al. Dishevelled-DEP domain interacting protein (DDIP) inhibits Wnt signaling by promoting TCF4 degradation and disrupting the TCF4/β-catenin complex[J]. Cell Signal,2010,22(11):1753-1760.

        [25] Zhang JS,Li DM,Ma Y,et al. γ-Tocotrienol induces paraptosis-like cell death in human colon carcinoma SW620 cells[J]. PLoS One,2013,8(2):e57779.

        [26] Zhang JS,Li DM,He N,et al. A paraptosis-like cell death induced by δ-tocotrienol in human colon carcinoma SW620 cells is associated with the suppression of the Wnt signaling pathway[J]. Toxicology,2011,285(1/2):8-17.

        [27] Levine AJ,Oren M. The first 30 years of p53: growing ever more complex[J]. Nat Rev Cancer,2009,9(10):749-758.

        [28] Stamnes MA,Rutherford SL,Zuker CS. Cyclophilins: a new family of proteins involved in intracellular folding[J]. Trends Cell Biol,1992,2(9):272-276.

        [29] Trandinh CC,Pao GM,Saier MH Jr. Structural and evolutionary relationships among the immunophilins: two ubiquitous families of peptidyl-prolyl-isomerases[J]. FASEB J,1992,6(15):3410-3420.

        [30] Hacker J,F(xiàn)ischer G. Immunophilins: structure-function relationship and possible role in microbial pathogenicity[J]. Mol Microbiol,1993,10(3):445-456.

        [31] Wang L,Gundelach JH,Bram RJ. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme[J]. Cell Death Dis,2017,8(5):e2807.

        [32] Wang Y,Li X,Wang L,et al. An alternative form of paraptosis-like cell death,triggered by TAJ/TROY and enhanced by PDCD5 overexpression[J]. J Cell Sci,2004,117(Pt 8):1525-1532.

        [33] Mi X,Wang C,Sun C,et al. Xanthohumol induces paraptosis of leukemia cells through p38 mitogen activated protein kinase signaling pathway[J]. Oncotarget,2017,8(19):31297-31304.

        [34] Zheng H,Dong Y,Li L,et al. Novel benzo[a]quinolizidine analogs induce cancer cell death through paraptosis and apoptosis[J]. J Med Chem,2016,59(10):5063-5076.

        [35] Wang B,Heath-Engel H,Zhang D,et al. BAP31 interacts with Sec61 translocons and promotes retrotranslocation of CFTRΔF508 via the Derlin-1 complex[J]. Cell,2008,133(6):1080-1092.

        [36] Heath-engel HM,Wang B,Shore GC. Bcl2 at the endoplasmic reticulum protects against a Bax/Bak-independent paraptosis-like cell death pathway initiated via p20Bap31[J]. Biochim Biophys Acta,2012,1823(2):335-347.

        [37] Chen Y,Douglass T,Jeffes EW,et al. Living T9 glioma cells expressing membrane macrophage colony-stimulating factor produce immediate tumor destruction by polymorphonuclear leukocytes and macrophages via a "paraptosis"-induced pathway that promotes systemic immunity against intracranial T9 gliomas[J]. Blood,2002,100(4):1373-1380.

        [38] Kim SH,Kang JG,Kim CS,et al. The hsp70 inhibitor VER155008 induces paraptosis requiringprotein synthesis in anaplastic thyroid carcinoma cells[J]. Biochem Biophys Res Commun,2014,454(1):36-41.

        [39] JadusMR,Chen Y,Boldaji MT,et al. Human U251MG glioma cells expressing the membrane form of macrophage colony-stimulating factor (mM-CSF) are killed by human monocytesand are rejected within immunodeficient mice via paraptosis that is associated with increased expression of three different heat shock proteins[J]. Cancer Gene Ther,2003,10(5):411-420.

        [40] Suh DH,Kim MK,Kim HS,et al. Unfolded protein response to autophagy as a promising druggable target for anticancer therapy[J]. Ann N Y Acad Sci,2012,1271:20-32.

        [41] 徐靜,徐秋林,郭曉華. 長鏈非編碼RNA調(diào)控細胞凋亡及自噬的研究進展[J]. 中國病理生理雜志,2015,31(8):1525-1530.

        Xu J,Xu QL,Guo XH. Research progress of long non-coding RNA in regulating cell apoptosis and autophagy[J]. Chin J Pathophysiol,2015,31(8):1525-1530.

        [42] Luna-Vargas M,Chipuk JE. Physiological and pharmacological control of BAK,BAX,and beyond[J]. Trends Cell Biol,2016,26(12):906-917.

        [43] Xu X,Lai Y,Hua ZC. Apoptosis and apoptotic body: disease message and therapeutic target potentials[J]. Biosci Rep,2019,39(1):BSR20180992.

        [44] D'arcy MS. Cell death: a review of the major forms of apoptosis,necrosis and autophagy[J]. Cell Biol Int,2019,43(6):582-592.

        [45] 任安立,李靖凱,周冬冬. 程序化細胞死亡因子5對缺氧/復氧誘導的心肌細胞凋亡和自噬的影響及機制[J]. 中國病理生理雜志,2017,33(2):251-256.

        Ren AL,Li JK,Zhou DD. Effects of PDCD5 on hypoxia/reoxygenation-induced autophagy and apoptosis of cardiomyocytes[J]. Chin J Pathophysiol,2017,33(2):251-256.

        [46] Galluzzi L,Green DR. Autophagy-independent functions of the autophagy machinery[J]. Cell,2019,177(7):1682-1699.

        [47] Bortot B,Apollonio M,Baj G,et al. Advanced photodynamic therapy with an engineered M13 phage targeting EGFR: mitochondrial localization and autophagy induction in ovarian cancer cell lines[J]. Free Radic Biol Med,2021,179:242-251.

        [48] Qiao Y,Choi JE,Tien JC,et al. Autophagy inhibition by targeting PIKfyve potentiates response to immune checkpoint blockade in prostate cancer[J]. Nat Cancer,2021,2:978-993.

        [49] Saleem S. Apoptosis,autophagy,necrosis and their multi galore crosstalk in neurodegeneration[J]. Neuroscience,2021,469:162-174.

        [50] Nikoletopoulou V,Markaki M,Palikaras K,et al. Crosstalk between apoptosis,necrosis and autophagy[J]. Biochim Biophys Acta,2013,1833(12):3448-3459.

        [51] Pijnenburg L,F(xiàn)elten R,Javier RM. A review of avascular necrosis,of the hip and beyond][J]. Rev Med Interne,2020,41(1):27-36.

        [52] Gi?ycka A,Chorostowska-Wynimko J. Programmed necrosis and necroptosis-molecular mechanisms[J]. Postepy Hig Med Dosw,2015,69:1353-1363.

        [53] 柯波,萬才水,李安娜,等. 雷公藤紅素誘導多發(fā)性骨髓瘤H929細胞凋亡[J]. 中國病理生理雜志,2020,36(3):487-494.

        Ke B,Wan CS,Li AN,et al. Celastrol induces apoptosis of multiple myeloma H929 cells[J]. Chin J Pathophysiol,2020,36(3):487-494.

        [54] Singha PK,Pandeswara S,Venkatachalam MA,et al. Manumycin a inhibits triple-negative breast cancer growth through LC3-mediated cytoplasmic vacuolation death[J]. Cell Death Dis,2013,4:e457.

        [55] Wallenberg M,Misra S,Wasik AM,et al. Selenium induces a multi-targeted cell death process in addition to ROS formation[J]. J Cell Mol Med,2014,18(4):671-684.

        [56] Bury M,Girault A,Mégalizzi V,et al. Ophiobolin A induces paraptosis-like cell death in human glioblastoma cells by decreasing BKCa channel activity[J]. Cell Death Dis,2013,4:e561.

        [57] Wang CZ,Li B,Wen XD,et al. Paraptosis and NF-κB activation are associated with protopanaxadiol-induced cancer chemoprevention[J]. BMC Complement Altern Med,2013,13:2.

        [58] Chen TS,Wang XP,Sun L,et al. Fluorescence analysis of taxol-induced paraptosis-like independent of caspase-3 activation[J]. Guang Pu Xue Yu Guang Pu Fen Xi,2008,28(11):2623-2627.

        [59] Chen TS,Wang XP,Sun L,et al. Taxol induces caspase-independent cytoplasmic vacuolization and cell death through endoplasmic reticulum (ER) swelling in ASTC-a-1 cells[J]. Cancer Lett,2008,270(1):164-172.

        [60] Yumnam S,Park HS,Kim MK,et al. Hesperidin induces paraptosis like cell death in hepatoblastoma,HepG2 cells: involvement of ERK1/2 MAPK[J]. PLoS One,2014,9(6):e101321.

        [61] Wang Y,Yang Z,Zhao X. Honokiol induces paraptosis and apoptosis and exhibits schedule-dependent synergy in combination with imatinib in human leukemia cells[J]. Toxicol Mech Methods,2010,20(5):234-241.

        [62] Shiau JY,Nakagawa-Goto K,Lee KH,et al. Phytoagent deoxyelephantopin derivative inhibits triple negative breast cancer cell activity by inducing oxidative stress-mediated paraptosis-like cell death[J]. Oncotarget,2017,8(34):56942-56958.

        Research progress of paraptosis in tumor

        JIAO Xiao-ning,F(xiàn)ANG Zhao-qin,LU Tao△

        (,201203,)

        Paraptosis is a one of programmed cell death. Its typical morphological feature is vacuolization of the cytoplasm. Membrane localization is very important in the process of paraptosis. Morphological characteristics of paraptosis are mainly observed by microscopy or electron microscopy. Membrane localization is detected by fluorescent protein-labeled mitochondria or endoplasmic reticulum. The paraptosis marker is AIP-1/Alix. MAPK and Wnt/β-catenin play important roles in paraptosis. Key protein molecules,such as AIP-1/Alix,cyclophilin,CHOP,GRP78,MMP7,cyclin D1,c-Jun,HSP70,BAP31 and so on,are also involved in paraptosis. A comprehensive and systematic clarification of the research progress of paraptosis provides a new perspective on the development of anti-tumor drugs.

        Programmed cell death; Paraptosis; Endoplasmic reticulum stress; Cytoplasmic vacuolization

        R730.23; R363

        A

        10.3969/j.issn.1000-4718.2022.02.019

        1000-4718(2022)02-0342-08

        2021-07-12

        2022-01-21

        [基金項目]上海中醫(yī)藥大學預算內(nèi)科研項目(No. 2020LK031);上海市2020年度“科技創(chuàng)新行動計劃”揚帆計劃項目(No. 20YF1449600);上海中醫(yī)藥大學杏林百人(No. 20QN022)

        Tel: 021-51322611; E-mail: lutaodennis@163.com

        (責任編輯:林白霜,羅森)

        猜你喜歡
        細胞質(zhì)空泡內(nèi)質(zhì)網(wǎng)
        作物細胞質(zhì)雄性不育系實現(xiàn)快速創(chuàng)制
        科學導報(2024年20期)2024-04-22 09:54:13
        內(nèi)質(zhì)網(wǎng)自噬及其與疾病的關(guān)系研究進展
        水下航行體雙空泡相互作用數(shù)值模擬研究
        憤怒誘導大鼠肝損傷中內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的表達
        LPS誘導大鼠肺泡上皮細胞RLE-6 TN內(nèi)質(zhì)網(wǎng)應(yīng)激及凋亡研究
        基于LPV的超空泡航行體H∞抗飽和控制
        節(jié)水抗旱細胞質(zhì)雄性不育系滬旱7A 的選育與利用
        基于CFD的對轉(zhuǎn)槳無空泡噪聲的仿真預報
        船海工程(2015年4期)2016-01-05 15:53:28
        洋蔥細胞質(zhì)雄性不育基因分子標記研究進展
        中國蔬菜(2015年9期)2015-12-21 13:04:38
        壇紫菜細胞質(zhì)型果糖1,6-二磷酸酶基因的克隆及表達分析
        亚欧同人精品天堂| 国产精品欧美一区二区三区不卡| 久久人人妻人人做人人爽| 免费看一级a女人自慰免费| 色婷婷av一区二区三区不卡| 亚洲一区二区三区高清在线| 国产精品毛片一区二区| 综合网在线视频| 国产成人自拍视频在线观看网站| 日韩精品在线免费视频| 亚洲国产精品第一区二区| 亚洲成AⅤ人在线观看无码| 久久国产精品懂色av| 亚洲综合另类小说色区| 欧美亚洲国产片在线播放| 久久久精品456亚洲影院| 日本在线一区二区免费| 少妇被粗大的猛进出69影院| 久久亚洲精品ab无码播放| 人妻无码AⅤ中文系列久久免费| 狂插美女流出白浆视频在线观看| 亚洲日韩av一区二区三区中文| 久久中文字幕乱码免费| 精品日本一区二区视频| 亚洲精品国产第一区二区| 亚洲av日韩专区在线观看| 国产自产av一区二区三区性色| 日韩人妖干女同二区三区| 无码人妻丰满熟妇区五十路| 国产成人国产在线观看入口| 日韩一二三四区免费观看| 99精品久久99久久久久| 国产精品免费久久久久软件| 亚洲AV无码日韩综合欧亚 | 激情 一区二区| 中文字幕一区二区av| 一本色道久久88综合日韩精品| 99国产超薄丝袜足j在线播放| 精品国模人妻视频网站| 国产欧美精品一区二区三区四区 | 少妇被躁到高潮和人狍大战|