亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Commuting Graph of Group Ring ZnS3?

        2012-12-27 07:07:02GAOYANYANTANGGAOHUAANDCHENJIANLONG
        關(guān)鍵詞:中西部回歸系數(shù)婚姻

        GAO YAN-YAN,TANG GAO-HUAAND CHEN JIAN-LONG

        (1.Department of Mathematics,Southeast University,Nanjing,210096)

        (2.School of Mathematical Sciences,Guangxi Education University,Nanning,530001)

        On Commuting Graph of Group RingZnS3?

        GAO YAN-YAN1,TANG GAO-HUA2AND CHEN JIAN-LONG1

        (1.Department of Mathematics,Southeast University,Nanjing,210096)

        (2.School of Mathematical Sciences,Guangxi Education University,Nanning,530001)

        The commuting graph of an arbitrary ringR,denoted byΓ(R),is a graph whose vertices are all non-central elements ofR,and two distinct verticesaandbare adjacent if and only ifab=ba.In this paper,we investigate the connectivity and the diameter ofΓ(ZnS3).We show thatΓ(ZnS3)is connected if and only ifnis not a prime number.IfΓ(ZnS3)is connected then diam(Γ(ZnS3))=3,while ifΓ(ZnS3)is disconnected then every connected component ofΓ(ZnS3)must be a complete graph with same size,and we completely determine the vertice set of every connected component.

        group ring,commuting graph,connected component,diameter of a graph

        1 Introduction

        LetGbe a group andRa ring.We denote byRGthe set of all formal linear combinations of the form

        whereag∈Randag=0 almost everywhere,that is,only a finite number of coefficients are different from 0 in each of these sums.Notice that it follows from our de fi nition that given two elements

        The commuting graph of an arbitrary ringRdenoted byΓ(R)is a graph with vertex setV(R)=R(R),whereZ(R)is the center ofR,and two distinct verticesaandbare adjacent if and only ifab=ba.The notion of commuting graph of a ring was first introduced by Akbariet al.[1]in 2004.They investigated some properties ofΓ(R),wheneverRis a finite semisimple ring.For any finite fieldF,they obtained connectivity,minimum degree, maximum degree and clique number ofΓ(Mn(F)).Also it was shown that for any two finite semisimple ringsRandS,ifΓ(R)(S),then there are commutative semisimple ringsR1andS1and semisimple ringTsuch that

        The commuting graphs of some special rings have also been studied(see[2–4]).

        Group rings are very interesting algebraic structure.For a group ringZnS3,the properties of commuting graph can re fl ect its some structures.In this paper,we investigate some properties ofΓ(ZnS3),where

        is the symmetric group of order 6,and

        is the modulenresidue class ring.Given a group ringRGand a finite subsetXof the groupG,we denote bythe following element ofRG:

        In addition,the distinct conjugacy classes ofS3are

        In this paper,all graphs are simple and undirected and|G|denotes the number of vertices of the graphG.We writex∈V(G)whenxis a vertex ofG.A path of lengthrfrom a vertexxto another vertexyinGis a sequence ofr+1 distinct vertices starting withxand ending withysuch that consecutive vertices are adjacent.For a connected graphH, the diameter ofHis denoted by diam(H).An induced subgraph ofGthat is maximal and connected,is called a connected component ofG.

        In this paper,we investigate the connectivity and the diameter ofΓ(ZnS3).We show thatΓ(ZnS3)is connected if and only ifnis not a prime number.IfΓ(ZnS3)is connected then diam(Γ(ZnS3))=3,while ifΓ(ZnS3)is disconnected then every connected component ofΓ(ZnS3)must be a complete graph with same size,and we completely determine the vertice set of every connected component.

        LetRbe a ring andR?=R{0}.The ring ofnbynfull matrices over a ringRis denoted byMn(R).is a quadratic extension of the fieldZp.

        2 Main Results

        Lemma 2.1([1],Theorem 2)If F is a finite field,then Γ(M2(F))is a graph with|F|2+|F|+1connected components of size|F|2?|F|,each of which is a complete graph.

        Lemma 2.2Let n be an arbitrary positive integer.Then

        By Lemma 2.2,we know thatγ∈Z(ZnS3).Hence,there does not exist a vertexγofV(ZnS3)such thata—γ—bis a path ofΓ(ZnS3).Hence,

        The proof is completed.

        Lemma 2.3([5],Theorem 2.6.8)A ring R is semisimple if and only if it is a direct sum of matrix algebras over division rings:

        Ifα3andβ3are not in the same connected component ofM2(Zp),then there is no edge betweenαandβ.By Lemma 2.1,we know thatΓ(M2(Zp))is a graph withp2+p+1 connected components of sizep2?p,each of which is a complete graph.Hence,Γ(ZpS3)is a graph withp2+p+1 connected components of sizep4?p3,each of which is a complete graph.This completes the proof.

        Theorem 2.3Γ(Z2S3)is a graph with7connected components of size8,each of which is a complete graph.

        Moreover,we can conclude that each connected componentAi(i=1,2,···,7)is a complete graph.This completes our proof.

        Theorem 2.4Γ(Z3S3)is a graph with13connected components of size54,each of which is a complete graph.And the following13sets are all the sets of vertices of the connected components of Γ(Z3S3):

        Proof.By straightforward computation we derive that the number of elements of each set in the theorem above is 54,and each vertex ofΓ(Z3S3)must belong to and only belong to oneAk(1≤k≤13).Moreover,it is easy to verify that for any

        This completes our proof.

        Now we consider the commuting graphs ofZnS3whennhas at least two distinct prime divisors.In order to get our results,we need the following lemma.

        Lemma 2.6([6],Proportion 8.1.20)Let R be a commutative noetherian ring and let G be an arbitrary group.Then there exist finitely many indecomposable rings R1,R2,···,Rn such that

        Theorem 2.5Let p be a prime number.Then Γ(Z2pS3)is a connected graph anddiam(Γ(Z2pS3))=3.

        Proof.(1)Ifp=2,by Theorem 2.1,the result follows.

        (2)Ifp=3,by Lemma 2.6,we have

        LetA1,A2,···,A7be the sets of vertices of the connected components ofΓ(Z2S3) and let the sets of vertices of the connected components ofΓ(Z3S3)areB1,B2,···,B13. Moreover,

        By symmetry,we only consider the following cases:

        由于人際關(guān)系、社會(huì)態(tài)度、性別、婚姻、黨員等變量的回歸結(jié)果與總體樣本相近,在此不再贅述。需要指出的是,東部地區(qū)收入的回歸系數(shù)要高于中西部地區(qū),說明東部地區(qū)社會(huì)地位的提高更依賴于收入的提高;但是中西部地區(qū)健康的回歸系數(shù)要高于東部地區(qū),意味著中西部地區(qū)健康對(duì)社會(huì)地位的影響更大。此外,東部地區(qū)房產(chǎn)的回歸系數(shù)要高于中西部地區(qū),表示東部地區(qū)居民對(duì)房產(chǎn)有更高的偏好。

        Case 1.Forα=(α1,α2)∈Z6S3,β=(β1,β2)∈Z6S3,whereα1∈V(Z2S3),α2∈Z(Z2S3),β1∈Z(Z3S3),β2∈V(Z3S3),thenα—βis an edge ofΓ(Z6S3).

        Case 2.Forα=(α1,α2)∈Z6S3,β=(β1,β2)∈Z6S3,whereα1,β1∈Z(Z2S3),α2,β2∈V(Z3S3),ifα2,β2∈Bj,thenα—βis an edge ofΓ(Z6S3),otherwise,(α1,α2)—(0)—(β1,0)—(β1,β2)is a path ofΓ(Z6S3),whereα2.

        Case 3.Forα=(α1,α2)∈Z6S3,β=(β1,β2)∈Z6S3,whereα1,β1∈V(Z2S3),β2∈V(Z3S3),α2∈Z(Z2S3),ifα1,β1∈Ai,thenα—βis an edge ofΓ(Z6S3),otherwise, (α1,0)—(0)—(β1,β2)is a path ofΓ(Z6S3),whereβ2.

        Case 4.Letα=(α1,α2)∈Z6S3,β=(β1,β2)∈Z6S3,whereα1,β1∈V(Z2S3),α2,β2∈V(Z3S3).

        Subcase 4.1.Ifα1,β1∈Ai,α2,β2∈Bj,thenα—βis an edge ofΓ(Z6S3).

        Therefore,we can conclude thatΓ(Z6S3)is a connected graph and diam(Γ(Z6S3))=3.

        (3)Ifp>3,by Lemmas 2.5 and 2.6,we have

        Then,by symmetry,for anyα=(α1,α2,α3,α4)∈Z2pS3and anyβ=(β1,β2,β3,βn)∈Z2pS3,whereα1,β1∈Z2S3,α2,β2,α3,β3∈Zp,α4,β4∈M2(Zp),we have the following cases to consider.

        First,letA1,A2,···,A7be the sets of vertices of the connected components ofΓ(Z2S3). By Lemma 2.1,we know that there arep2+p+1 connected components inΓ((M2(Zp)) and we denote them asCi,i=1,2,···,p2+p+1.

        Case 2.Assume thatα1,β1∈Z(Z2S3),α4,β4∈V(M2(Zp)).Ifα4,β4∈Cifor somei,thenα—βis an edge ofΓ(ZnS3).Otherwise,(α1,α2,α3,α4)—(0,0,0)—(β1,0,0,0)—(β1,β2,β3,β4)is a path ofΓ(Z2pS3),whereα4.

        Case 3.Assume thatα1∈Z(Z2S3),β1∈V(Z2S3),α4,β4∈V(M2(Zp)).By similar argument above,we have the same results.

        Case 4.Assume thatα1,β1∈V(Z2S3),α4,β4∈V(M2(Zp)).

        Subcase 4.1.Suppose thatα1,β1∈Ai,α4,β4∈Cj,for somei,j.Thenα—βis an edge ofΓ(Z2pS3).

        Therefore,Γ(Z2pS3)is a connected graph and diam(Γ(Z2pS3))=3.The proof is completed.

        Theorem 2.6If n(>1)is not a prime number,then Γ(ZnS3)is a connected graph anddiam(Γ(ZnS3))=3.

        Notice that for anyα=(α1,α2,···,αm)∈R,α∈Z(R)if and only ifαi∈Z(Ri),i= 1,2,···,m.So for anyα=(α1,α2,···,αm)∈V(R)and anyβ=(β1,β2,···,βm)∈V(R), we consider the following three cases.

        Case 1.Assume thatαi∈Z(Ri)orβi∈Z(Ri),i=1,2,···,m.Thenα—βis an edge ofΓ(R).

        Case 2.Assume that there existsi∈{1,2,···,m}such thatαi∈Z(Ri)orβi∈Z(Ri). Without lose of generality,we can assume thatαi∈Z(Ri),and takeγi∈V(Ri)such thatβiγi=γiβi,whereγi/=βi.Setγ=(0,0,···,γi,0,···,0)∈R.Thenγ∈Z(R)andγ/=α,β.Soα—γ—βis an path ofΓ(R).

        Consequently,Γ(R)must be connected and diam(Γ(R))≤3.Furthermore,noticing that there must exist an odd prime numberqsuch thatq/=pi,for anyi=1,2,···,m,we haveqa,qb∈V(R).Then by an argument similar to that of Theorem 2.1,we can conclude that there does not exist a vertexαofV(R)such thatqa—α—qbis a path ofΓ(R).Thus diam(Γ(R))=3.This completes our proof.

        [1]Akbari S,Ghandehari M,Hadian M,Mohammadian A.On commuting graphs of semisimple rings.Linear Algebra Appl.,2004,390:345–355.

        [2]Abdollahi A.Commuting graphs of full matrix rings over finite fields.Linear Algebra Appl., 2008,428:2947–2954.

        [3]Akbari S,Mohammadian A,Radjavi H,Raja P.On the diameters of commuting graphs.Linear Algebra Appl.,2006,418:161–176.

        [4]Akbari S,Raja P.Commuting graphs of some subjects in simple rings.Linear Algebra Appl., 2006,416:1038–1047.

        [5]Milies C P,Sehgal S K.An Introduction to Group Rings.Dordrecht:Kluwer Academic Publishers,2002.

        [6]Karpilovsky G.Unit Group of Classical Rings.Oxford:Clarendon Press,1988.

        Communicated by Du Xian-kun

        16S34,20C05,05C12,05C40

        A

        1674-5647(2012)04-0313-11

        date:Sept.30,2010.

        The NSF(10971024)of China,the Specialized Research Fund(200802860024)for the Doctoral Program of Higher Education and the NSF(BK2010393)of Jiangsu Province.

        猜你喜歡
        中西部回歸系數(shù)婚姻
        婚姻是一門溝通課
        好日子(2022年3期)2022-06-01 06:22:34
        讓航天夢(mèng)想在中西部地區(qū)揚(yáng)帆啟航
        軍事文摘(2021年22期)2022-01-18 06:21:46
        多元線性回歸的估值漂移及其判定方法
        婚姻中要“看見”彼此
        好日子(2018年9期)2018-01-28 10:49:06
        物流大通道中西部的崛起之路
        電導(dǎo)法協(xié)同Logistic方程進(jìn)行6種蘋果砧木抗寒性的比較
        中西部高校要打一場(chǎng)人才保衛(wèi)戰(zhàn)
        多元線性模型中回歸系數(shù)矩陣的可估函數(shù)和協(xié)方差陣的同時(shí)Bayes估計(jì)及優(yōu)良性
        河北平原中西部中更新世非海相沉積體系魏縣組的建立
        那場(chǎng)猝不及防的婚姻 外一篇
        亚洲无人区乱码中文字幕动画| 爽妇网国产精品| 日韩精品一区二区三区毛片| 国产av三级精品车模| 亚洲av综合国产av日韩| 国产成人无码av一区二区| 伊人久久综合影院首页| 亚洲日韩国产精品不卡一区在线| 久久99精品综合国产女同| 欧美牲交a欧美牲交aⅴ| 精品久久亚洲中文无码| 丰满熟妇人妻av无码区| 婷婷开心五月亚洲综合| 亚洲av高清在线观看一区二区| 国产成人无码免费网站| 久久熟女五十路| 亚洲美女主播内射在线| 亚洲av乱码一区二区三区按摩| 国产精品视频一区二区三区四| 亚洲AV秘 无码一区二区久久| 亚洲av高清不卡免费在线| 亚洲日韩欧美一区、二区| 激情内射亚洲一区二区三区爱妻 | 国产成人综合久久久久久 | 国产在线av一区二区| 少女韩国电视剧在线观看完整| 亚洲白白色无码在线观看| 伊人影院在线观看不卡| 亚洲国产精品一区二区久久恐怖片| 狠狠色狠狠色综合| 国产免费专区| 久久精品国语对白黄色| 国产 高潮 抽搐 正在播放| 人妻少妇看a偷人无码精品| av天堂线上| 日本视频一中文有码中文| 天堂8在线天堂资源bt| 成人激情四射网| 亚洲女人天堂成人av在线| 日本一道综合久久aⅴ免费| 亚洲自偷自偷偷色无码中文|