亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Extinction of Weak Solutions for Nonlinear Parabolic Equations with Nonstandard Growth Conditions?

        2012-12-27 07:07:10GAOJINGLUANDGUOBIN

        GAO JING-LU AND GUO BIN

        (School of Mathematics,Jilin University,Changchun,130012)

        Extinction of Weak Solutions for Nonlinear Parabolic Equations with Nonstandard Growth Conditions?

        GAO JING-LU AND GUO BIN

        (School of Mathematics,Jilin University,Changchun,130012)

        This paper deals with the extinction of weak solutions of the initial and boundary value problem forut=div((|u|σ+d0)|?u|p(x)?2?u).When the exponent belongs to different intervals,the solution has different singularity(vanishing in finite time).

        nonlinear parabolic equation,nonstandard growth condition,p(x)-Laplacian operator

        1 Introduction

        Let??RN(N>2)be a bounded Lipschitz domain and 0<T<∞.Consider the following general quasilinear degenerate parabolic problem:

        whereQT=?×(0,T]andΓTdenotes the lateral boundary of the cylinderQT.

        Assume throughout the paper that the exponentp(x)is continuous inˉ?with logarithmic module of continuity:

        The model(1.1)proposed by Ru?ziˇcka[1]describe some properties of electro-rheological fl uids which change their mechanical properties dramatically when an external electric field is applied.The variable exponentpin the model(1.1)is a function of the external electric field|E|2which is subject to the quasi-static Maxwell’s equations

        whereε0is the dielectric constant in vacuum and the electric polarizationPis linear inE,i.e.,P=λE.For more physical backgrounds,the interested readers may refer to[2–4]. These models include parabolic or elliptic equations which are nonlinear with respect to gradient of the thought solution and with variable exponents of nonlinearity(see[5–8]and references therein).Besides,another important application is the image processing where the anisotropy and nonlinearity of the di ff usion operator and convection terms are used to underline the borders of the distorted image and to eliminate the noise(see[9–11]).

        In the case whenpis a fixed constant,Yin and Jin[12]discussed the extinction and non-extinction of solutions by applying comparison theorem and energy estimate methods. However,we point out that these methods used in[12]fail in our problems.The main reason is that the following identities do not hold

        For many results about the existence,uniqueness,nonexistence and the properties of the solutions,we refer the readers to the bibliography given in[13–19].

        To the best of our knowledge,there are only a few works about parabolic equations with variable exponents of nonlinearity.Applying Galerkin’s method,Antontsev and Shmarev[4]obtained the existence and uniqueness of weak solutions with the assumption that the functiona(u)in div(a(u)|?u|p(x)?2?u)is bounded.In the case when the functiona(u) in div(a(u)|?u|p(x)?2?u)might be not upper bounded,Guo and Gao[20?21]applied the method of parabolic regularization and Galerkin’s method to prove the existence of weak solutions.In this paper,we find when the exponent belongs to different intervals,the solution represents different singularity(vanishing in finite time).That is,

        The outline of this paper is as follows:In Section 2,we introduce the function spaces of Orlicz-Sobolev type,and give the de fi nition of the weak solution to the problem.Section 3 is devoted to the proof of the extinction of the solution obtained in Section 2.

        2 Preliminaries

        We state some properties of variable exponent spaces and give the de fi nition of the weak solution to the problem.Let us first introduce the Banach spaces

        and denote byW′(QT)the dual ofW(QT)with respect to the inner product inL2(QT).

        For the sake of simplicity,we first state some results about the properties of the Luxemburg norm.

        Lemma 2.1[22?23]For any u∈Lp(x)(?),

        3 Main Results and Their Proofs

        [1]Ruzicka M.Electrorheological Fluids:Modelling and Mathematical Theory.Lecture Notes in Math.1748.Berlin:Springer,2000.

        [2]Acerbi E,Mingione G.Regularity results for stationary electrorheological fl uids.Arch.Rational Mech.Anal.,2002,164:213–259.

        [3]Acerbi E,Mingione G,Seregin G A.Regularity results for parabolic systems related to a class of non Newtonian fl uids.Anna.Inst.H.Poincare Anal.Non Lineaire,2004,21:25–60.

        [4]Acerbi E,Mingione G.Regularity results for a class of functionals with nonstandard growth.Arch.Rational.Mech.Anal.,2001,156(1):121–140.

        [5]Antontsev S N,Shmarev S I.Anisotropic parabolic equations with variable nonlinearity.Publ. Mat.,2009,53:355–399.

        [6]Antontsev S N,Shmarev S I.Parabolic equations with anisotropic nonstandard growth conditions.Internat.Ser.Numer.Math.,2007,154:33–44.

        [7]Antontsev S N,Zhikov V.Higher interability for parabolic equations ofp(x,t)-Laplacian type.Adv.Di ff erence Equations,2005,10:1053–1080.

        [8]Lian S Z,Gao W J,Cao C L,Yuan H J.Study of the solutions to a model porous medium equation with variable exponents of nonlinearity.J.Math.Anal.Appl.,2008,342:27–38.

        [9]Andreu-Vaillo F,Caselles V,Mazn J M.Parabolic Quasilinear Equations Minimizing Linear Growth Functions.vol.223.Progress in Mathematics.Basel:Birkhuser Verlag,2004.

        [10]Aboulaich R,Meskine D,Souissi A.New di ff usion models in image processing.Comput.Math. Appl.,2008,56:874–882.

        [11]Chen Y,Levine S,Rao M.Variable exponent,linear growth functionals in image restoration.SIAM J.Appl.Math.,2006,66:1383–1406.

        [12]Yin J X,Jin C H.Critical extinction and blow-up exponents for fast di ff usivep-Laplacian with sources.Math.Methods Appl.Sci.,2007,30:1147–1167.

        [13]Barret J,Liu W.Finite element approximation of the parabolicp-Laplacian.SIAM J.Numer. Anal.,1994,31:413–428.

        [14]Dibenedetto E.Degenerate Parabolic Equations.New York:Springer-Verlag,1993.

        [15]Erdem D.Blow-up of solutions to quasilinear parabolic equations.Appl.Math.Lett.,1999,12: 65–69.

        [16]Kalashnikov A S.Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations.Russian.Math.Surveys,1987,42(2):169–222.

        [17]Zhao J N.Existence and nonexistence of solutions forut=div(|?u|p?2?u)+f(?u,u,x,t).J.Math.Anal.Appl.,1993,172:130–146.

        [18]Levine H A.Some nonexistence and instability theorems for solutions of formally parabolic equations of the formPut=?Au+F(u).Arch.Ratioal Mech.Anal.,1973,51:371–386.

        [19]Levine H A,Payne L E.Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations.J.Math.Anal.Appl.,1976,55:329–334.

        [20]Guo B,Gao W J.Study of weak solutions for parabolic equations with nonstandard growth conditions.J.Math.Anal.Appl.,2011,374(2):374–384.

        [21]Guo B,Gao W J.Existence and asymptotic behavior of solutions for nonlinear parabolic equations with variable exponent of nonlinearity.Acta Math.Sci.,2012,32(3):1053–1062.

        [22]Fan X L,Zhang Q H.Existence of solutions forp(x)-Laplacian Dirichlet problem.Nonlinear Anal.,2003,52:1843–1852.

        Communicated by Gao Wen-jie

        35K35,35K65,35B40

        A

        1674-5647(2012)04-0376-07

        date:June 16,2012.

        Partially supported by the NSF(11271154)of China and the 985 program of Jilin University.

        刚出嫁新婚少妇很紧很爽| а√天堂资源8在线官网在线| 亚洲人成人77777网站| 亚洲 无码 制服 丝袜 自拍| 青青草极品视频在线播放| 国产激情视频在线观看首页 | 亚洲专区路线一路线二天美| av中文字幕在线资源网| 亚洲丰满熟女乱一区二区三区| 国产情侣自拍一区视频| 国产成人喷潮在线观看| 影视先锋av资源噜噜| 91精品日本久久久久久牛牛| 日韩av一区二区在线观看| 亚洲成人av在线蜜桃| 亚洲国产综合精品一区| av在线观看免费天堂| 巨人精品福利官方导航| 日产无人区一线二线三线新版 | 精品国产一区二区三区免费 | 日韩精品中文一区二区三区在线| 丁香美女社区| 久久欧美与黑人双交男男| 极品粉嫩小仙女高潮喷水视频| 色婷婷av一区二区三区丝袜美腿 | 亚洲碰碰人人av熟女天堂| 激情综合五月天开心久久| 成人性生交大片免费看l| 艳妇臀荡乳欲伦交换h在线观看| 中文字幕一区在线观看视频| 妓院一钑片免看黄大片| 一本一道AⅤ无码中文字幕| 精品女人一区二区三区| 国产极品少妇一区二区| 日本高清视频www| 在线精品日韩一区二区三区| 日本高清在线一区二区| 亚洲精品1区2区在线观看| 久久不见久久见中文字幕免费 | 亚洲日韩欧美国产高清αv| 熟女少妇丰满一区二区|