亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Commuting Graph of Group Ring ZnS3?

        2012-12-27 07:07:02GAOYANYANTANGGAOHUAANDCHENJIANLONG
        關(guān)鍵詞:中西部回歸系數(shù)婚姻

        GAO YAN-YAN,TANG GAO-HUAAND CHEN JIAN-LONG

        (1.Department of Mathematics,Southeast University,Nanjing,210096)

        (2.School of Mathematical Sciences,Guangxi Education University,Nanning,530001)

        On Commuting Graph of Group RingZnS3?

        GAO YAN-YAN1,TANG GAO-HUA2AND CHEN JIAN-LONG1

        (1.Department of Mathematics,Southeast University,Nanjing,210096)

        (2.School of Mathematical Sciences,Guangxi Education University,Nanning,530001)

        The commuting graph of an arbitrary ringR,denoted byΓ(R),is a graph whose vertices are all non-central elements ofR,and two distinct verticesaandbare adjacent if and only ifab=ba.In this paper,we investigate the connectivity and the diameter ofΓ(ZnS3).We show thatΓ(ZnS3)is connected if and only ifnis not a prime number.IfΓ(ZnS3)is connected then diam(Γ(ZnS3))=3,while ifΓ(ZnS3)is disconnected then every connected component ofΓ(ZnS3)must be a complete graph with same size,and we completely determine the vertice set of every connected component.

        group ring,commuting graph,connected component,diameter of a graph

        1 Introduction

        LetGbe a group andRa ring.We denote byRGthe set of all formal linear combinations of the form

        whereag∈Randag=0 almost everywhere,that is,only a finite number of coefficients are different from 0 in each of these sums.Notice that it follows from our de fi nition that given two elements

        The commuting graph of an arbitrary ringRdenoted byΓ(R)is a graph with vertex setV(R)=R(R),whereZ(R)is the center ofR,and two distinct verticesaandbare adjacent if and only ifab=ba.The notion of commuting graph of a ring was first introduced by Akbariet al.[1]in 2004.They investigated some properties ofΓ(R),wheneverRis a finite semisimple ring.For any finite fieldF,they obtained connectivity,minimum degree, maximum degree and clique number ofΓ(Mn(F)).Also it was shown that for any two finite semisimple ringsRandS,ifΓ(R)(S),then there are commutative semisimple ringsR1andS1and semisimple ringTsuch that

        The commuting graphs of some special rings have also been studied(see[2–4]).

        Group rings are very interesting algebraic structure.For a group ringZnS3,the properties of commuting graph can re fl ect its some structures.In this paper,we investigate some properties ofΓ(ZnS3),where

        is the symmetric group of order 6,and

        is the modulenresidue class ring.Given a group ringRGand a finite subsetXof the groupG,we denote bythe following element ofRG:

        In addition,the distinct conjugacy classes ofS3are

        In this paper,all graphs are simple and undirected and|G|denotes the number of vertices of the graphG.We writex∈V(G)whenxis a vertex ofG.A path of lengthrfrom a vertexxto another vertexyinGis a sequence ofr+1 distinct vertices starting withxand ending withysuch that consecutive vertices are adjacent.For a connected graphH, the diameter ofHis denoted by diam(H).An induced subgraph ofGthat is maximal and connected,is called a connected component ofG.

        In this paper,we investigate the connectivity and the diameter ofΓ(ZnS3).We show thatΓ(ZnS3)is connected if and only ifnis not a prime number.IfΓ(ZnS3)is connected then diam(Γ(ZnS3))=3,while ifΓ(ZnS3)is disconnected then every connected component ofΓ(ZnS3)must be a complete graph with same size,and we completely determine the vertice set of every connected component.

        LetRbe a ring andR?=R{0}.The ring ofnbynfull matrices over a ringRis denoted byMn(R).is a quadratic extension of the fieldZp.

        2 Main Results

        Lemma 2.1([1],Theorem 2)If F is a finite field,then Γ(M2(F))is a graph with|F|2+|F|+1connected components of size|F|2?|F|,each of which is a complete graph.

        Lemma 2.2Let n be an arbitrary positive integer.Then

        By Lemma 2.2,we know thatγ∈Z(ZnS3).Hence,there does not exist a vertexγofV(ZnS3)such thata—γ—bis a path ofΓ(ZnS3).Hence,

        The proof is completed.

        Lemma 2.3([5],Theorem 2.6.8)A ring R is semisimple if and only if it is a direct sum of matrix algebras over division rings:

        Ifα3andβ3are not in the same connected component ofM2(Zp),then there is no edge betweenαandβ.By Lemma 2.1,we know thatΓ(M2(Zp))is a graph withp2+p+1 connected components of sizep2?p,each of which is a complete graph.Hence,Γ(ZpS3)is a graph withp2+p+1 connected components of sizep4?p3,each of which is a complete graph.This completes the proof.

        Theorem 2.3Γ(Z2S3)is a graph with7connected components of size8,each of which is a complete graph.

        Moreover,we can conclude that each connected componentAi(i=1,2,···,7)is a complete graph.This completes our proof.

        Theorem 2.4Γ(Z3S3)is a graph with13connected components of size54,each of which is a complete graph.And the following13sets are all the sets of vertices of the connected components of Γ(Z3S3):

        Proof.By straightforward computation we derive that the number of elements of each set in the theorem above is 54,and each vertex ofΓ(Z3S3)must belong to and only belong to oneAk(1≤k≤13).Moreover,it is easy to verify that for any

        This completes our proof.

        Now we consider the commuting graphs ofZnS3whennhas at least two distinct prime divisors.In order to get our results,we need the following lemma.

        Lemma 2.6([6],Proportion 8.1.20)Let R be a commutative noetherian ring and let G be an arbitrary group.Then there exist finitely many indecomposable rings R1,R2,···,Rn such that

        Theorem 2.5Let p be a prime number.Then Γ(Z2pS3)is a connected graph anddiam(Γ(Z2pS3))=3.

        Proof.(1)Ifp=2,by Theorem 2.1,the result follows.

        (2)Ifp=3,by Lemma 2.6,we have

        LetA1,A2,···,A7be the sets of vertices of the connected components ofΓ(Z2S3) and let the sets of vertices of the connected components ofΓ(Z3S3)areB1,B2,···,B13. Moreover,

        By symmetry,we only consider the following cases:

        由于人際關(guān)系、社會(huì)態(tài)度、性別、婚姻、黨員等變量的回歸結(jié)果與總體樣本相近,在此不再贅述。需要指出的是,東部地區(qū)收入的回歸系數(shù)要高于中西部地區(qū),說明東部地區(qū)社會(huì)地位的提高更依賴于收入的提高;但是中西部地區(qū)健康的回歸系數(shù)要高于東部地區(qū),意味著中西部地區(qū)健康對(duì)社會(huì)地位的影響更大。此外,東部地區(qū)房產(chǎn)的回歸系數(shù)要高于中西部地區(qū),表示東部地區(qū)居民對(duì)房產(chǎn)有更高的偏好。

        Case 1.Forα=(α1,α2)∈Z6S3,β=(β1,β2)∈Z6S3,whereα1∈V(Z2S3),α2∈Z(Z2S3),β1∈Z(Z3S3),β2∈V(Z3S3),thenα—βis an edge ofΓ(Z6S3).

        Case 2.Forα=(α1,α2)∈Z6S3,β=(β1,β2)∈Z6S3,whereα1,β1∈Z(Z2S3),α2,β2∈V(Z3S3),ifα2,β2∈Bj,thenα—βis an edge ofΓ(Z6S3),otherwise,(α1,α2)—(0)—(β1,0)—(β1,β2)is a path ofΓ(Z6S3),whereα2.

        Case 3.Forα=(α1,α2)∈Z6S3,β=(β1,β2)∈Z6S3,whereα1,β1∈V(Z2S3),β2∈V(Z3S3),α2∈Z(Z2S3),ifα1,β1∈Ai,thenα—βis an edge ofΓ(Z6S3),otherwise, (α1,0)—(0)—(β1,β2)is a path ofΓ(Z6S3),whereβ2.

        Case 4.Letα=(α1,α2)∈Z6S3,β=(β1,β2)∈Z6S3,whereα1,β1∈V(Z2S3),α2,β2∈V(Z3S3).

        Subcase 4.1.Ifα1,β1∈Ai,α2,β2∈Bj,thenα—βis an edge ofΓ(Z6S3).

        Therefore,we can conclude thatΓ(Z6S3)is a connected graph and diam(Γ(Z6S3))=3.

        (3)Ifp>3,by Lemmas 2.5 and 2.6,we have

        Then,by symmetry,for anyα=(α1,α2,α3,α4)∈Z2pS3and anyβ=(β1,β2,β3,βn)∈Z2pS3,whereα1,β1∈Z2S3,α2,β2,α3,β3∈Zp,α4,β4∈M2(Zp),we have the following cases to consider.

        First,letA1,A2,···,A7be the sets of vertices of the connected components ofΓ(Z2S3). By Lemma 2.1,we know that there arep2+p+1 connected components inΓ((M2(Zp)) and we denote them asCi,i=1,2,···,p2+p+1.

        Case 2.Assume thatα1,β1∈Z(Z2S3),α4,β4∈V(M2(Zp)).Ifα4,β4∈Cifor somei,thenα—βis an edge ofΓ(ZnS3).Otherwise,(α1,α2,α3,α4)—(0,0,0)—(β1,0,0,0)—(β1,β2,β3,β4)is a path ofΓ(Z2pS3),whereα4.

        Case 3.Assume thatα1∈Z(Z2S3),β1∈V(Z2S3),α4,β4∈V(M2(Zp)).By similar argument above,we have the same results.

        Case 4.Assume thatα1,β1∈V(Z2S3),α4,β4∈V(M2(Zp)).

        Subcase 4.1.Suppose thatα1,β1∈Ai,α4,β4∈Cj,for somei,j.Thenα—βis an edge ofΓ(Z2pS3).

        Therefore,Γ(Z2pS3)is a connected graph and diam(Γ(Z2pS3))=3.The proof is completed.

        Theorem 2.6If n(>1)is not a prime number,then Γ(ZnS3)is a connected graph anddiam(Γ(ZnS3))=3.

        Notice that for anyα=(α1,α2,···,αm)∈R,α∈Z(R)if and only ifαi∈Z(Ri),i= 1,2,···,m.So for anyα=(α1,α2,···,αm)∈V(R)and anyβ=(β1,β2,···,βm)∈V(R), we consider the following three cases.

        Case 1.Assume thatαi∈Z(Ri)orβi∈Z(Ri),i=1,2,···,m.Thenα—βis an edge ofΓ(R).

        Case 2.Assume that there existsi∈{1,2,···,m}such thatαi∈Z(Ri)orβi∈Z(Ri). Without lose of generality,we can assume thatαi∈Z(Ri),and takeγi∈V(Ri)such thatβiγi=γiβi,whereγi/=βi.Setγ=(0,0,···,γi,0,···,0)∈R.Thenγ∈Z(R)andγ/=α,β.Soα—γ—βis an path ofΓ(R).

        Consequently,Γ(R)must be connected and diam(Γ(R))≤3.Furthermore,noticing that there must exist an odd prime numberqsuch thatq/=pi,for anyi=1,2,···,m,we haveqa,qb∈V(R).Then by an argument similar to that of Theorem 2.1,we can conclude that there does not exist a vertexαofV(R)such thatqa—α—qbis a path ofΓ(R).Thus diam(Γ(R))=3.This completes our proof.

        [1]Akbari S,Ghandehari M,Hadian M,Mohammadian A.On commuting graphs of semisimple rings.Linear Algebra Appl.,2004,390:345–355.

        [2]Abdollahi A.Commuting graphs of full matrix rings over finite fields.Linear Algebra Appl., 2008,428:2947–2954.

        [3]Akbari S,Mohammadian A,Radjavi H,Raja P.On the diameters of commuting graphs.Linear Algebra Appl.,2006,418:161–176.

        [4]Akbari S,Raja P.Commuting graphs of some subjects in simple rings.Linear Algebra Appl., 2006,416:1038–1047.

        [5]Milies C P,Sehgal S K.An Introduction to Group Rings.Dordrecht:Kluwer Academic Publishers,2002.

        [6]Karpilovsky G.Unit Group of Classical Rings.Oxford:Clarendon Press,1988.

        Communicated by Du Xian-kun

        16S34,20C05,05C12,05C40

        A

        1674-5647(2012)04-0313-11

        date:Sept.30,2010.

        The NSF(10971024)of China,the Specialized Research Fund(200802860024)for the Doctoral Program of Higher Education and the NSF(BK2010393)of Jiangsu Province.

        猜你喜歡
        中西部回歸系數(shù)婚姻
        婚姻是一門溝通課
        好日子(2022年3期)2022-06-01 06:22:34
        讓航天夢(mèng)想在中西部地區(qū)揚(yáng)帆啟航
        軍事文摘(2021年22期)2022-01-18 06:21:46
        多元線性回歸的估值漂移及其判定方法
        婚姻中要“看見”彼此
        好日子(2018年9期)2018-01-28 10:49:06
        物流大通道中西部的崛起之路
        電導(dǎo)法協(xié)同Logistic方程進(jìn)行6種蘋果砧木抗寒性的比較
        中西部高校要打一場(chǎng)人才保衛(wèi)戰(zhàn)
        多元線性模型中回歸系數(shù)矩陣的可估函數(shù)和協(xié)方差陣的同時(shí)Bayes估計(jì)及優(yōu)良性
        河北平原中西部中更新世非海相沉積體系魏縣組的建立
        那場(chǎng)猝不及防的婚姻 外一篇
        中文字幕高清无码不卡在线| 夜夜春精品视频| 国产成人精品电影在线观看18 | 日本视频在线播放一区二区| 亚洲精品国产不卡在线观看| 色婷婷精品国产一区二区三区| 国产成人综合久久大片| 亚洲国产丝袜久久久精品一区二区| 国产无套乱子伦精彩是白视频| 亚洲精品久久区二区三区蜜桃臀| 日韩精品一区二区三区免费视频| 亚洲熟妇少妇任你躁在线观看| 人妖精品视频在线观看| 国产一区二区三区影片| 免费看av网站在线亚洲| 亚洲爆乳精品无码一区二区三区| 久久精品国产亚洲av四虎| 呻吟国产av久久一区二区| 无码一区二区三区不卡AV| 久久国产劲爆内射日本| 中文字日产幕码三区的做法步| 午夜亚洲av日韩av无码大全| 亚洲av综合日韩| 久久成年片色大黄全免费网站 | 天码av无码一区二区三区四区| 亚洲三级香港三级久久| 亚洲一区二区三区自拍麻豆| 久久精品亚洲熟女av蜜謦| 99久久精品免费观看国产| 国内精品无码一区二区三区| 9久久精品视香蕉蕉| 日本国主产一区二区三区在线观看 | 亚洲高清国产品国语在线观看| 一区二区三区手机看片日本韩国| 国产在线观看视频一区二区三区| 亚洲无线一二三四区手机| 日本亚洲色大成网站www久久| 无码一区东京热| 99久久婷婷亚洲综合国产| 亚洲国产精品成人久久| 亚洲第一无码xxxxxx|