施淵吉,程誠(chéng),王捍天,滕冰妍,陳顯冰,何延輝,張濤,黎軍頑,郭訓(xùn)忠
基于分子動(dòng)力學(xué)研究剛性磨粒劃擦鋁基材料去除行為
施淵吉1,2,程誠(chéng)2,王捍天1,滕冰妍1,陳顯冰1,何延輝1,張濤1,黎軍頑3,郭訓(xùn)忠2
(1.南京工業(yè)職業(yè)技術(shù)大學(xué),南京 210046;2.南京航空航天大學(xué) 材料科學(xué)與技術(shù)學(xué)院,南京 210016;3.上海大學(xué) 材料科學(xué)與工程學(xué)院,上海 200072)
目的 實(shí)現(xiàn)材料高效去除,避免亞表層嚴(yán)重滑移,以及改善已劃擦區(qū)表面形貌質(zhì)量。方法 基于EAM和Morse混合勢(shì)函數(shù),采用分子動(dòng)力學(xué)法對(duì)剛性磨粒劃擦Al材料的去除行為展開(kāi)研究,分析磨粒尺寸、溫度、壓深、速度對(duì)材料去除行為的影響,并提出飛秒激光輔助加熱改善材料塑性去除行為的方法。結(jié)果 不同劃擦因素變化對(duì)Al材料去除、表面形貌質(zhì)量、亞表層滑移等方面影響顯著,經(jīng)飛秒激光輔助處理的表面,在劃擦中能有效改善已劃擦區(qū)的表面形貌質(zhì)量,降低亞表層滑移程度。增加磨粒尺寸、溫度、壓深,有利于表面材料去除,更易將磨屑原子向溝槽邊緣兩側(cè)擠出,造成磨屑堆積程度增加。另外,劃擦速度越高,已劃擦區(qū)的表面形貌質(zhì)量獲得相應(yīng)改善,并有效減弱了其亞表層滑移程度。相比無(wú)激光輔助處理,經(jīng)過(guò)飛秒激光處理的表面,在劃擦中不僅有利于提高材料去除率,而且有效降低了磨粒與基底接觸區(qū)域的應(yīng)力集中度和亞表層滑移程度,明顯改善了已劃擦區(qū)的表面形貌質(zhì)量。結(jié)論 為了獲得較好已劃擦區(qū)的表面形貌質(zhì)量,且避免應(yīng)力集中導(dǎo)致亞表層滑移嚴(yán)重,除了需要考慮飛秒激光輔助加熱外,還需權(quán)衡加熱源區(qū)深度尺寸與壓深的關(guān)系,即宜取輔助熱源區(qū)深度尺寸上下范圍10%作為壓深值。
亞表層滑移;分子動(dòng)力學(xué);材料去除;飛秒激光輔助加工;單晶鋁
鋁在國(guó)民經(jīng)濟(jì)各行業(yè)中應(yīng)用廣泛,如建筑與結(jié)構(gòu)、電力電子、耐用消費(fèi)品、包裝容器、機(jī)械設(shè)備、交通運(yùn)輸?shù)刃袠I(yè)。鋁基材料是制造航空航天飛行器機(jī)體、交通運(yùn)輸車(chē)輛、高速水面艦艇的基礎(chǔ)材料。特別是在現(xiàn)代裝備高效、節(jié)能、環(huán)保發(fā)展的趨勢(shì)下,減重增效已成為所有高端裝備的共性特征[1],鋁基材料科技與產(chǎn)業(yè)贏得空前發(fā)展機(jī)遇。同時(shí),目前材料加工技術(shù)不斷向納米制造領(lǐng)域拓延,新型加工技術(shù)與高性能鋁基材料的發(fā)展相互促進(jìn)[2-3],開(kāi)發(fā)零部件表面具備無(wú)滑移、超平坦、無(wú)殘余應(yīng)力等優(yōu)勢(shì)的先進(jìn)加工技術(shù),在精密加工、航空航天、精密儀表等領(lǐng)域中的應(yīng)用頗受關(guān)注[4]。由于傳統(tǒng)制造工藝具有一定的局限性,如切削、磨削過(guò)程中,刀具易出現(xiàn)磨損,造成加工精度與效率降低,難以滿(mǎn)足高精細(xì)微孔加工、仿生微納結(jié)構(gòu)表面可控制造[5-7]、高硬脆材料高效去除[8-10]等特殊加工需求,而飛秒激光加工因熱沖擊低、峰值密度功率高、可穿透性強(qiáng)、加工效率高等優(yōu)點(diǎn),在構(gòu)筑微/納尺度超表面中獨(dú)具特色,被廣泛應(yīng)用于表面物化改性與輔助加工制造領(lǐng)域[6-11]。
無(wú)論是傳統(tǒng)加工法,還是現(xiàn)代飛秒激光和超聲先進(jìn)技術(shù)加工,表面材料去除行為和亞表層滑移改善問(wèn)題一直備受關(guān)注。研究表明,納米劃痕對(duì)材料去除、亞表層滑移以及斷裂韌性的測(cè)評(píng)優(yōu)勢(shì)顯著[12],其不足在于研究對(duì)象是離散原子體系,不能用連續(xù)介質(zhì)力學(xué)理論分析其試驗(yàn)行為。同時(shí),歸因于使用納米觸角探針開(kāi)展微觀(guān)分析,對(duì)試驗(yàn)環(huán)境、試驗(yàn)設(shè)備等要求較為嚴(yán)苛。因此,通常難以動(dòng)態(tài)闡明原子尺度材料去除與微觀(guān)相變行為。鑒于此,迫切需要基于數(shù)值計(jì)算獲取試驗(yàn)過(guò)程中局部原子動(dòng)態(tài)信息,而近年來(lái)分子動(dòng)力學(xué)(MD)逐漸成為切實(shí)可行的研究方法[13-15]。
大量研究[10,16-26]對(duì)激光輔助材料去除行為開(kāi)展了實(shí)驗(yàn)與計(jì)算分析,部分基于實(shí)驗(yàn)研究其加工特點(diǎn)。Chang等[10]認(rèn)為激光輔助切削Al2O3較傳統(tǒng)加工而言,在切削力、工件表面溫升和表面形貌質(zhì)量等方面均具有明顯優(yōu)勢(shì)。Rozzi等[16]亦研究表明,激光輔助加工的切削力比傳統(tǒng)加工降低40%。Chao等[17]指出,當(dāng)激光束光斑直徑(0.7 mm)小于車(chē)刀前端半徑(0.8 mm)時(shí),可有效消除Al基SiC表面激光輻射產(chǎn)生的熱量。Dai等[18]采用分子動(dòng)力學(xué)法對(duì)單晶硅材料去除行為開(kāi)展了研究,結(jié)果表明,較大結(jié)構(gòu)寬度、較小結(jié)構(gòu)深度、較高結(jié)構(gòu)因子和矩形磨料對(duì)材料去除率有較大影響。Chen等[19]通過(guò)激光輔助超精密切割單晶硅實(shí)驗(yàn)與MD計(jì)算相結(jié)合,研究了單晶硅受激光輔助切削的亞表面滑移和相變行為,指出激光輔助切削可制造出具有鏡面式光滑表面和低表面滑移的零件。梁迎春等[20]建立了單晶Cu納米切削的三維分子動(dòng)力學(xué)模型,研究了不同切削厚度下納米切削過(guò)程中工件缺陷結(jié)構(gòu)和應(yīng)力分布的規(guī)律。馮瑞成等[21]采用分子動(dòng)力學(xué)方法研究了單晶γ-TiAl合金納米切削過(guò)程,通過(guò)對(duì)單晶γ-TiAl合金的建模、計(jì)算和分析,討論了不同切削深度和切削速度對(duì)切削過(guò)程的影響。Li等[22]基于分子動(dòng)力學(xué)法對(duì)切屑、位錯(cuò)運(yùn)動(dòng)和工件變形進(jìn)行了分析,探討了磨削速度、切削深度、網(wǎng)格尖端半徑、晶體取向和加工角度對(duì)工件材料變形的影響。Xiao等[23]利用MD計(jì)算對(duì)單晶銅動(dòng)態(tài)刻劃與靜態(tài)犁削刻劃進(jìn)行比較,結(jié)果表明,在動(dòng)態(tài)刻劃過(guò)程中,幾乎沒(méi)有屑片形成,而在靜態(tài)刻劃過(guò)程中,無(wú)論是模擬,還是實(shí)驗(yàn),都觀(guān)察到大量屑片形成。Zhu等[24]用分子動(dòng)力學(xué)法分析了不同刮擦深度、速度、溫度下的切屑形成、工件變形與刮擦力,進(jìn)一步探討了缺陷對(duì)金屬玻璃切削性能的影響。Komanduri等[25]利用原子力顯微鏡分析了單晶鋁摩擦中材料去除的影響因素,指出粘著摩擦力和犁溝力協(xié)同作用誘使磨屑堆積,形成粘結(jié)點(diǎn)增長(zhǎng)且擴(kuò)大,引發(fā)表面粗糙度不斷增大,削弱了材料原有的力學(xué)性能。另有部分相關(guān)文獻(xiàn)[26-27]研究了單晶材料納米壓痕接觸行為。
綜上所述,目前關(guān)于材料去除行為的研究,主要聚集于實(shí)驗(yàn)研究和分子動(dòng)力學(xué)法分析納米壓痕、劃痕、磨削、切削等過(guò)程,鮮有研究將激光輔助加工方法與分子動(dòng)力學(xué)相結(jié)合,從原子尺度對(duì)材料去除行為、亞表層滑移和相變轉(zhuǎn)化展開(kāi)分析。因此,本文運(yùn)用MD法對(duì)比研究有無(wú)激光輔助條件下Al材料的去除行為,并分析磨粒尺寸、溫度、壓深、速度因素對(duì)磨屑數(shù)、表面形貌質(zhì)量、應(yīng)力、位錯(cuò)滑移的影響。
在納米尺度研究中,由于時(shí)間和空間尺度的有限性,本文將磨粒劃擦基底的宏觀(guān)物理過(guò)程視為微觀(guān)剛性尖端物體短暫劃擦基底時(shí)的情形,該物理過(guò)程的三維模型如圖1所示。球形金剛石被抽象為接觸表面的尖銳硬質(zhì)體,并限定模擬時(shí)的原子位移、速度及作用力不隨時(shí)間而變化。模擬中Al材料去除行為的相關(guān)參數(shù)見(jiàn)表1。建模時(shí),Al基底的、、軸晶向分別為[100]、[010]、[001]。另外,圖1a基底被分隔為固定層原子、恒溫層原子、牛頓層原子。其中,恒溫層和牛頓層原子統(tǒng)稱(chēng)為運(yùn)動(dòng)層原子。圖1a模型中,軸和軸采用非周期性邊界,軸用周期性邊界,并對(duì)Al基底最底部和左側(cè)邊界原子層固定,防止Al基底在位移迭代更新中發(fā)生變化,從而引起計(jì)算精度下降。劃擦基底前,先采用共軛梯度算法優(yōu)化該物理模型,然后采用隨機(jī)種子數(shù)產(chǎn)生不同溫度(10、298、500 K)下的初始速度,并且運(yùn)用朗之萬(wàn)控溫法,使得運(yùn)動(dòng)層原子溫度為研究所需溫度。基于NVE系綜對(duì)運(yùn)動(dòng)層原子位移迭代更新,模擬時(shí)間步長(zhǎng)為1 fs[27-29]。由于飛秒激光作用下,在表面會(huì)形成高熱量區(qū),因此對(duì)圖1b淺色區(qū)注入能量以模擬激光輔助加熱區(qū),每0.1 ps注入能量2 eV,該熱源區(qū)尺寸(L×L×L)為10 nm×5 nm×1.5 nm。模擬時(shí),所有模型經(jīng)過(guò)1.2 ns充分弛豫達(dá)到穩(wěn)定構(gòu)型。隨后,剛性磨粒以恒定速度沿著軸[0 –10]方向劃擦Al基底,對(duì)比分析是否經(jīng)過(guò)飛秒激光輔助加熱的材料去除行為差異。模擬中劃擦速度的選取以高速切削去除材料行為的相關(guān)研究文獻(xiàn)[22]為依據(jù)。
圖1 (a)高速劃擦三維物理模型和(b)飛秒激光輔助劃擦俯視圖
表1 分子模擬相關(guān)參數(shù)設(shè)置
Tab.1 Relationship parameter for molecular simulation
分子動(dòng)力學(xué)模擬是否能得到可靠的結(jié)果與選取的勢(shì)函數(shù)直接相關(guān),選取嵌入原子勢(shì)(EAM)描述金屬Al的塑性變形特征[30]。另外,相關(guān)文獻(xiàn)研究[27-29]也表明,EAM勢(shì)函數(shù)能有效描述金屬Al內(nèi)部的相互作用力及塑性變形特征,其表達(dá)式見(jiàn)式(1)。
剛性磨粒與Al基底相互作用描述基于Morse勢(shì)函數(shù)[31],依據(jù)文獻(xiàn)[29],選取1=0.28 eV,=0.278 nm–1,0=0.220 nm,該勢(shì)函數(shù)表達(dá)式見(jiàn)式(2)。
式(1)中,tot為總能量,右式中第一項(xiàng)為原子與對(duì)勢(shì),第二項(xiàng)為嵌入勢(shì);式(2)中,1為結(jié)合能系數(shù),為勢(shì)能曲線(xiàn)梯度系數(shù),0為原子間作用力為零的間距。
用CNA方法[27]對(duì)Al亞表層位錯(cuò)結(jié)構(gòu)類(lèi)型進(jìn)行
識(shí)別,表征Al基底內(nèi)部的滑移特征。FCC面心立方結(jié)構(gòu)用綠色原子表示,HCP六方密排結(jié)構(gòu)用紅色原子顯示,BCC體心立方結(jié)構(gòu)用藍(lán)色原子展示,灰色原子表示非晶態(tài)。當(dāng)應(yīng)力超過(guò)一個(gè)臨界值后,材料會(huì)發(fā)生變形,而結(jié)構(gòu)變形與失效破壞受接觸區(qū)應(yīng)力直接誘導(dǎo),有必要計(jì)算von Mises stress表征局部接觸區(qū)的應(yīng)力集中度[27],其表達(dá)式見(jiàn)式(3)。用式(4)的剪切應(yīng)變公式描述已劃擦區(qū)表面形貌質(zhì)量與變形程度[32]。
式(3)中的σ、σ、σ、τ、τ、τ分別表示應(yīng)力張量分量,式(4)中的η、η、η、η、η、η分別表示剪切應(yīng)變分量。
壓深、速度、溫度變化對(duì)鋁材料劃擦中去除行為的影響如圖2所示。為突出材料去除行為的量化分析,表2定量給出了磨粒尺寸=7 nm時(shí),改變不同劃擦因素(深度、溫度、劃擦速度)單一變化,比較這些因素對(duì)磨屑數(shù)產(chǎn)生的貢獻(xiàn),并額外考慮了磨粒尺寸變化對(duì)磨屑數(shù)的影響。磨屑數(shù)的統(tǒng)計(jì)是基于磨屑原子的數(shù)目求和,而磨屑原子的統(tǒng)計(jì)方法是根據(jù)基底原子位移超過(guò)鋁晶格常數(shù)0.2 nm時(shí)被視為磨屑原子,堆積于接觸邊緣側(cè)面(見(jiàn)圖1),相關(guān)文獻(xiàn)[33]也表明了此方法描述的可行性。觀(guān)察圖1發(fā)現(xiàn),在磨粒開(kāi)始劃擦基底時(shí),最前部鋁表面無(wú)明顯磨屑原子被去除。主要原因是,開(kāi)始接觸時(shí),磨粒與基底間接觸屬于彈性變形,應(yīng)變能被存儲(chǔ)在晶格中,尚未破壞金屬內(nèi)部鍵能結(jié)合而被磨粒擠壓出表面,形成磨屑,堆積于邊緣兩側(cè)。觀(guān)察圖2可知,材料去除形成磨屑的分布規(guī)律呈現(xiàn)以下特點(diǎn):(1)磨屑原子主要堆積于緊密接觸邊緣側(cè)面和磨粒正前方;(2)磨粒尺寸、溫度、壓深、速度對(duì)鋁材料去除有顯著影響。隨著磨粒尺寸、壓深、溫度的增加,鋁材料被去除形成的磨屑數(shù)越來(lái)越多,其中磨粒尺寸和壓深增加都會(huì)使得磨屑數(shù)增多。主要原因是,磨粒與基底間的接觸面積增加,在高速劃擦鋁表面時(shí),劃擦速度越大,磨屑數(shù)額逐漸呈下降趨勢(shì)(見(jiàn)表2),表明高速劃擦鋁表面有利于材料加工性能的提升。
圖2 不同劃擦因素下劃擦鋁材料去除行為的磨屑數(shù)在劃擦距離S=18 nm時(shí)的快照
表2 劃擦因素對(duì)鋁在劃擦距離=18 nm時(shí)的磨屑原子數(shù)統(tǒng)計(jì)
Tab.2 Atomic count of wear debris for Al substrate at scratching distance of S=18 nm
為詳細(xì)了解不同因素(溫度、深度、劃擦速度)對(duì)已劃擦區(qū)表面形貌質(zhì)量的影響,根據(jù)式(4)給出了鋁在劃擦距離=18 nm時(shí)的表面形貌,如圖3所示。二維表面形貌圖是根據(jù)劃擦最開(kāi)始的原子位置(該初始位置代表完整的晶體狀態(tài)),用劃擦末尾(=18 nm)時(shí)刻的新原子位置相對(duì)初始參考位置應(yīng)變做的統(tǒng)計(jì)。文獻(xiàn)[32]也表明,該應(yīng)變公式可有效描述已劃擦變形程度與表面形貌分布。從圖3a—c可知,隨著壓深的增加,被劃擦區(qū)表面形貌的色調(diào)更深,表明已劃擦區(qū)域表面形貌質(zhì)量變粗糙。主要原因是,隨著壓深的增加,磨粒與Al的接觸面積和劃擦力也會(huì)隨之增加,導(dǎo)致被劃擦表面形貌質(zhì)量變粗糙;而當(dāng)被擠壓出的磨屑原子高度超過(guò)磨粒高度時(shí),由于磨屑原子覆蓋了磨粒前進(jìn)表面,以致磨屑原子與磨粒緊密接觸面積幾乎不變,使得此階段后的劃擦力趨于波動(dòng)增大趨勢(shì)。另外,由于劃擦階段磨粒與基底局部的接觸面積增加,會(huì)誘導(dǎo)接觸區(qū)原子受迫擠壓成磨屑而遺落在已劃擦表面,使得已劃擦區(qū)表面形貌質(zhì)量降低(見(jiàn)圖3a中的=2.1 nm),不利于表面形貌質(zhì)量的改善。從圖3b可知,隨著溫度的升高,基底材料吸熱,會(huì)軟化材料,破壞金屬內(nèi)部鍵結(jié)合,以致溫度越高,被劃擦區(qū)域的表面形貌質(zhì)量反而越低,不利于加工出表面形貌質(zhì)量較高表面。然而,觀(guān)察圖3c可知,高速劃擦(= 300 m/s)可有效改善Al表面加工質(zhì)量,即=300 m/s較=100 m/s,能有效降低被劃擦區(qū)域的表面變形程度。
為進(jìn)一步探討壓深、速度、溫度對(duì)Al基底內(nèi)表面的變形影響,給出了鋁亞表層滑移軌跡(如圖4所示)。從圖4a、b觀(guān)察到,壓深和溫度的增加,亞表層滑移程度加?。▓D4紅色箭頭越長(zhǎng),滑移程度越大)。對(duì)比發(fā)現(xiàn),=300 m/s較=100 m/s時(shí),基底滑移程度小了很多(見(jiàn)圖4紅色箭頭)。此外,不管劃擦因素如何改變,磨粒劃擦Al時(shí),Al內(nèi)表面都會(huì)產(chǎn)生不同程度的滑移,該滑移主要以Shockley不全位錯(cuò)為主。結(jié)合圖3和圖4可知,不同因素對(duì)Al基底內(nèi)部滑移程度和被劃擦區(qū)表面形貌質(zhì)量的影響互相對(duì)應(yīng),說(shuō)明不同因素的改變對(duì)劃擦后的基底表面形貌和基底內(nèi)亞表層滑移程度的影響保持同步協(xié)調(diào)性。
圖4 滑動(dòng)距離S=18 nm時(shí)不同劃擦因素對(duì)鋁亞表層滑移的影響
針對(duì)上述劃擦單晶鋁亞表層滑移出現(xiàn)嚴(yán)重情形,為更好改善被劃擦?xí)r表面形貌質(zhì)量,采用飛秒激光輔助加工原理法,對(duì)Al表面實(shí)施激光輔助加熱源區(qū)(見(jiàn)圖1b),來(lái)研究有無(wú)經(jīng)過(guò)飛秒激光輔助處理的Al材料去除行為的差異。對(duì)比圖5a、b可知,在磨粒劃擦Al時(shí),有無(wú)飛秒激光輔助處理的表面形貌圖顯示出明顯差別,尤其在磨粒劃擦Al時(shí)的接觸前部位(如圖5箭頭指示),即相同壓深下,經(jīng)過(guò)實(shí)施飛秒激光輔助加熱源區(qū),可有效改善已劃擦區(qū)域的表面形貌質(zhì)量,表明飛秒激光處理有助于降低已劃擦區(qū)域的表面形貌質(zhì)量。該結(jié)論與文獻(xiàn)[10]報(bào)道的激光輔助切削Al2O3基底可有效改善已加工表面形貌的定性結(jié)論一致,表明本模擬相關(guān)條件與參數(shù)設(shè)置、勢(shì)函數(shù)選擇是可靠的。另外,從圖5還可以看出,隨著壓深的增大,已劃擦區(qū)域的表面形貌質(zhì)量變粗糙。圖6給出了圖5有無(wú)經(jīng)過(guò)激光輔助處理的對(duì)應(yīng)基底內(nèi)滑移情況。通過(guò)對(duì)比圖6a、b,再次證明相比無(wú)飛秒激光處理的表面,有飛秒激光輔助的表面亞表層滑移程度和擴(kuò)散區(qū)都出現(xiàn)相應(yīng)減?。ㄒ?jiàn)圖6紅色箭頭)。表3定量表達(dá)了兩種劃擦方式對(duì)磨屑原子數(shù)的影響,表明經(jīng)過(guò)飛秒激光處理的表面,比無(wú)飛秒激光處理,材料去除率提高。綜上所述,飛秒激光輔助劃擦不僅有利于材料去除,而且還能提高已劃擦區(qū)表面形貌質(zhì)量和避免亞表層發(fā)生嚴(yán)重的塑性滑移,獲得與文獻(xiàn)[19]中對(duì)半導(dǎo)體硅材料采用激光輔助加工可以獲得較高的表面光潔度與較低的次表面損傷的結(jié)論一致。
劃擦距離=18 nm時(shí),接觸區(qū)域的應(yīng)力分布如圖7所示。從圖7可知,同等壓深下,有激光輔助的表面受劃擦?xí)r導(dǎo)致的應(yīng)力集中度比無(wú)飛秒激光處理時(shí)要?。ㄒ?jiàn)圖7黑色箭頭所示)。此依據(jù)可以很好地解釋經(jīng)飛秒激光處理表面,其劃擦表面質(zhì)量和材料去除行為的差異性得到了有效改善,同時(shí)也能更好地解釋被劃擦表面亞表層出現(xiàn)滑移程度不一致的原因,即接觸部位應(yīng)力集中強(qiáng)弱度可有效誘導(dǎo)接觸區(qū)域發(fā)生程度不一的滑移。另外,采用CNA法[27]識(shí)別已劃擦區(qū)亞表層位錯(cuò)原子結(jié)構(gòu),并對(duì)比了有無(wú)飛秒激光輔助光源區(qū)對(duì)亞表層結(jié)構(gòu)轉(zhuǎn)化的影響。觀(guān)察圖8可知,磨粒劃擦基底時(shí),會(huì)使得緊密接觸區(qū)域的應(yīng)力相對(duì)集中,進(jìn)而誘導(dǎo)基底亞表層出現(xiàn)以面心FCC結(jié)構(gòu)向六方密排HCP結(jié)構(gòu)轉(zhuǎn)變?yōu)橹鞯默F(xiàn)象,且表層有一定的非晶態(tài)形成。同等條件下,壓深無(wú)論增大還是減小,經(jīng)過(guò)飛秒激光處理的表面,其亞表層六方密排HCP結(jié)構(gòu)比無(wú)飛秒激光處理的表面明顯減少,與圖7中的應(yīng)力集中存在對(duì)應(yīng)關(guān)系,再次表明飛秒激光光源區(qū)輔助劃擦有利于緩解亞表層滑移加劇與HCP結(jié)構(gòu)轉(zhuǎn)化的發(fā)生。
圖5 有無(wú)飛秒激光輔助劃擦Al表面形貌對(duì)比
圖6 有無(wú)飛秒激光輔助劃擦對(duì)Al亞表層滑移程度的影響
圖7 有無(wú)飛秒激光輔助下被劃擦的Al亞表層滑移應(yīng)力比較
圖8 有無(wú)飛秒激光輔助下被劃擦的Al亞表層缺陷原子結(jié)構(gòu)轉(zhuǎn)變
圖9定量展示出了壓深、溫度、劃擦速度對(duì)劃擦力、磨屑數(shù)及亞表層滑移程度的影響。圖9a給出了飛秒激光輔助加工下亞表層滑移塑性的形變程度,可知不同飛秒激光輔助熱源區(qū)深度對(duì)Al亞表層滑移的影響較為明顯。由圖9b可知,整個(gè)劃擦過(guò)程中,隨劃擦距離的增大,劃擦力開(kāi)始先線(xiàn)性增加,隨后呈類(lèi)拋物線(xiàn)增加,達(dá)到一定程度后,開(kāi)始過(guò)渡為穩(wěn)定劃擦階段,劃擦力隨壓深的增加而增大,并以波動(dòng)式維持增大趨勢(shì),波動(dòng)幅度受基底內(nèi)亞表層位錯(cuò)的形核與運(yùn)動(dòng)的影響。另外,圖9d也表明,有無(wú)飛秒激光輔助與劃擦速度對(duì)Al表面的劃擦力幾乎沒(méi)影響,但對(duì)材料去除形成的磨屑數(shù)產(chǎn)生明顯影響。經(jīng)過(guò)激光處理的表面,去除率比無(wú)處理表面提高10%(見(jiàn)表3)。觀(guān)察圖9c可知,劃擦力受溫度和劃擦速度的影響較大,兩者對(duì)劃擦力的影響呈現(xiàn)出相反趨勢(shì)。溫度越高,劃擦力越小,越不利于提高已劃擦表面質(zhì)量形貌;劃擦速度越大,劃擦力則越大,導(dǎo)致材料去除更容易發(fā)生,越有利于改善已劃擦區(qū)域表面形貌質(zhì)量。飛秒激光輔助劃擦Al表面對(duì)其亞表層的滑移程度較無(wú)飛秒激光處理表面時(shí)偏小,其中當(dāng)壓深(=1.6 nm)與熱源區(qū)深度(=1.5 nm)之比大于1.06時(shí),激光輔助劃擦與高速劃擦間的位錯(cuò)線(xiàn)總長(zhǎng)差異最顯著,最有利于避免亞表層滑移。當(dāng)壓深(=2.1 nm)與熱源區(qū)深度(= 1.5 nm)之比大于1.40時(shí),其亞表層滑移程度相比于大于1.06時(shí)的大幅降低。當(dāng)壓深(=1.1 nm)與熱源區(qū)深度(=1.5 nm)之比小于1.39時(shí),經(jīng)過(guò)熱源區(qū)輔助的亞表層滑移相對(duì)于無(wú)輔助時(shí),降低效果最不明顯。為此,猜測(cè)主要原因是飛秒激光輔助熱源區(qū)的熱源深度對(duì)該差異性有著重要影響。對(duì)此,在同等條件下,通過(guò)改變飛秒激光輔助熱源區(qū)的熱源深度(= 2.5 nm)來(lái)對(duì)比亞表層滑移情況。結(jié)合圖9a可知,Al亞表層出現(xiàn)滑移塑性形變的程度也隨熱源區(qū)深度的增加變得更劇烈。此外,對(duì)同等條件下有無(wú)飛秒激光輔助下Al亞表層的滑移程度進(jìn)行了對(duì)比。從圖9e可知,當(dāng)飛秒激光熱源區(qū)深度與壓深之比大于1.50時(shí),其飛秒激光輔助加工對(duì)避免亞表層滑移程度減弱的作用大大降低,再次驗(yàn)證了圖9c的規(guī)律,即亞表層滑移程度降低顯著與否,同磨粒壓深與飛秒激光輔助加熱區(qū)深度有著重要聯(lián)系。結(jié)果表明,要想提高劃擦表面加工質(zhì)量和避免亞表層滑移破壞,除了考慮對(duì)劃擦Al材料進(jìn)行激光輔助加工外,還要恰當(dāng)選擇壓深值,壓深與熱源區(qū)深度之比不大于1.10時(shí)為優(yōu)。
圖9 劃擦因素和飛秒激光輔助劃擦對(duì)Al磨屑數(shù)、劃擦力及滑移的影響
表3 在劃擦距離=18 nm下有無(wú)激光輔助熱源區(qū)時(shí)的磨屑原子數(shù)統(tǒng)計(jì)
Tab.3 Atomic count of wear debris for Al substrate with no laser radiation and with laser radiation at the scratching distance (S=18 nm)
本文研究了劃擦因素(磨粒尺寸、溫度、壓深、速度)對(duì)劃擦Al材料的去除行為和亞表層滑移程度的影響,并提出采用飛秒激光輔助加熱改善亞表層滑移程度,提高已劃擦區(qū)表面形貌質(zhì)量,得出如下結(jié)論:
1)磨粒尺寸、溫度、壓深的增加,有利于表面材料的去除,使得被磨削的原子堆積于接觸邊緣兩側(cè),但表面形貌質(zhì)量降低,亞表層滑移程度加劇;劃擦速度越高,已劃擦區(qū)的表面形貌質(zhì)量得到有效改善,并減弱了亞表層滑移程度。
2)磨粒劃擦Al基底的緊密接觸區(qū)域,其應(yīng)力集中度相對(duì)其余區(qū)域更高,會(huì)誘導(dǎo)基底亞表層出現(xiàn)以面心FCC結(jié)構(gòu)向六方密排HCP結(jié)構(gòu)轉(zhuǎn)變?yōu)橹鞯默F(xiàn)象,且劃擦區(qū)表層有一定的非晶態(tài)形成。
3)仿真計(jì)算表明,Al表面經(jīng)飛秒激光輔助處理,使得材料去除率增加10%,同時(shí)改善已劃擦區(qū)表面形貌質(zhì)量,降低亞表層塑性滑移以及FCC向HCP結(jié)構(gòu)的轉(zhuǎn)化程度。
4)為了獲得較好的劃擦表面形貌質(zhì)量,避免應(yīng)力集中導(dǎo)致的亞表層滑移嚴(yán)重,除了需要考慮飛秒激光輔助加熱源區(qū)外,還需權(quán)衡加熱源區(qū)深度尺寸與壓深之間的關(guān)系,壓深與熱源區(qū)深度之比不大于1.10時(shí)為宜。
[1] 鄧運(yùn)來(lái), 張新明. 鋁及鋁合金材料進(jìn)展[J]. 中國(guó)有色金屬學(xué)報(bào), 2019, 29(9): 2115-2141.
DENG Yun-lai, ZHANG Xin-ming. Development of Alu-minium and Aluminium Alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141.
[2] 楊奇彪, 鄧波, 汪于濤, 等. 飛秒激光誘導(dǎo)鋁基的超疏水表面[J]. 激光與光電子學(xué)進(jìn)展, 2017, 54(10): 101408.
YANG Qi-biao, DENG Bo, WANG Yu-tao, et al. Superh-ydrophobic Surface of Aluminium Base Induced by Femt-osecond Laser[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101408.
[3] 牛金濤. 鋁鋰合金2A97銑削加工表面完整性及耐腐蝕性能研究[D]. 濟(jì)南: 山東大學(xué), 2020.
NIU Jin-tao. Surface Integrity and Corrosion Behavior of Milled Al-Li Alloy 2A97[D]. Jinan: Shandong University, 2020.
[4] 李剛, 熊梓連, 曾永浩, 等. 激光增材制造WC增強(qiáng)鐵基復(fù)合材料組織結(jié)構(gòu)及性能研究[J]. 表面技術(shù), 2020, 49(4): 271-277.
LI Gang, XIONG Zi-lian, ZENG Yong-hao, et al. Micro-structure and Properties of WC Reinforced Iron Matrix Composites Manufactured by Laser Additive[J]. Surface Technology, 2020, 49(4): 271-277.
[5] CHEN Chao, SHI Lu-an, HUANG Zhou-chen, et al. Mic-rohole-Arrayed PDMS with Controllable Wettability Gra-dient by One-Step Femtosecond Laser Drilling for Ultr-a-fast Underwater Bubble Unidirectional Self-Transport[J]. Advanced Materials Interfaces, 2019, 6(12): 1900297.
[6] LI Min-jing, YANG Qing, CHEN Feng, et al. Integration of Great Water Repellence and Imaging Performance on a Superhydrophobic PDMS Microlens Array by Femtose-cond Laser Microfabrication[J]. Advanced Engineering Materials, 2019, 21(3): 1800994.
[7] FANG Yao, YONG Jia-le, CHEN Feng, et al. Anisotropic Superhydrophobicity: Bioinspired Fabrication of Bi/Trid-irectionally Anisotropic Sliding Superhydrophobic PDMS Surfaces by Femtosecond Laser[J]. Advanced Materials Interfaces, 2018, 5(6): 1870024.
[8] JING Xiao-ning, MAITI S, SUBHASH G. A New Analy-tical Model for Estimation of Scratch-Induced Damage in Brittle Solids[J]. Journal of the American Ceramic Society, 2007, 90(3): 885-892.
[9] YAN Ji-wang, ASAMI T, HARADA H, et al. Fundamental Investigation of Subsurface Damage in Single Crystalline Silicon Caused by Diamond Machining[J]. Precision Eng-ineering, 2009, 33(4): 378-386.
[10] CHANG C W, KUO Chun-pao. An Investigation of Laser-Assisted Machining of Al2O3Ceramics Planing[J]. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 452-461.
[11] 李蘇, 張占輝, 韓善果, 等. 激光技術(shù)在材料加工領(lǐng)域的應(yīng)用與發(fā)展[J]. 精密成形工程, 2020, 12(4): 76-85.
LI Su, ZHANG Zhan-hui, HAN Shan-guo, et al. Applica-tion and Development of Laser Technology in the Field of Material Processing[J]. Journal of Netshape Forming En-g-ineering, 2020, 12(4): 76-85.
[12] GUO Bing, ZHANG Jun, WU Ming-tao, et al. Water Ass-isted Pulsed Laser Machining of Micro-Structured Surface on CVD Diamond Coating Tools[J]. Journal of Manufac-turing Processes, 2020, 56: 591-601.
[13] SHI Jun-qin, CHEN Juan, FANG Liang, et al. Atomistic Scale Nanoscratching Behavior of Monocrystalline Cu Influenced by Water Film in CMP Process[J]. Applied Surface Science, 2018, 435: 983-992.
[14] 劉歡, 郭永博, 趙鵬越, 等. 基于分子動(dòng)力學(xué)模擬的金屬材料納米加工機(jī)理研究進(jìn)展[J]. 中國(guó)有色金屬學(xué)報(bào), 2019, 29(8): 1640-1653.
LIU Huan, GUO Yong-bo, ZHAO Peng-yue, et al. Rese-arch Progress on Nano-Machining Mechanism of Metallic Materials Based on Molecular Dynamics Simulation[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(8): 1640-1653.
[15] FEICHTINGER D, DERLET P M, VAN SWYGENHOVEN H. Atomistic Simulations of Spherical Indentations in Nanocrystalline Gold[J]. Physical Review B, 2003, 67(2): 024113.
[16] ROZZI J C, BARTON M D. The Laser-Assisted Edge Milling of Ceramic Matrix Composites[C]// ASME 2009 International Manufacturing Science and Engineering Conference. West Lafayette: ASMEDC, 2009.
[17] WEI Chao, GUO Wei, PRATOMO E S, et al. High Speed, High Power Density Laser-Assisted Machining of Al-SiC Metal Matrix Composite with Significant Increase in Productivity and Surface Quality[J]. Journal of Materials Processing Technology, 2020, 285: 116784.
[18] DAI Hou-fu, ZHOU Yu-qi, ZHANG Fa. Atomistic Simu-l-ation of Influence of Laser Nano-Structured Diamond Ab-rasive on the Polishing Behavior of Silicon[J]. Mate-rials Science in Semiconductor Processing, 2020, 105: 104706.
[19] CHEN Xiao, LIU Chang-lin, KE Jin-yang, et al. SubsurfaceDamage and Phase Transformation in Laser-Assisted Nan-ometric Cutting of Single Crystal Silicon[J]. Materials & Design, 2020, 190: 108524.
[20] 梁迎春, 盆洪民, 白清順. 單晶Cu材料納米切削特性的分子動(dòng)力學(xué)模擬[J]. 金屬學(xué)報(bào), 2009, 45(10): 1205- 1210.
LIANG Ying-chun, PEN Hong-min, BAI Qing-shun. Mol-ecular Dynamics Simulation of Nanometric Cutting Characteristics of Single Crystal Cu[J]. Acta Metallurgica Sinica, 2009, 45(10): 1205-1210.
[21] 馮瑞成, 喬海洋, 朱宗孝, 等. 單晶γ-TiAl合金納米切削過(guò)程的分子動(dòng)力學(xué)模擬[J]. 稀有金屬材料與工程, 2019, 48(5): 1559-1566.
FENG Rui-cheng, QIAO Hai-yang, ZHU Zong-xiao, et al. Molecular Dynamics Simulations of Single Crystal Γ-TiAl Alloy in Nanometric Cutting Process[J]. Rare Metal Ma-terials and Engineering, 2019, 48(5): 1559-1566.
[22] LI Jia, FANG Qi-hong, LIU You-wen, et al. A Molecular Dynamics Investigation into the Mechanisms of Subsurface Damage and Material Removal of Monocrystalline Co-pper Subjected to Nanoscale High Speed Grinding[J]. Applied Surface Science, 2014, 303: 331-343.
[23] XIAO Gao-bo, HE Yang, GENG Yan-quan, et al. Molec-ular Dynamics and Experimental Study on Comparison between Static and Dynamic Ploughing Lithography of Single Crystal Copper[J]. Applied Surface Science, 2019, 463: 96-104.
[24] ZHU Peng-zhe, FANG Feng-zhou. On the Mechanism of Material Removal in Nanometric Cutting of Metallic Glass[J]. Applied Physics A, 2014, 116(2): 605-610.
[25] KOMANDURI R, VARGHESE S, CHANDRASEKARAN N. On the Mechanism of Material Removal at the Nano-scale by Cutting[J]. Wear, 2010, 269(3-4): 224-228.
[26] GRAVELL J D, RYU I. Latent Hardening/Softening Behavior in Tension and Torsion Combined Loadings of Single Crystal FCC Micropillars[J]. Acta Materialia, 2020, 190: 58-69.
[27] XIANG Heng-gao, LI Hai-tao, FU Tao, et al. Formation of Prismatic Loops in AlN and GaN under Nanoindenta-tion[J]. Acta Materialia, 2017, 138: 131-139.
[28] SHI Jing, VERMA M. Comparing Atomistic Machining of Monocrystalline and Polycrystalline Copper Structures [J]. Materials and Manufacturing Processes, 2011, 26(8): 1004-1010.
[29] ZHU Ying, MA Hui-ting, FAN Hu. Effect of Tool Wear on the Nano-Cutting Process of Single Crystal Aluminum [J]. Machine Tool & Hydraulics, 2018, 46(24): 21-26.
[30] FOILES S M, BASKES M I, DAW M S. Embedded- Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys[J]. Physical Review B, 1986, 33(12): 7983-7991.
[31] MORSE P M. Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels[J]. Physical Review, 1929, 34(1): 57-64.
[32] SHIMIZU F, OGATA S, LI Ju. Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations [J]. Materials Transactions, 2007, 48(11): 2923-2927.
[33] BAI Li-chun, SRIKANTH N, KORZNIKOVA E A, et al. Wear and Friction between Smooth or Rough Diamond- Like Carbon Films and Diamond Tips[J]. Wear, 2017, 372-373: 12-20.
Analysis of Material Remove Behavior Induced by Rigid Abrasive Particle for Aluminum Substrate on Scratching Based on Atomic Simulation
1,2,2,1,1,1,1,1,3,2
(1. Nanjing Vocational University of Industry Technology, Nanjing 210046, China; 2. College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 3. School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China)
This work aims at Al material removed effectively with some good advantages, such as reduced sub-surface slip and improved surface morphology quality. Thus, molecular dynamics method was applied to investigate the remove behavior of Al material scratched by rigid abrasive particles. Based on EAM and Morse functions, the influence of such crucial factors as abrasive size, temperature, indentation depth, scratching velocity on the remove behavior of Al material was analyzed, thus, the heating source produced by femtosecond laser processing was proposed to improve machined surface quality. It was found that above important factors have obvious influence on remove behavior of Al material, surface morphology quality and sub-surface slip. The scratched surface processed by femtosecond laser will get improved surface morphology quality and reduced sub- surface slip while scratching. At the same time, it shows that it is easier to extrude the wear debris produced to both edges of the groove, resulting in the increase of the wear debris accumulation due to bigger particle size, higher temperature, and larger indentation depth. What is more, the higher scratching velocity is, the scratched surface morphology gets better improvement and the sub-surface slip reduces effectively. Compared with non-laser processing, femtosecond laser processing can not only improve the material removal rate, but also effectively decrease the stress concentration degree and sub-surface slip degree in the contact area between the abrasive particles and the substrate, as well as obviously improve the surface morphology quality of the scratched area. In a word, it is a better strategy to achieve better surface morphology quality and avoid stress concentration through femtosecond laser processing, in connection with the indentation depth, that is, around 10% of the depth size of the assisted heat source area should be taken as the indentation depth.
sub-surface slip; molecular dynamics; material removal; femtosecond laser processing; single crystal aluminum
2020-11-29;
2021-05-03
SHI Yuan-ji (1989—), Male, Doctor, Associate professor, Research focus: material processing engineering and surface treatment technology.
施淵吉, 程誠(chéng), 王捍天, 等.基于分子動(dòng)力學(xué)研究剛性磨粒劃擦鋁基材料去除行為[J]. 表面技術(shù), 2022, 51(1): 229-239.
TH117.1
A
1001-3660(2022)01-0229-11
10.16490/j.cnki.issn.1001-3660.2022.01.024
2020-11-29;
2021-05-03
江蘇省高等學(xué)校自然科學(xué)基金面上項(xiàng)目(19KJB430024);江蘇省工業(yè)軟件工程技術(shù)研究開(kāi)發(fā)中心開(kāi)放基金重點(diǎn)項(xiàng)目(ZK190401);南京工業(yè)職業(yè)技術(shù)大學(xué)國(guó)家自然科學(xué)基金培育項(xiàng)目(YK190109)
Fund:Supported by General Program of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB430024), the Science Foundation of the Jiangsu Industrial Software Engineering Research Center (ZK190401), the Natural Science Foundation of Nanjing Vocational University of Industry Technology (YK190109)
施淵吉(1989—),男,博士,副教授,主要研究方向?yàn)椴牧霞庸づc表面技術(shù)。
SHI Yuan-ji, CHENG Cheng, WANG Han-tian, et al. Analysis of Material Remove Behavior Induced by Rigid Abrasive Particle for Aluminum Substrate on Scratching Based on Atomic Simulation[J]. Surface Technology, 2022, 51(1): 229-239.