王博,覃富強,鄧鳳瑩,羅惠格,陳祥飛,成果,白揚,黃小云,韓佳宇,曹雄軍,白先進
‘陽光玫瑰’葡萄一年兩收果實類黃酮組分及含量差異分析
1廣西大學農(nóng)學院,南寧 530004;2廣西農(nóng)業(yè)科學院葡萄與葡萄酒研究所,南寧 530007;3廣西真誠農(nóng)業(yè)有限公司,南寧 530007;4廣西農(nóng)業(yè)科學院,南寧 530007
【目的】以3年生一年兩收栽培‘陽光玫瑰’葡萄為試材,探究夏果與冬果基本理化指標、類黃酮物質(zhì)組分及含量的差異,為‘陽光玫瑰’葡萄一年兩收栽培的品質(zhì)調(diào)控提供理論依據(jù)?!痉椒ā坑涗洝柟饷倒濉咸讶谌照諘r數(shù)、光照度、溫度、降雨量等氣候數(shù)據(jù),在夏果與冬果的幼果期、膨大期、軟化期、開始成熟期、成熟期測定果實基本理化指標,并利用高效液相色譜質(zhì)譜(LC-MS/MS)聯(lián)用技術檢測各時期果皮中黃酮醇和黃烷醇的組分及含量。【結果】氣候因子方面,‘陽光玫瑰’葡萄夏果生長前期光照度弱、溫度低,后期光照度強、溫度高,而冬果與之相反;夏果生長期平均日照時數(shù)、平均溫度、有效積溫大于冬果,但降雨量低于冬果,開始成熟期至成熟期的夏果水熱系數(shù)高于冬果。基本品質(zhì)方面,成熟期夏果可溶性固形物含量顯著高于冬果,果皮厚度顯著低于冬果,果實單粒重、果實橫縱徑、可滴定酸含量在夏果與冬果中無顯著差異。黃酮醇的組分及含量方面,夏果與冬果的總黃酮醇含量整體呈下降趨勢,夏果各時期總黃酮醇含量均顯著高于冬果,夏果中黃酮醇主要成分為槲皮素-3--葡萄糖苷,冬果中黃酮醇以山奈酚-3--半乳糖苷為主。黃烷醇的組分及含量方面,夏果與冬果的總黃烷醇含量也均呈下降趨勢,夏果和冬果果皮中均檢測到8種相同的黃烷醇物質(zhì),主要成分為兒茶素、表兒茶素和原花青素B1。夏果果實發(fā)育各時期果皮中總黃烷醇含量以及兒茶素、表兒茶素、原花青素B1含量均顯著低于冬果,果實成熟期夏果沒食子兒茶素、表沒食子兒茶素、表兒茶素沒食子酸酯、表沒食子兒茶素沒食子酸酯、原花青素B2含量顯著高于冬果。主成分分析表明夏果與冬果的黃酮醇類物質(zhì)組分有一定差異?;貧w分析表明,兒茶素、槲皮素-3--葡萄糖苷、原花青素B1是區(qū)分夏果與冬果類黃酮物質(zhì)組分的主要物質(zhì)。【結論】試驗年份‘陽光玫瑰’葡萄夏果基本品質(zhì)優(yōu)于冬果。各時期夏果總黃酮醇類物質(zhì)含量顯著高于同期冬果,而總黃烷醇含量顯著低于同期冬果?!柟饷倒濉咸严墓c冬果果皮中黃酮醇的主要成分不同,但二者黃烷醇的主要成分相同,均為兒茶素、表兒茶素和原花青素B1。冬果中黃烷醇主要成分的含量顯著高于夏果,因此其口感的澀味更強。生長期光照和溫度差異可能是引起夏、冬果果皮類黃酮物質(zhì)組分差異的重要因素。
‘陽光玫瑰’葡萄;一年兩收;氣候;果皮;黃酮醇;黃烷醇
【研究意義】類黃酮是植物重要的次生代謝物,參與調(diào)控植物生長發(fā)育,在植物抗氧化、抗真菌、抗病毒方面發(fā)揮重要作用[1]。大量研究表明類黃酮物質(zhì)對人體具有重要的生理及保健作用,可清除自由基抗氧化,預防癌癥、肥胖、高血壓,抑制動脈粥樣硬化等[2]。葡萄中類黃酮類物質(zhì)主要有黃酮醇、黃烷醇和花色苷等,大部分存在于果皮、種子和果梗中[3],除了對釀酒葡萄和葡萄酒感官品質(zhì)具有重要的決定作用[4],對鮮食葡萄品質(zhì)也具有重要的影響。黃烷醇類物質(zhì)在葡萄中形成復雜的聚合物,其口感苦澀粗糙,在漿果成熟過程中由于聚合和水解作用,其相對分子質(zhì)量在500—3 000,對葡萄口感風味的影響也會發(fā)生變化[5-6]?;ㄉ疹愇镔|(zhì)決定著鮮食葡萄的果皮色澤,影響葡萄的外觀品質(zhì),黃酮醇類的槲皮素、山奈酚類物質(zhì)在抗癌、抗腎臟損傷等方面有較多研究報道,在鮮食葡萄的營養(yǎng)品質(zhì)中有重要作用[7]。類黃酮的合成受外界環(huán)境因子如光照、溫度、水分等因素以及栽培措施等的影響[8]。葡萄一年兩收栽培技術是在充分利用當?shù)販毓赓Y源的基礎上,結合修剪打破冬芽休眠,促進葡萄二次開花,形成兩季產(chǎn)量,目前在我國廣西、云南、福建、北京、寧夏、廣東、江蘇等多地推廣應用[9]。‘陽光玫瑰’葡萄是近年來廣泛推廣的優(yōu)質(zhì)鮮食葡萄品種,備受消費者青睞,也是目前一年兩收栽培應用較多的品種之一[10]。一年兩收栽培夏果與冬果生長期氣候條件有顯著差異,結合氣候條件的差異探討一年兩收栽培‘陽光玫瑰’葡萄夏果與冬果生長期果實黃酮醇、黃烷醇組分及含量的變化,對一年兩收栽培模式下葡萄夏果與冬果類黃酮類物質(zhì)加工利用、果實品質(zhì)改善、生產(chǎn)種植具有重要理論指導意義?!厩叭搜芯窟M展】葡萄果實中黃酮醇組分及含量受品種、栽培條件、溫度、光照等影響[11-12]。SEBELA等[13]研究發(fā)現(xiàn)光強與黃酮醇含量顯著正相關。不同光質(zhì)處理下,紫外光誘導黃酮醇合成酶與黃酮醇糖基轉(zhuǎn)移酶基因顯著表達,果實中黃酮醇含量顯著增加[14]。‘桂葡六號’葡萄果實中黃烷醇主要以黃烷-3-醇單體和原花青素形式存在,坐果期黃烷醇含量達到高峰,進入軟化期后其含量開始下降[15]。FANG等[16]利用高效液相色譜檢測‘赤霞珠’葡萄果實發(fā)育期黃酮醇的組分及含量,檢測到槲皮素、楊梅素、山柰素、異鼠李素和高良姜素等組分,在快速生長期、轉(zhuǎn)色期和成熟期果實中黃酮醇含量以槲皮素為主。一年兩收栽培夏果生長期降雨天氣較多,溫度高,濕度大,而冬果生長期氣候溫和少雨[17]。前人研究發(fā)現(xiàn)一年兩收栽培‘夏黑’葡萄冬果果皮中花色苷類的類黃酮物質(zhì)含量在果實發(fā)育各時期均顯著高于同期夏果[18]。一年兩收栽培模式下‘赤霞珠’等4個葡萄品種夏果與冬果黃酮醇和黃烷醇物質(zhì)組成及含量存在差異,夏果采收期槲皮素類黃酮醇占總黃酮醇70%左右,顯著高于冬果,冬果中山奈酚類黃酮醇所占比例較高[19]?!颈狙芯壳腥朦c】兩收栽培模式下‘陽光玫瑰’葡萄夏果與冬果果實發(fā)育期類黃酮組分及含量差異亟待研究?!緮M解決的關鍵問題】本研究以一年兩收栽培‘陽光玫瑰’葡萄為試驗材料,分析氣象條件差異對‘陽光玫瑰’葡萄夏果、冬果基本理化指標和黃酮醇、黃烷醇組成及含量的影響,明確一年兩收栽培‘陽光玫瑰’葡萄兩季果果實發(fā)育過程中基本品質(zhì)、類黃酮組分及含量的變化規(guī)律及差異。
試驗于2018年3月至2019年1月進行(108°8′33″ E,23°11′48″ N)。以3年生一年兩收栽培‘陽光玫瑰’葡萄為試材,果園管理采用當?shù)爻R?guī)管理,果實進行無核化處理,樹體生長良好。在樹體生長狀況基本一致的葡萄樹上隨機選擇100個生長狀況一致、掛一串果的新梢標記采樣果串。夏季葡萄(夏果)與冬季葡萄(冬果)的物候期觀測參考COOMBE等[20],并劃分為7個代表性的物候期(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ)進行氣象數(shù)據(jù)采集,具體如表1所示。分別在果實發(fā)育的關鍵物候期第Ⅲ階段的幼果期(E-L31)、第Ⅳ階段的膨大期(E-L33)、第Ⅴ階段的轉(zhuǎn)色期(E-L35)、第Ⅵ階段的開始成熟期(E-L36)和第Ⅶ階段的成熟期(E-L38)進行果實采樣,隨機采集標記果串的上、中、下部位果粒各1粒,每時期采集300粒,混勻,其中150粒果用于果實單粒重、果實橫縱徑、可溶性固形物、可滴定酸、果皮厚度的測定,每個生物學重復50粒;150粒果實樣品用液氮速凍后于-80℃冰箱保存,用于測定果實類黃酮組分及含量,每個生物學重復50粒。
色譜級試劑甲醇、甲酸、乙腈購于Fisher(Fairlawn,NJ,USA)公司;黃酮醇標準品槲皮素-3--葡萄糖苷和黃烷醇標準品購于Sigma-aldrich(St. Louis,MO,USA)公司;丙酮、Vc、乙酸鈉、鹽酸、氮氣、超純水等購于索萊寶生物科技有限公司。主要儀器Agilent 1200系列UPLC高效液相色譜儀、ZorbaxEclipseXDB- C18(250 mm×4.6 mm,5 μm)色譜柱(Agilent,美國),LC-MS/MS高效液相色譜-串聯(lián)四級桿質(zhì)譜儀、Poroshell120 EC-C18色譜柱(150 mm×2.1 mm,2.7 μm)(Agilent,美國)。
表1 ‘陽光玫瑰’葡萄夏果與冬果物候期
Ⅰ:芽頂尖綠色至花帽褪綠期;Ⅱ:開始開花至花帽完全脫落期;Ⅲ:幼果直徑>2 mm至直徑約7 mm期;Ⅳ:漿果開始封穗至封穗期;Ⅴ:漿果開始變軟至變色期;Ⅵ:漿果Brix°中等值至未完全成熟期;Ⅶ:漿果成熟至過熟期。下同
Ⅰ: Green tip-flower cap colour fading from green; Ⅱ: Beginning of flowering-cap-fall complete; Ⅲ: Setting-berries pea-size (7 mm diam.); Ⅳ: Beginning of bunch closure-closured; Ⅴ: Berries begin to soften-berries softening; Ⅵ: Berries with intermediate Brix° values to berries not quite ripe; Ⅶ: Berries harvest-ripe to berries over-ripe. The same as below
1.3.1 葡萄生長期氣象數(shù)據(jù)采集 利用廣西慧云信息技術有限公司提供的耘小寶氣象數(shù)據(jù)采集設備實時采集白天>2 000 lx光照度、溫度、降雨量等數(shù)據(jù)。光照度與溫度每小時記錄一次,降雨量記錄每日累計降雨量[19]。
1.3.2 葡萄果實基本理化指標測定方法 利用游標卡尺測果實橫縱徑,數(shù)顯橫式測厚規(guī)測果皮厚度,PAL-1型手持折射計(Atago,Tokyo,Japan)測定果實可溶性固形物含量(TSS);利用酸堿滴定法測定可滴定酸含量(TA,用酒石酸當量表示)。
1.3.3 葡萄果皮黃酮醇的測定方法 從-80℃冰箱中取出葡萄果實樣品,迅速將果皮果肉分離。果皮樣品低溫粉碎,放入真空凍干機中冷凍干燥(-40℃,24 h)后稱取0.200 g果皮干粉于5 mL離心管中,利用50%的甲醇溶液低溫超聲提取20 min,之后離心取上清液,重復2次低溫超聲提取,合并兩次提取的上清液過0.22 μm水系濾膜,轉(zhuǎn)移至內(nèi)襯管,放進裝樣瓶中待測。利用LC-MS/MS高效液相色譜—串聯(lián)四級桿質(zhì)譜儀對黃酮醇進行檢測分析。色譜柱采用ZorbaxEclipseXDB-C18柱。流動相A、流動相B、洗脫梯度程序、柱溫、檢測波長、進樣量等參考鄧鳳瑩[21]的方法。
1.3.4 葡萄果皮黃烷醇的測定方法 稱取0.100 g葡萄果皮干粉于2 mL離心管中,利用70%丙酮溶液提取,離心取上清液,重復提取2次,將上清液合并裝于5 mL離心管中。吸取400 μL上清液于2 mL離心管中,避光條件下氮吹干,加入200 μL 1%的鹽酸甲醇溶液溶解后加入200 μL乙酸鈉水溶液中和,將所得溶液過0.22 μm水系濾膜后轉(zhuǎn)移至內(nèi)襯管中,放進裝樣瓶中待測。使用LC-MS/MS高效液相色譜-串聯(lián)四級桿質(zhì)譜儀對黃烷醇進行檢測分析。
1.3.5 葡萄果皮中黃酮醇、黃烷醇定性定量分析 根據(jù)所購標準品通過外標法得到標準曲線(表2)進行定量。黃酮醇定量以槲皮素-3--葡萄糖苷為外標物,檢測出黃酮醇類物質(zhì)以槲皮素-3--葡萄糖苷的含量計算,以mg·kg-1FW(鮮果重,fresh weight)表示。黃烷醇定量以兒茶素、表兒茶素、沒食子兒茶素、表沒食子兒茶素、表兒茶素沒食子酸酯、表沒食子兒茶素沒食子酸酯、原花青素B1、原花青素B2為外標物,計算葡萄果皮中8種黃烷醇含量,以mg·kg-1FW表示。
折線圖和柱狀圖利用Microsoft Excel 2010制作。差異顯著性分析采用SPSS 20.0軟件處理。主成分分析(PCA)和正交偏最小二乘法分析(OPLS-DA)利用SIMCA14.1處理。
表2 黃酮醇、黃烷醇標準品的線性方程及相關系數(shù)
:峰面積;:濃度(mg·kg-1FW): Peak area;: Concentration (mg·kg-1FW)
兩收栽培模式下,夏季葡萄(夏果)與冬季葡萄(冬果)在其生長季的光照、溫度、降雨等氣候因子有很大的差異。表3為2018年夏季葡萄和冬季葡萄生長發(fā)育全過程的氣象數(shù)據(jù),包括光平均日照時數(shù)(h)、平均溫度(℃)、降雨量(mm)、有效積溫(℃)、水熱系數(shù)K。夏果生長期在E-L4—E-L37平均日照時數(shù)逐漸增長,在E-L32—E-L37平均日照時數(shù)均超過12 h;冬果生長各時期平均日照時數(shù)均小于12 h,在E-L38—E-L39時期平均日照時數(shù)僅為8.65 h。
表3 ‘陽光玫瑰’葡萄夏果與冬果不同物候期氣象因子
平均日照時數(shù)指每個物候期大于2 000 lx的光照時間;平均溫度指每個物候期的日平均溫度;有效積溫=∑Ti(Ti≥10℃),Ti指的是日平均溫度;水熱系數(shù)=∑P/(∑Ti*0.1),∑P:降雨量,∑Ti:有效積溫
Average sunshine duration is the sunshine duration greater than 2 000 lx per phenophase; Average temperature means the average temperature of each phenophase; Effective accumulated temperature calculated as T =∑Ti(Ti≥10℃), and Ti was average daily temperature; Hydrothermic coefficient calculated as K=∑P/(∑Ti×0.1), ∑P was total rainfall and ∑Ti was active accumulated temperature
夏果生長期平均溫度呈逐漸上升的趨勢,在E-L32—E-L37平均溫度均超過30℃,而冬果呈逐漸下降的趨勢,E-L34—E-L35、E-L36—E-L37和E-L38—E-L39時期平均溫度分別為17.13℃、15.46℃、14.22℃。夏果生長期在E-L4—E-L26的平均溫度低于冬果,此后各時期則高于冬果。
本研究年度夏果生長期總降雨量比冬果低,夏果生長期的降雨量主要集中在E-L4—E-L18、E-L27—E-L31、E-L34—E-L35,冬果的降雨則主要集中在E-L4—E-L18和E-L32—E-L35。夏果生長期在E-L27—E-L31、E-L34—E-L35和E-L38—E-L39時期的降雨量均顯著高于冬果,夏果全生育期的有效積溫比冬果高580℃,在E-L4—E-L18、E-L27—E-L31、E-L34—E-L35和E-L38—E-L39有效積溫均比冬果相應時期高100℃以上。
夏果全生育期水熱系數(shù)為1.99,高于冬果的1.45。夏果E-L34—E-L35、E-L36—E-L37和E-L38—E-L39的水熱系數(shù)分別為1.58、0.74和1.43,冬果相應時期為0.97、0.91和0.32,可見接近成熟期的冬果水熱系數(shù)較低。
如圖1所示,夏果與冬果不同生長期的日最高光照度與最低光照度的變化存在差異,夏生長期E-L4—E-L31即第Ⅰ—Ⅲ階段共持續(xù)67 d,日最高光照度超過60 000 lx的有29天,而冬果從第Ⅰ—Ⅲ階段共持續(xù)49 d,日最高光照度超過60 000 lx的有33 d;夏果在E-L32—E-L39即第Ⅳ—Ⅶ階段光照度一直保持較高的態(tài)勢,而冬果在第Ⅳ—Ⅶ階段最高光照度超過60 000 lx的只有3 d,第Ⅶ階段光照度基本在20 000 lx以下,光照度明顯低于夏果。
圖1 ‘陽光玫瑰’夏果(A)與冬果(B)不同發(fā)育期最高光照度與最低度光照度
于一年兩收栽培‘陽光玫瑰’葡萄夏果與冬果的幼果期(E-L31)、膨大期(E-L33)、軟化期(E-L35)、開始成熟期(E-L36)、成熟期(E-L38)測定果實單粒重、橫縱徑、果皮厚度、可溶性固形物和可滴定酸含量(圖2)。夏果與冬果單粒重、果實橫縱徑、可溶性固形物從幼果期到成熟期呈逐漸上升的趨勢。成熟期夏果的單粒重與果實橫縱徑和冬果無顯著差異,但兩季果可溶性固形物含量差異顯著,夏果可溶性固形物含量為20.20%,顯著高于冬果。成熟期夏果可滴定酸含量與冬果無顯著差異,但冬果果皮厚度顯著高于夏果。
采用LC-MS/MS測定不同時期‘陽光玫瑰’冬果和夏果果皮中黃酮醇組成及含量,共檢測到3種黃酮醇(表4)。在果實發(fā)育前期,夏果果皮中檢測到大量的槲皮素-3--葡萄糖苷和少量的山奈酚-3--半乳糖苷,冬果果皮中則檢測到較多的山奈酚-3--半乳糖苷和少量的槲皮素-3--半乳糖苷。在成熟期,夏果果皮中僅檢測到槲皮素-3--葡萄糖苷,冬果果皮中僅檢測到山奈酚-3--半乳糖苷。果實發(fā)育過程中,夏果和冬果中總黃酮醇含量及各黃酮醇組分含量均呈下降趨勢,各時期夏果果皮中總黃酮醇含量均顯著高于同期冬果。成熟期夏果果皮中黃酮醇含量為3.37 mg·kg-1FW,冬果為0.71 mg·kg-1FW。
不同小寫字母表示同一季果的不同發(fā)育期差異顯著(P<0.05);*表示同一個發(fā)育期夏、冬果差異顯著(P<0.05);E-L31、E-L33、E-L35、E-L36、E-L38分別代表果實幼果期、膨大期、轉(zhuǎn)色期、開始成熟期、成熟期。下同
表4 ‘陽光玫瑰’葡萄不同時期夏果與冬果黃酮醇組分及含量變化
不同小寫字母表示同一季果的不同發(fā)育期差異顯著(<0.05);*表示同一個發(fā)育期夏、冬果差異顯著(<0.05)。下同
Different small letters indicate significant differences at<0.05 between different development stages of fruits in the same season; * indicates significant differences at<0.05 between summer and winter fruits in the same development stage. The same as below
利用LC-MS/MS測定‘陽光玫瑰’夏果與冬果不同時期果皮中黃烷醇組分及含量。由表5可以看出,夏果與冬果果皮中均檢測出8種相同的黃烷醇類物質(zhì),其中兒茶素、表兒茶素、原花青素B1含量較高,其在夏果各發(fā)育期中的含量均顯著低于同期冬果,沒食子兒茶素、表沒食子兒茶素、表兒茶素沒食子酸酯、表沒食子兒茶素沒食子酸酯、原花青素B2含量較低,夏果各時期含量均顯著高于冬果。夏果與冬果果實發(fā)育期黃烷醇總量呈下降趨勢,成熟期夏果黃烷醇總量為6.40 mg·kg-1FW,顯著低于冬果的11.26 mg·kg-1FW。在成熟期,夏果中黃烷醇類物質(zhì)含量最高的是原花青素B1(2.26 mg·kg-1FW),冬果中最高的是兒茶素(5.02 mg·kg-1FW)。在果實發(fā)育過程中,夏果與冬果果皮中兒茶素、表兒茶素沒食子酸酯以及原花青素B1含量均呈下降趨勢,表兒茶素呈上升趨勢,表沒食子兒茶素和原花青素B2呈先上升后下降的變化趨勢,表沒食子兒茶素沒食子酸酯呈先下降后上升再下降的波動變化趨勢,沒食子兒茶素在夏果與冬果果實發(fā)育期變化趨勢不一致,夏果中呈先上升后下降的變化趨勢,冬果呈下降的變化趨勢。
‘陽光玫瑰’葡萄夏果與冬果果實發(fā)育期兒茶素比例總體呈下降的趨勢,而表兒茶素、沒食子化黃烷醇、原花青素類黃烷醇總體呈上升的趨勢。成熟期夏果兒茶素比例低于冬果,但表兒茶素、沒食子化類黃烷醇、原花青素類黃烷醇的比例高于冬果(圖3)。
對‘陽光玫瑰’葡萄夏果、冬果果實不同發(fā)育時期3個重復檢測到的黃酮醇和黃烷醇類物質(zhì)分別進行無監(jiān)督的主成分分析(PCA)。從圖4-A陽光玫瑰葡萄夏果、冬果果實不同發(fā)育時期黃酮醇類物質(zhì)的PCA得分圖來看,第一主成分貢獻率為88.2%,PC1可以很好地區(qū)分夏果與冬果。第二主成分貢獻率為11.5%,PC2可區(qū)分不同發(fā)育期?!柟饷倒濉咸严墓?、冬果果實不同發(fā)育時期黃烷醇的PCA分析結果中第一主成分貢獻率為94.3%,PC1可區(qū)分夏果與冬果的不同發(fā)育期(圖4-B)。
為了找出導致‘陽光玫瑰’葡萄夏果與冬果中黃酮醇和黃烷醇成分的關鍵差異化合物,對夏果與冬果各物候期的黃酮醇和黃烷醇單體分別進行有監(jiān)督的正交偏最小二乘法分析(OPLS-DA)。黃酮醇和黃烷醇OPLS-DA模型的R2X、R2Y、Q2值分別為0.78、0.96、0.94和0.74、0.97、0.93,模型無過擬合現(xiàn)象,具有較好的判別分析能力。夏果與冬果之間黃酮醇中槲皮素-3--葡萄糖苷的VIP得分大于1,黃烷醇中兒茶素和原花青素B1的VIP得分大于1(表6)。說明夏果與冬果黃酮醇中槲皮素-3--葡萄糖苷為特征化合物,黃烷醇中兒茶素和原花青素B1為特征化合物。
表5 ‘陽光玫瑰’葡萄不同時期夏果與冬果黃烷醇組分及含量的變化
S、W分別代表夏果、冬果。下同 S: Summer grape, W: Winter grape. The same as below
1、2、3代表每個時期生物學重復 1, 2, 3 represent three biological replicates of each stage
一年兩收栽培葡萄夏果和冬果生長發(fā)育期氣候存在差異,本研究中,‘陽光玫瑰’夏果生長期平均日照時數(shù)逐漸增長、平均溫度逐漸升高、光照強度逐漸增大,而冬果生長期呈相反趨勢,夏果開始成熟期至成熟期水熱系數(shù)顯著大于冬果,上述研究結果與前人研究一致[18,22-23]。本研究發(fā)現(xiàn)夏果生長期有效積溫高于冬果生長期,夏果生長期降雨量低于冬果生長期,這與前人[24]統(tǒng)計的廣西南寧地區(qū)上半年有效積溫低于下半年的結果不一致,可能與統(tǒng)計方式不同有關,也可能是不同年份的氣候差異導致。夏果新梢生長期、幼果期有效積溫比冬果高,可能與夏果物候期持續(xù)的時間較長有關,夏果在軟化期和成熟期有效積溫比冬果高,與夏果該時期的日均溫度較高有關。一般認為采收前兩個月水熱系數(shù)K<1.5更有利于葡萄生長和果實品質(zhì)形成[17],本研究中‘陽光玫瑰’葡萄夏果與冬果接近成熟期時的水熱系數(shù)均小于1.5。
表6 ‘陽光玫瑰’葡萄夏果和冬果關鍵差異類黃酮化合物
一年兩收栽培‘陽光玫瑰’葡萄夏果可溶性固形物含量高于冬果,這與前人針對該品種的研究結果一致[10],但‘夏黑’‘無核早’‘溫克’等葡萄品種一年兩收栽培夏果可溶性固形物含量均顯著低于冬果[25-26]。這可能與品種的熟期不同有關,‘陽光玫瑰’葡萄為中晚熟品種,生長期長,冬果軟化期以后日照時數(shù)、光照度、溫度降低,不利于糖分的積累。冬果生長期有效積溫顯著低于夏果,可否采取夏果栽培前期保溫促早、采收后提前修剪、冬果生長后期保溫等措施保證冬果的品質(zhì),有待進一步研究。
葡萄果實中類黃酮物質(zhì)組分及含量受品種特性影響外,還與溫度[27]、光照度[12]、光質(zhì)[28]、栽培條件[29]、激素處理[30]等因素有關[31]。前人研究表明葡萄果實中黃酮醇主要分布在果皮中,其生物合成始于成花期,在幼果期達到高峰,幼果期至成熟期含量迅速下降[32],本研究中‘陽光玫瑰’葡萄夏果與冬果果實生長期黃酮醇含量呈下降趨勢,與其研究結果一致。光照對黃酮醇類物質(zhì)的合成積累影響較大,光照會誘導葡萄果皮中等基因表達,從而導致黃酮醇合成量增加[12,32-33],與遮光處理相比,光照處理可顯著增加‘美樂’葡萄果皮中槲皮素、山奈酚、楊梅酮等黃酮醇含量[34]。而NEUGART等[28]研究指出低溫有利于山奈酚的積累。本研究中夏果果實生長期總黃酮醇含量均顯著高于冬果且其黃酮醇成分主要是槲皮素-3--葡萄糖苷類物質(zhì),這與夏果生長后期光照度和溫度均較高有關;而冬果中黃酮醇主要成分山奈酚-3--半乳糖苷類物質(zhì)與冬果生長期的較低溫度有關。
葡萄果實中的黃烷醇類物質(zhì)以黃烷-3-醇單體和黃烷-3-醇聚合體(原花色素)的形式存在,主要存在于葡萄果皮、種子和果梗中,果皮中黃烷醇類物質(zhì)的含量在果實生長過程中呈下降趨勢[35-36],與本研究中夏果與冬果在果實生長期總黃烷酮含量呈下降趨勢結果一致。葡萄中黃烷-3-醇單體類物質(zhì)主要有兒茶素、表兒茶素、表棓兒茶素、表兒茶素沒食子酸酯;果皮中黃烷醇以兒茶素、表兒茶素、表棓兒茶素為主;黃烷醇C3位的羥基基團容易被沒食子酸酯化形成酯化的黃烷醇;黃烷-3-醇聚合體在葡萄中主要以原花青素B1為主[37]。研究發(fā)現(xiàn)‘赤霞珠’等4個葡萄品種一年兩收栽培夏果和冬果果皮黃烷醇主要成分是表兒茶素,其中‘赤霞珠’‘優(yōu)株玫瑰’‘雷司令’夏果果皮中表兒茶素含量顯著低于冬果,而‘維多利亞’中夏果的兒茶素、表兒茶素、表棓兒茶素含量顯著高于冬果[19]。本研究中‘陽光玫瑰’葡萄夏果與冬果果皮中黃烷醇成分以兒茶素、表兒茶素和原花青素B1為主,夏果中上述黃烷醇類物質(zhì)含量均顯著低于冬果。此外,‘陽光玫瑰’葡萄夏果與冬果中還檢測到了沒食子酸酯化物,包括沒食子兒茶素、表沒食子兒茶素、表兒茶素沒食子酸酯和表沒食子兒茶素沒食子酸酯,上述沒食子酸酯化的黃烷醇類物質(zhì)在夏果中的含量顯著高于冬果,推測夏果生長期前期光照度弱、溫度低、日照時數(shù)短和后期光照度強、溫度高、日照時數(shù)長的氣候特點有利于沒食子酯化的黃烷醇物質(zhì)合成。對葡萄酒的黃烷醇類物質(zhì)相關研究表明沒食子化黃烷醇會使葡萄酒變得粗硬,而兒茶素、表兒茶素能夠使葡萄酒產(chǎn)生圓潤、豐滿的口感[38]。本研究中,成熟期夏果中原花青素類黃烷醇和沒食子化類黃烷醇的比例高于冬果,而兒茶素比例低于冬果,這會引起夏果與冬果澀味口感上的差異。LAR和ANR是黃烷-3-醇和原花青素合成途徑的關鍵酶[39]。與低溫處理相比,高溫下和表達水平較低,同時轉(zhuǎn)錄因子、、表達也較低,葡萄漿果果皮和種子的原花青素含量也較低[40]。另有研究表明光照能夠誘導、、和轉(zhuǎn)錄因子表達上調(diào),促進漿果果皮總酚類物質(zhì)、總黃酮醇類化合物以及原花青素的積累[41]。陳為凱[19]研究發(fā)現(xiàn)一年兩收栽培模式下夏果果實發(fā)育后期溫度較高、光輻射強度較強;而冬果果實發(fā)育后期溫度較低、光輻射強度也較夏果弱,‘雷司令’葡萄冬果的和表達量在開始成熟期(E-L36)顯著高于夏果,成熟期其總黃烷醇含量顯著高于夏果,與本研究中‘陽光玫瑰’葡萄冬果發(fā)育期氣候特點、成熟期果皮中黃烷醇總含量及主要黃烷醇類物質(zhì)成分的研究結果一致。這與POUDEL等[40]高光強處理促進葡萄漿果果皮總酚類物質(zhì)、原花青素積累的結果有所差異,表明溫度和光照協(xié)同作用對黃烷醇類物質(zhì)合成調(diào)控的機理有待進一步深入研究。
一年兩收栽培‘陽光玫瑰’葡萄夏果整個生長期平均日照時數(shù)、平均溫度、有效積溫和水熱系數(shù)K高于冬果,但降雨量低于冬果;夏果生長期前期光照度低、后期高,冬果生長期前期光照度高、后期低。夏果與冬果生長期果實單粒重、可溶性固形物含量、果粒橫縱徑逐漸上升,果皮厚度、可滴定酸含量呈先上升后降低的趨勢;成熟期夏果的可溶性固形物顯著高于冬果,夏果的果皮厚度顯著低于冬果?!柟饷倒濉咸严墓c冬果果實生長期總黃酮醇含量和總黃烷醇含量均呈下降趨勢,成熟期夏果總黃酮醇含量顯著高于冬果,而總黃烷醇含量顯著低于冬果。夏果果皮中黃酮醇類物質(zhì)的主要成分是槲皮素-3--葡萄糖苷,其含量始終顯著高于冬果,冬果果皮中黃酮醇類物質(zhì)的主要成分是山奈酚-3--半乳糖苷,在生長期其含量顯著高于夏果。夏果和冬果果皮中黃烷醇的主要成分均為兒茶素、表兒茶素和原花青素B1,其在夏果各發(fā)育期中的含量均顯著低于同期冬果。成熟期夏果沒食子酸酯化形成的酯化類黃烷醇及原花青素B2含量顯著高于冬果。
致謝:感謝中國農(nóng)業(yè)大學段長青教授及團隊為本研究提供類黃酮類物質(zhì)檢測分析平臺以及對本試驗的支持和指導。
[1] 劉美迎, 遲明, 張振文. 不同整形方式對‘赤霞珠’葡萄果皮非花色苷酚的影響. 食品科學, 2021, 42(3): 30-37.
LIU M Y, CHI M, ZHANG Z W. Analysis of non-anthocyanin phenolics in‘cabernet sauvignon’ (L.) under different training systems. Food Science, 2021, 42(3): 30-37. (in Chinese)
[2] BAYAT P, FARSHCHI M, YOUSEFIAN M, MAHMOUDI M, YAZDIAN-ROBATI R. Flavonoids, the compounds with anti- inflammatory and immunomodulatory properties, as promising tools in multiple sclerosis (MS) therapy: A systematic review of preclinical evidence. International Immunopharmacology, 2021, 95: 107562. doi: 10.1016/j.intimp.2021.107562.
[3] 趙一凡, 彭文婷, 李惠清, 郭玉婷, 王軍. 五個歐亞種釀酒葡萄果實類黃酮及香氣物質(zhì)差異分析. 中外葡萄與葡萄酒, 2021(6): 1-12.
ZHAO Y F, PENG W T, LI H Q, GUO Y T, WANG J. Difference analysis of flavonoids and aroma compounds of fivewine grape varieties. Sino-Overseas Grapevine & Wine, 2021(6): 1-12. (in Chinese)
[4] 劉笑宏, 宋一超, 劉兆宇, 杜遠鵬, 翟衡. 直立/水平兩種葉幕對‘摩爾多瓦’葡萄次生代謝產(chǎn)物含量的影響. 果樹學報, 2019, 36(3): 308-317.
LIU X H, SONG Y C, LIU Z Y, DU Y P, ZHAI H. Effect of vertical and horizontal canopy on the secondary metabolites in ‘Moldova’ grape. Journal of Fruit Science, 2019, 36(3): 308-317. (in Chinese)
[5] 李華. 葡萄栽培學. 北京: 中國農(nóng)業(yè)出版社, 2008.
LI H. Viticulture. Beijing: Chinese Agriculture Press, 2008. (in Chinese)
[6] 潘照. 鮮食型葡萄品質(zhì)評價體系及關鍵數(shù)據(jù)庫建立[D]. 長沙: 中南林業(yè)科技大學, 2019.
PAN Z. Establishment of quality evaluation system and key database of table grape [D]. Changsha: Central South University of Forestry and Technology, 2019. (in Chinese)
[7] 胡粉青, 李翠柏, 黨菱婧, 鄒澄, 趙慶, 邵曰鳳. 槲皮素體外抗肺癌作用研究進展. 食品工業(yè)科技, 2022, 43(18): 416-424.
HU F Q, LI C B, DANG L J, ZOU C, ZHAO Q, SHAO Y F. Research progress of anti-lung cancer effect of quercetinScience and Technology of Food Industry, 2022, 43(18): 416-424. (in Chinese)
[8] 夏濤, 高麗萍. 類黃酮及茶兒茶素生物合成途徑及其調(diào)控研究進展. 中國農(nóng)業(yè)科學, 2009, 42(8): 2899-2908.
XIA T, GAO L P. Advances in biosynthesis pathways and regulation of flavonoids and catechins. Scientia Agricultura Sinica, 2009, 42(8): 2899-2908. (in Chinese)
[9] 劉鑫銘, 陳婷, 雷龑, 王建超, 蔡盛華. 葡萄一年兩收栽培技術研究進展. 中外葡萄與葡萄酒, 2016(5): 131-134.
LIU X M, CHEN T, LEI Y, WANG J C, CAI S H. Research progress on one-year-double-harvest cultivation technology of grape. Sino-Overseas Grapevine & Wine, 2016(5): 131-134. (in Chinese)
[10] 王博, 白揚, 白先進, 張瑛, 謝太理, 劉金標, 陳愛軍, 婁兵海, 何建軍, 林玲, 周詠梅, 曹雄軍. 陽光玫瑰葡萄在廣西南寧的引種表現(xiàn)及其一年兩收栽培技術. 南方農(nóng)業(yè)學報, 2016, 47(6): 975-979.
WANG B, BAI Y, BAI X J, ZHANG Y, XIE T L, LIU J B, CHEN A J, LOU B H, HE J J, LIN L, ZHOU Y M, CAO X J. Introduction performance and double-harvest-a-year cultivation technique of‘Shine Muscat'grape in Nanning, Guangxi. Journal of Southern Agriculture, 2016, 47(6): 975-979. (in Chinese)
[11] AZUMA A, YAKUSHIJI H, KOSHITA Y, KOBAYASHI S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta, 2012, 236(4): 1067-1080. doi: 10.1007/s00425-012-1650-x.
[12] KOYAMA K, IKEDA H, POUDEL P R, GOTO-YAMAMOTO N. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry, 2012, 78: 54-64. doi: 10.1016/j.phytochem.2012.02.026.
[13] SEBELA D, TUROCZY Z, OLEJNICKOVA J, KUMSTA M, SOTOLAR R. Effect of ambient sunlight intensity on the temporal phenolic profiles ofL. Chardonnay during the ripening season-A field study. South African Journal of Enology and Viticulture, 2017, 38(1): 94-102.
[14] 方芳, 王鳳忠. 植物黃酮醇生物合成關鍵基因研究進展. 食品工業(yè)科技, 2018, 39(14): 335-340.
FANG F, WANG F Z. Research progress on key genes of flavonol biosynthesis in plants. Science and Technology of Food Industry, 2018, 39(14): 335-340. (in Chinese)
[15] 成果, 張勁, 黃小云, 張瑛, 謝太理, 謝林君, 余歡, 周詠梅, 周思泓. 廣西2個特色釀酒葡萄品種黃烷-3-醇組分解析. 西南農(nóng)業(yè)學報, 2018, 31(9): 1891-1897.
CHENG G, ZHANG J, HUANG X Y, ZHANG Y, XIE T L, XIE L J, YU H, ZHOU Y M, ZHOU S H. Analysis of flavan-3-ol compositional characteristics of two wine grapes in Guangxi. Southwest China Journal of Agricultural Sciences, 2018, 31(9): 1891-1897. (in Chinese)
[16] FANG F, TANG K, HUANG W D. Changes of flavonol synthase and flavonol contents during grape berry development. European Food Research and Technology, 2013, 237(4): 529-540. doi: 10.1007/ s00217-013-2020-z.
[17] 白先進, 李楊瑞, 謝太理, 黃江流, 曹慕明, 梁聲記. 廣西一年兩熟葡萄栽培的氣候基礎. 廣西農(nóng)學報, 2008(1): 1-4.
BAI X J, LI Y R, XIE T L, HUANG J L, CAO M M, LIANG S J. The climate elements for two-harvest-yearly grape cultivation in Guangxi. Journal of Guangxi Agriculture, 2008(1): 1-4. (in Chinese)
[18] 陸媚. 根域限制對一年兩收栽培‘夏黑’葡萄果實發(fā)育過程中酚類和香氣物質(zhì)的影響研究[D]. 南寧:廣西大學, 2019.
LU M. Effects of root restriction on the composition of phenolic and aroma substances in Summer Black grape during berry development under two-crop-a-year cultivation [D]. Nanning: Guangxi University, 2019. (in Chinese)
[19] 陳為凱. 一年兩收栽培模式下葡萄果實靶向代謝組和轉(zhuǎn)錄組研究[D]. 北京: 中國農(nóng)業(yè)大學, 2018.
CHEN W K. Study of targeted metabolome and transcriptome in grape berries grown under double cropping viticulture system [D]. Beijing: China Agricultural University, 2018. (in Chinese)
[20] Coombe B G. Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1995, 1(2): 100-110.
[21] 鄧鳳瑩. 一年兩收栽培‘陽光玫瑰’葡萄夏、冬果品質(zhì)組分差異研究[D]. 南寧: 廣西大學, 2020.
DENG F Y. Study on the difference of quality components in summer and winter fruits of ‘Shine Muscat’ in two-crop-a-year cultivation [D]. Nanning: Guangxi University, 2020. (in Chinese)
[22] 白先進, 王舉兵, 陳愛軍. 廣西葡萄產(chǎn)業(yè)發(fā)展的思考. 廣西農(nóng)學報, 2010, 25(1): 29-32.
BAI X J, WANG J B, CHEN A J. Considerations on the grape industry development in Guangxi. Journal of Guangxi Agriculture, 2010, 25(1): 29-32. (in Chinese)
[23] CHOU M Y, LI K T. Rootstock and seasonal variations affect anthocyanin accumulation and quality traits of ‘Kyoho’ grape berries in subtropical double cropping system. Vitis, 2014, 53: 193-199.
[24] 成果, 張勁, 周思泓, 謝林君, 張瑛, 楊瑩, 管敬喜, 謝太理. 一年兩收栽培‘赤霞珠’葡萄冬果與夏果花色苷組分差異解析. 果樹學報, 2017, 34(9): 1125-1133.
CHENG G, ZHANG J, ZHOU S H, XIE L J, ZHANG Y, YANG Y, GUAN J X, XIE T L. Difference in anthocyanin composition between winter and summer grape berries of ‘Cabernet Sauvignon’ under two-crop-a-year cultivation. Journal of Fruit Science, 2017, 34(9): 1125-1133. (in Chinese)
[25] 郭澤西, 尹玲, 盧江, 韋榮福, 曲俊杰, 盤豐平, 黃羽. 6個葡萄品種一年兩收技術的研究. 中國南方果樹, 2018, 47(1): 128-131, 135.
GUO Z X, YIN L, LU J, WEI R F, QU J J, PAN F P, HUANG Y. Study on the technology of two harvests a year for six grape varieties. South China Fruits, 2018, 47(1): 128-131, 135. (in Chinese)
[26] 陳彥蓓, 羅惠格, 陸媚, 農(nóng)慧蘭, 白揚, 林玲, 白先進, 曹雄軍, 陳愛軍, 王博. 一年兩收栽培夏黑葡萄香氣成分分析. 南方農(nóng)業(yè)學報, 2021, 52(5): 1343-1352.
CHEN Y B, LUO H G, LU M, NONG H L, BAI Y, LIN L, BAI X J, CAO X J, CHEN A J, WANG B. Aroma components analysis of Summer Black grape under two-crops-a-year cultivation. Journal of Southern Agriculture, 2021, 52(5): 1343-1352. (in Chinese)
[27] NEUGART S, KLARING H P, ZIETZ M, SCHREINER M, ROHN S, KROH L W, KRUMBEIN A. The effect of temperature and radiation on flavonol aglycones and flavonol glycosides of kale (var. sabellica). Food Chemistry, 2012, 133(4): 1456-1465.
[28] LIU L L, GREGAN S, WINEFIELD C, JORDAN B. From UVR8 to flavonol synthase: UV-B-induced gene expression in Sauvignon Blanc grape berry. Plant, Cell & Environment, 2015, 38(5): 905-919. doi: 10.1111/pce.12349.
[29] DOWNEY M O, DOKOOZLIAN N K, KRSTIC M P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. American Journal of Enology and Viticulture, 2006, 57(3): 257-268.
[30] 方芳, 王鳳忠. 葡萄果實黃酮醇生物合成影響因素研究進展. 核農(nóng)學報, 2016, 30(9): 1798-1804.
FANG F, WANG F Z. Research progress on factors affecting the biosynthesis of flavonols in grape fruit. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1798-1804. (in Chinese)
[31] 曹運琳, 邢夢云, 徐昌杰, 李鮮. 植物黃酮醇生物合成及其調(diào)控研究進展. 園藝學報, 2018, 45(1): 177-192.
CAO Y L, XING M Y, XU C J, LI X. Biosynthesis of flavonol and its regulation in plants. Acta Horticulturae Sinica, 2018, 45(1): 177-192. (in Chinese)
[32] FLAMINI R, MATTIVI F, DE ROSSO M, ARAPITSAS P, BAVARESCO L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. International Journal of Molecular Sciences, 2013, 14(10): 19651-19669. doi: 10.3390/ijms141019651.
[33] CORTELL J M, KENNEDY J A. Effect of shading on accumulation of flavonoid compounds in (L.) pinot noir fruit and extraction in a model system. Journal of Agricultural and Food Chemistry, 2006, 54 (22): 8510-8520.
[34] SPAYD S E, TARARA J M, MEE D L, FERGUSON J C. Seperation of sunlight and temperature effects on the composition ofcv. Merlot berries. American Journal of Enology and Viticulture, 2002, 53(3): 171182.
[35] DOWNEY M O, HARVRY J S, ROBINSON S P. The effect of bunch shading on berry development and flavonoid accumulation in Shiraz grapes. Australian Journal of Grape and Wine Research, 2004, 10(1): 55-73.
[36] BORDIGA M, TRAVAGLIA F, LOCATELLI M, COISSON J D, ARLORIO M. Characterisation of polymeric skin and seed proanthocyanidins during ripening in sixL. Food Chemistry, 2011, 127(1): 180-187.
[37] 李強. 中國東、西部產(chǎn)區(qū)‘赤霞珠’葡萄類黃酮代謝差異以及葉幕調(diào)控對黃烷醇代謝的影響[D]. 北京: 中國農(nóng)業(yè)大學, 2015.
LI Q. The differences of flavonoids metabolism in Cabernet ‘Sauvignon’ grapes from east and west China and the effect of canopy management on flavan-3-ol metabolism [D]. Beijing: China Agricultural University, 2015. (in Chinese)
[38] 嚴靜, 江雨, 樊秀彩, 姜建福, 張穎, 孫海生, 劉崇懷. 中國11種野生葡萄果皮中黃烷-3-醇類物質(zhì)的組成及含量. 中國農(nóng)業(yè)科學, 2017, 50(5): 890-905.
YAN J, JIANG Y, FAN X C, JIANG J F, ZHANG Y, SUN H S, LIU C H. Composition and concentration of flavan-3-ols in berry peel of 11 Chinese wild grape species. Scientia Agricultura Sinica, 2017, 50(5): 890-905. (in Chinese)
[39] BOGS J, DOWNEY M O, HARVEY J S, ASHTON A R, TANNER G J, ROBINSON S P. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves. Plant Physiology, 2005, 139(2): 652-663. doi: 10.1104/pp.105.064238.
[40] POUDEL P R, KOYAMA K, GOTO-YAMAMOTO N. Evaluating the influence of temperature on proanthocyanidin biosynthesis in developing grape berries (L.). Molecular Biology Reports, 2020, 47(5): 3501-3510. doi: 10.1007/s11033-020-05440-4.
[41] LIU M Y, SONG C Z, CHI M, WANG T M, ZUO L L, LI X L, ZHANG Z W, XI Z M. The effects of light and ethylene and their interaction on the regulation of proanthocyanidin and anthocyanin synthesis in the skins ofberries. Plant Growth Regulation, 2016, 79(3): 377-390. doi: 10.1007/s10725-015-0141-z.
Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation
1College of Agriculture, Guangxi University, Nanning 530004;2Grape and Wine Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007;3Guangxi Zhencheng Agricultural Co., Ltd., Nanning 530007;4Guangxi Academy of Agriculture Science, Nanning 530007
【Objective】3-year-old Shine Muscat grape under two-crop-a-year cultivation was used as the material to investigate the differences of physical and chemical indexes of basic quality, flavonoid components and contents between summer grape and winter grape, which would provide the theoretical basis for the quality control of Shine Muscat grape under two-crop-a-year cultivation.【Method】The climatic data, such as the sunshine duration, light intensity, temperature and rainfall during the whole growth period of Shine Muscat grape, were recorded. The physical and chemical indexes of basic quality in berries of summer and winter grapes of Shine Muscat were determined at the young fruit stage, expansion stage, softening stage, beginning maturity stage, and maturity stage, respectively. Meanwhile, the components and contents of flavonols and flavanols in the peel of summer and winter grapes of Shine Muscat grape were detected by LC-MS/MS.【Result】In terms of the climate factors, the summer grape of Shine Muscat displayed weak illumination and low temperature at early growth stage but strong illumination and high temperature at late growth stage of the whole developing period, while the winter grape was opposite. The average sunshine duration, average temperature and effective accumulated temperature in the growth period of summer grape were higher than those of winter grape, but the rainfall was lower than that of winter grape. The hydrothermal coefficient of summer grape was higher than that of winter grape from the beginning of maturity stage to maturity stage. In terms of the basic quality, the content of soluble solid of summer grape was significantly higher than that of winter grape at maturity stage, and the peel thickness of summer grape was significantly lower than that of winter grape. There was no significant difference in the single berry weight, fruit equatorial and longitudinal diameter and titratable acid content between summer and winter grape. In terms of the components and contents of flavonols, the content of total flavonols in peels of summer and winter grape showed a downward trend during the fruit developing stage. The content of total flavonols in different periods of summer grape was significantly higher than that of winter grape. The main flavonol in summer grape was quercetin-3--glucoside, while the main flavonol in winter grape was kaempferol-3--galactoside. In terms of the components and contents of flavanols, the content of total flavanols in summer and winter grape also showed a downward trend. The eight identical flavanols were detected in the peels of both summer and winter grape, and the main flavanols were catechin, epicatechin and procyanidin B1. The contents of total flavanols, catechin, epicatechin and procyanidin B1in summer grape were significantly lower than those in winter grape during fruit development. The contents of gallic catechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, and procyanidin B2at fruit maturation stage of summer grape were significantly higher than those of winter grape. The principal component analysis showed that there were differences in flavonols between summer and winter fruits. The regression analysis showed that catechin, quercetin-3--Glucoside and procyanidin B1were the main components for distinguishing the flavonoids from summer and winter grapes.【Conclusion】 In the study conducting year, the quality of summer grape of Shine Muscat was better than that of winter grape. During the whole grape developing stage, the content of total flavonols in summer grape was significantly higher than that in winter grape, while the content of total flavanols in summer grape was significantly lower than that in winter grape. The main components of flavonols were different between summer and winter grape of Shine Muscat, while the main components of flavanols were the same, namely catechin, epicatechin and procyanidin B1. The content of the main components of flavanols in winter grapes was significantly higher than that in summer grape, which might probably explained why the astringency taste of winter grape was stronger than that of summer grape. The differences in light and temperature during the growth period may be an important factor that caused the difference in the components and contents of summer and winter grapes of Shine Muscat.
Shine Muscat grape; two-crop-a-year; climate; skin; flavonols; flavanols
10.3864/j.issn.0578-1752.2022.22.012
2022-02-21;
2022-07-08
國家自然科學基金(31960572)、廣西重點研發(fā)計劃(桂科AB21196042)、廣西農(nóng)業(yè)科學院基本科研業(yè)務專項資助項目(2021YT126)
王博,Tel:15877190685;E-mail:wangbo0127@163.com。通信作者白先進,Tel:13878868383;E-mail:b5629@126.com
(責任編輯 趙伶俐)