王翔翔,程志龍,蘇光辰,楊英
測(cè)定時(shí)間對(duì)淮北平原砂姜黑土飽和導(dǎo)水率的影響
王翔翔1,2,程志龍1,2,蘇光辰1,2,楊英1,2
(1.安徽建筑大學(xué) 環(huán)境與能源工程學(xué)院,合肥 230601;2.安徽建筑大學(xué) 水污染控制與廢水資源化安徽省重點(diǎn)試驗(yàn)室,合肥 230601)
【】探究測(cè)定時(shí)間對(duì)淮北平原砂姜黑土飽和導(dǎo)水率的影響。采用定水頭法測(cè)定原狀土(0.96 g/cm3)及其不同體積質(zhì)量擾動(dòng)土(0.90、0.96、1.10、1.20、1.30 g/cm3)在長(zhǎng)時(shí)間序列下的飽和導(dǎo)水率(S)。所有試驗(yàn)土壤的s隨時(shí)間先迅速降低到達(dá)拐點(diǎn)然后緩慢降低直至穩(wěn)定的規(guī)律,對(duì)于原狀土而言初始S值為88.4 mm/h,拐點(diǎn)處(時(shí)間為0.98 d)的S值為5.0 mm/h,終穩(wěn)定點(diǎn)(時(shí)間為12.94 d)的S值為0.8 mm/h。不同體積質(zhì)量擾動(dòng)土隨著體積質(zhì)量的增大,初始S值減小,到達(dá)拐點(diǎn)所需要的時(shí)間短,各個(gè)關(guān)鍵節(jié)點(diǎn)所對(duì)于的S值與體積質(zhì)量負(fù)相關(guān)。初步建議用定水頭法測(cè)定砂姜黑土飽和導(dǎo)水率的時(shí)間為1 d。
砂姜黑土;飽和導(dǎo)水率;干縮濕脹;定水頭法;穩(wěn)定時(shí)間
【研究意義】土壤飽和導(dǎo)水率(S)是土壤重要的物理性質(zhì)之一,在一定程度上反映了土壤水分的入滲性質(zhì),是研究作物生長(zhǎng)、農(nóng)田灌溉、溶質(zhì)運(yùn)移的關(guān)鍵參數(shù)[1]。土壤飽和導(dǎo)水率表征了飽和土壤的水分運(yùn)移的最大能力,在土壤養(yǎng)分再分配、土壤侵蝕、動(dòng)植物生長(zhǎng)活動(dòng)等過程中起到關(guān)鍵的作用[2-4]。土壤飽和導(dǎo)水率受到很多因素的影響,土壤的質(zhì)地和結(jié)構(gòu)、孔隙率等自身理化性質(zhì)都會(huì)不同程度影響土壤飽和導(dǎo)水率[5-7]。同時(shí),土壤飽和導(dǎo)水率也受到外界因素的影響,土地利用類型、溫度、測(cè)定時(shí)間、層狀結(jié)構(gòu)、測(cè)定方法、取樣尺寸等都會(huì)對(duì)土壤飽和導(dǎo)水率的準(zhǔn)確測(cè)定產(chǎn)生影響[8-11]。準(zhǔn)確測(cè)定土壤飽和導(dǎo)水率,是提高土壤水分運(yùn)動(dòng)模擬精度的關(guān)鍵[12],在土壤改良、農(nóng)作物灌溉,排水設(shè)計(jì)等方面具有重要的理論和實(shí)踐意義。
圓盤入滲儀法[13]、圭夫儀法[14]、定水頭法[15]、降水頭法[16]、KSAT飽和導(dǎo)水率儀[17]等都是目前測(cè)定土壤飽和導(dǎo)水率的常用方法,其中定水頭法以操作準(zhǔn)確,可重復(fù)性高和適合處理大批量樣品等優(yōu)點(diǎn)而被廣泛使用。在以定水頭法測(cè)定土壤導(dǎo)水率的實(shí)際操作當(dāng)中,改變測(cè)定時(shí)間以得到更加準(zhǔn)確的K值是較為方便可行的方法?!狙芯窟M(jìn)展】曹瑞雪等[8]在研究層狀土壤對(duì)飽和導(dǎo)水率的影響中,使用定水頭法測(cè)定不同層狀結(jié)構(gòu)土壤的飽和導(dǎo)水率,是在維持出口水流穩(wěn)定后進(jìn)行測(cè)量?;酐惥甑萚18]在對(duì)比定水頭法和降水頭法測(cè)定黃土的飽和導(dǎo)水率研究中,則是在土柱兩側(cè)加裝測(cè)壓管,待測(cè)壓管穩(wěn)定后進(jìn)行采樣。而劉艷麗等[19]則是將連續(xù)多次測(cè)定后的穩(wěn)定值作為最終結(jié)果。遲春明[20]在研究改良?jí)A土的飽和導(dǎo)水率中則是使用相互間隔30 min的連續(xù)8次測(cè)量的平均值作為試驗(yàn)數(shù)據(jù)。姚毓菲等[21]在研究時(shí)間對(duì)定水頭法土壤飽和導(dǎo)水率的影響中發(fā)現(xiàn)土壤飽和導(dǎo)水率測(cè)定值會(huì)隨著測(cè)定時(shí)間的持續(xù)展現(xiàn)出一定的規(guī)律?!厩腥朦c(diǎn)】S測(cè)定結(jié)果受時(shí)間變化影響,但研究者們?cè)跍y(cè)定S的過程中,使用不同尺度作為S達(dá)到穩(wěn)定值的定性標(biāo)準(zhǔn),盡管這樣也能得到穩(wěn)定的S值,但都缺乏一個(gè)定量的標(biāo)準(zhǔn)。同時(shí)作為廣泛分布的中低產(chǎn)型土壤,有關(guān)于砂姜黑土飽和導(dǎo)水率研究卻鮮有報(bào)道。砂姜黑土是淮北平原主要的土壤類型之一,廣泛分布于安徽、河南、江蘇、山東省內(nèi),因其質(zhì)地黏重,在干濕交替條件下土壤表層體積質(zhì)量變化大,土壤開裂特征明顯,毛細(xì)性能弱,供水能力差,極易發(fā)生干旱[22],是典型的中低產(chǎn)型土壤[23]。近些年來隨著土壤改良的興起,對(duì)土壤基礎(chǔ)性質(zhì)的準(zhǔn)確測(cè)量提出了新的要求。準(zhǔn)確測(cè)定砂姜黑土飽和導(dǎo)水率,可以為進(jìn)一步提出改良砂姜黑土方案提供數(shù)據(jù)支持。【擬解決的關(guān)鍵問題】本研究以安徽省淮南市鳳臺(tái)縣農(nóng)田砂姜黑土為研究對(duì)象,采用馬氏瓶提供穩(wěn)定自上而下供水的定水頭法測(cè)定原狀土(0.96 g/cm3)及其擾動(dòng)土(0.90、0.96、1.10、1.20、1.30 g/cm3)在相同時(shí)間序列(13 d)條件下飽和導(dǎo)水率(S)和時(shí)間的定量關(guān)系,以期能夠分析出可能影響砂姜黑土飽導(dǎo)水率穩(wěn)定時(shí)間的因素,并給出能夠較為準(zhǔn)確飽和導(dǎo)水率的測(cè)定時(shí)間。
供試土壤為淮北平原典型砂姜黑土,土壤樣品于2018年5月取至安徽省淮南市鳳臺(tái)縣楊村鎮(zhèn),土地利用類型為農(nóng)用地。根據(jù)原狀土采集標(biāo)準(zhǔn),去除0~10 cm耕作層土壤,用100 cm3環(huán)刀取原狀土,并用自封袋取適量周圍土壤帶回。在試驗(yàn)室自然風(fēng)干后,過2mm篩備用。土壤顆粒組成用沉降法測(cè)定,黏粒量38.66%,粉粒量41.32%,砂粒量20.02%,屬于粉砂質(zhì)土。
土樣在蒸餾水中充分飽和后,用定水頭法測(cè)定原狀土(0.96 g/cm3)及其5組擾動(dòng)土(0.90、0.96、1.10、1.20、1.30 g/cm3)的飽和導(dǎo)水率,使用馬氏瓶由頂部供水提供穩(wěn)定的水頭,水頭高度維持在5 cm。試驗(yàn)開始后先讓系統(tǒng)穩(wěn)定20 min,然后以20 min為間隔連續(xù)取樣,隨著試驗(yàn)的進(jìn)行取樣間隔逐漸增大。每組土壤設(shè)置3個(gè)重復(fù),結(jié)果取其平均值。
飽和導(dǎo)水率和測(cè)定時(shí)間的定量關(guān)系利用回歸分析法在OriginPro 2017軟件下分析完成,飽和導(dǎo)水率時(shí)間過程曲線圖像和數(shù)據(jù)處理在Excel 2007軟件下進(jìn)行,相關(guān)性分析使用IBM-SPSS。
圖1是原狀土(0.96 g/cm3)及相同體積質(zhì)量擾動(dòng)土(0.96 g/cm3)的S隨時(shí)間變化的曲線。從圖1(a)可以看出,原狀土初始S值為88.4 mm/h并且在測(cè)量開始后的140 min內(nèi)迅速下降至44.4 mm/h,緊接著降低幅度放緩。再經(jīng)過300 min,S值降低至20.07 mm/h,之后S進(jìn)入穩(wěn)定下降期,在穩(wěn)定下降期內(nèi)相同采樣間隔(60 min)間S下降幅度大致相同。穩(wěn)定下降期持續(xù)約16.23 h后到達(dá)拐點(diǎn),S到達(dá)拐點(diǎn)時(shí)的值為5 mm/h。達(dá)到拐點(diǎn)后,原狀土的S下降速率進(jìn)一步降低,并逐漸穩(wěn)定,試驗(yàn)結(jié)束(13 d)時(shí),原狀土S為0.8 mm/h。在觀察相同體積質(zhì)量擾動(dòng)土(0.96 g/cm3)時(shí),也發(fā)現(xiàn)了相似的規(guī)律圖1(b),但不同的是擾動(dòng)土的初始S僅為9.3 mm/h,遠(yuǎn)低于原狀土的S。在試驗(yàn)開始后的5 h內(nèi),出現(xiàn)了和原狀土初期相同的現(xiàn)象,S值迅速下降至5.7 mm/h,但比較于原狀土,擾動(dòng)土的S迅速下降的持續(xù)時(shí)間更長(zhǎng);同時(shí)擾動(dòng)土到達(dá)拐點(diǎn)所需要的時(shí)間更久,在試驗(yàn)開始后的3.17 d后才能到達(dá)拐點(diǎn),此時(shí)的S為1.5 mm/h。試驗(yàn)結(jié)束時(shí),擾動(dòng)土的S為1.3 mm/h。
圖2是不同體積質(zhì)量(0.90、0.96.1.10、1.20、1.30 g/cm3)條件下,擾動(dòng)土的S隨時(shí)間的變化過程。從圖2可以看出,與以往的研究結(jié)果相同,時(shí)間過程曲線與原狀土類似,都是先下降到達(dá)拐點(diǎn),然后緩慢下降直至穩(wěn)定[24]。此外隨著體積質(zhì)量的增高,S穩(wěn)定值與初始值之間的差別越來越小,時(shí)間對(duì)體積質(zhì)量大的擾動(dòng)土的干擾變?nèi)?。這是因?yàn)榇篌w積質(zhì)量的擾動(dòng)土的土壤結(jié)構(gòu)更加穩(wěn)定,在水力作用下土壤結(jié)構(gòu)變化大,因此在大體積質(zhì)量擾動(dòng)土上拐點(diǎn)現(xiàn)象不明顯。隨著試驗(yàn)的進(jìn)行,不同體積質(zhì)量擾動(dòng)土的穩(wěn)定值之間的差距也在逐漸減小。說明在試驗(yàn)過程中,水流的沖刷逐漸改變了土壤的內(nèi)部結(jié)構(gòu),使其趨于一致,削弱了因體積質(zhì)量不同造成的土壤結(jié)構(gòu)不同。
圖2 不同體積質(zhì)量擾動(dòng)土KS隨時(shí)間變化過程
表1中的數(shù)據(jù)顯示的是原狀土及不同體積質(zhì)量擾動(dòng)土在各個(gè)時(shí)間節(jié)點(diǎn)的S值。由表1可以看出,隨著土壤體積質(zhì)量的增大飽和導(dǎo)水率下降幅度越來越小,曲線拐點(diǎn)越來越不明顯,到達(dá)穩(wěn)定所需要的時(shí)間越短,穩(wěn)定值越小。這是因?yàn)轶w積質(zhì)量越大,土壤孔隙率越低,單位過水?dāng)嗝嫔系耐寥李w粒與孔隙比就越大,因此在水流沖刷作用下土壤顆粒遷移并堵塞孔隙的時(shí)間就越短,所以到達(dá)S穩(wěn)定點(diǎn)的時(shí)間就越短。原狀土初始S值為88.4 mm/h,到達(dá)拐點(diǎn)時(shí)的S值為5 mm/h,而相同體積質(zhì)量擾動(dòng)土(0.96 g/cm3)的初始S值僅為11.2 mm/h,到達(dá)拐點(diǎn)是的S值為1.7 mm/h。二者的初始值及拐點(diǎn)值差異顯著(>0.05),且無明顯的相關(guān)性,但終穩(wěn)定值則無顯著性的差異(<0.05)。這說明隨著水流的不斷下滲,土壤結(jié)構(gòu)開始趨于一致。這種現(xiàn)象也出現(xiàn)在不同體積質(zhì)量擾動(dòng)土中,5組不同體積質(zhì)量擾動(dòng)土的拐點(diǎn)時(shí)的S值均存在顯著性的差異,而它們的終穩(wěn)定值則差異不顯著,滿足95%的置信區(qū)間。
表1 原狀土及不同體積質(zhì)量擾動(dòng)土不同時(shí)間節(jié)點(diǎn)的KS值
數(shù)據(jù)表明測(cè)定時(shí)間對(duì)砂姜黑土飽和導(dǎo)水率測(cè)定值有重要影響。S隨時(shí)間先迅速下降到達(dá)一個(gè)拐點(diǎn),然后緩慢下降趨于平穩(wěn)。從表1可以看出,近穩(wěn)定值和穩(wěn)定值的變化幅度很小,原狀土近穩(wěn)定點(diǎn)的S值為1.80,而終穩(wěn)定點(diǎn)的S值為0.80 mm/h,在數(shù)值上符合人們所期待的穩(wěn)定的飽和導(dǎo)水率(=0.08)。
研究表明,飽和導(dǎo)水率S與測(cè)定時(shí)間之間有某種特殊的關(guān)系。因此使用繪圖軟件OriginPro 2017對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行指數(shù)函數(shù)擬合,其方程表達(dá)式為:
S=×exp(-)+, (1)
式中:S為飽和導(dǎo)水率(mm/h);為測(cè)定時(shí)間(d);、、為擬合系數(shù)。
圖3為使用該函數(shù)對(duì)試驗(yàn)數(shù)據(jù)擬合后的曲線。從圖3可以看出,在較大體積質(zhì)量(1.10、1.20、1.30 g/cm3)擾動(dòng)土上,函數(shù)表現(xiàn)出了較好的擬合度。而在較小體積質(zhì)量擾動(dòng)土(0.90、0.96 g/cm3)的擬合效果欠缺。
圖3 原狀土及其不同體積質(zhì)量擾動(dòng)土的飽和導(dǎo)水率與測(cè)定時(shí)間的回歸曲線
從表2可以看出,所有擬合曲線的決定系數(shù)都在0.9以上,說明該函數(shù)能夠較好地描述飽和導(dǎo)水率S與測(cè)定時(shí)間之間的定量關(guān)系。在對(duì)方程進(jìn)行一階求導(dǎo),得到一階導(dǎo)函數(shù):
S=-×exp(-) 。 (2)
||值的大小反映了測(cè)定時(shí)間對(duì)S的影響程度,系數(shù)則是在時(shí)間趨于無窮時(shí)的擬合函數(shù)S的極限值,可視為S的理論穩(wěn)定值。原狀土的||值遠(yuǎn)高于擾動(dòng)土的||值,說明就原狀土和擾動(dòng)土而言,測(cè)定時(shí)間對(duì)原狀土的影響更大。在擾動(dòng)土中,體積質(zhì)量越大的擾動(dòng)土||值越小,說明隨著體積質(zhì)量的增大,飽和導(dǎo)水率受時(shí)間的影響越小,這與前文的結(jié)論一致。
表2 飽和導(dǎo)水率與時(shí)間的回歸分析
砂姜黑土自上而下大致分為黑土層(耕作層、犁底層、殘留黑土層3個(gè)層次)和砂姜層(脫潛性砂姜層和砂姜層)2個(gè)層次。砂姜黑土中蒙脫石量較高,蒙脫石中的硅氧基為疏水性,濕潤(rùn)條件下水分進(jìn)入土壤后會(huì)迅速填滿土壤孔隙,造成土壤黏重,而在干旱條件下,水分又會(huì)迅速蒸發(fā),土壤保水性差。在干濕交替的氣候條件下土體發(fā)生強(qiáng)烈的脹縮,在干時(shí)土體收縮開裂,裂縫深度大致與黑土層相當(dāng);而濕時(shí)土體吸水膨脹,不僅裂縫閉合而且會(huì)因?yàn)榭臻g問題在裂縫底部產(chǎn)生壓力使得砂姜層土壤因擠壓向上運(yùn)動(dòng)進(jìn)入黑土層[25]。同時(shí)深耕細(xì)作的耕作方式使黑土層土壤中分布有不均勻砂姜顆粒,原狀土采自10~20 cm犁底層,土體中含有少量的砂姜團(tuán)結(jié),這些團(tuán)結(jié)表面粗糙,在土體中形成大孔隙,影響局部砂姜黑土的導(dǎo)水率;而擾動(dòng)土在處理過程中,碾碎了砂姜團(tuán)結(jié),使其均勻分布在整個(gè)擾動(dòng)土內(nèi)部,砂姜顆粒變小甚至被完全粉碎,土壤孔隙減少,進(jìn)而影響整個(gè)擾動(dòng)土的飽和導(dǎo)水率,使得擾動(dòng)土的飽和導(dǎo)水率到達(dá)平衡的時(shí)間遠(yuǎn)遠(yuǎn)大于原狀土飽和導(dǎo)水率穩(wěn)定時(shí)間。
通過數(shù)據(jù)發(fā)現(xiàn),在原狀土及低體積質(zhì)量擾動(dòng)土(0.90、0.96 g/cm3)的測(cè)量初期,都出現(xiàn)了K值迅速下跌的現(xiàn)象,這可能和土壤大孔隙在水流作用下,被土壤顆粒填滿,短時(shí)間內(nèi)大孔隙數(shù)目迅速降低有關(guān)。而較高體積質(zhì)量的擾動(dòng)土(1.10、1.20、1.30 g/cm3),這種現(xiàn)象則不明顯,是因?yàn)樵诒3衷囼?yàn)土柱體積不變的情況下,較大體積質(zhì)量的擾動(dòng)土的土壤結(jié)構(gòu)較密實(shí),大孔隙數(shù)目少,土壤遷移帶來的大孔隙減少對(duì)S的影響較小。因此,在對(duì)原狀土及低體積質(zhì)量擾動(dòng)土的測(cè)量中,在其試驗(yàn)初期建議等水流穩(wěn)定后再開始進(jìn)一步測(cè)量,這樣有助于獲得更加準(zhǔn)確的S。
大孔隙率和總孔隙度是影響土壤飽和導(dǎo)水率的2個(gè)重要土壤結(jié)構(gòu)數(shù)據(jù)[26]。原狀土和擾動(dòng)土在體積質(zhì)量上保持一致,因此二者的總孔隙度相同。原狀土在取土過程中未經(jīng)處理保留了土壤中的植物根莖和土壤生物殘骸,而擾動(dòng)土則在自然風(fēng)干和過篩的過程中去除了植物根系和部分生物殘骸。這些土壤侵入物,占據(jù)了土壤空間形成大孔隙,相對(duì)于擾動(dòng)土來說原狀土中的大孔隙率較高,而大孔隙率和飽和導(dǎo)水率是正相關(guān)關(guān)系,因此原狀土初始飽和導(dǎo)水率遠(yuǎn)大于同體積質(zhì)量擾動(dòng)土的初始飽和導(dǎo)水率。同時(shí)又因?yàn)閿_動(dòng)土在填裝之前會(huì)進(jìn)行過篩,并需要保持相同體積質(zhì)量,所以擾動(dòng)土與環(huán)刀間的結(jié)合遠(yuǎn)不如原狀土緊密,因此在試驗(yàn)開始初期,擾動(dòng)土的S會(huì)出現(xiàn)比原狀土S更長(zhǎng)時(shí)間的跌落現(xiàn)象。且由于過篩的原因,打破了土壤原有的顆粒組合,使擾動(dòng)土樣品的顆粒級(jí)配變得更加合理,土壤間隙較少,因此擾動(dòng)土S到達(dá)拐點(diǎn)的時(shí)間較長(zhǎng)。
但同時(shí)隨著水流不斷的沖刷,土壤顆粒運(yùn)移,堵塞了本就因砂姜黑土吸水膨脹而減少的孔隙,使不同體積質(zhì)量的砂姜黑土的土壤結(jié)構(gòu)逐漸趨于一致。因此最終穩(wěn)定值不一定能夠代表砂姜黑土真實(shí)的飽和導(dǎo)水率。如何測(cè)定砂姜黑土飽和導(dǎo)水率的準(zhǔn)確值仍需要繼續(xù)研究。
1)原狀土及其相同體積質(zhì)量(0.96 g/cm3)擾動(dòng)土的S值在到達(dá)拐點(diǎn)的時(shí)間上存在非常明顯的差異,但二者的拐點(diǎn)和終穩(wěn)定點(diǎn)的S值相較于初始值則差異較小,同時(shí)考慮長(zhǎng)時(shí)間水力沖刷的影響,可以使用拐點(diǎn)的測(cè)量結(jié)果來初步代替最終結(jié)果,以減少時(shí)間成本。
2)不同體積質(zhì)量擾動(dòng)土到達(dá)拐點(diǎn)的時(shí)間與體積質(zhì)量負(fù)相關(guān),各關(guān)鍵時(shí)間節(jié)點(diǎn)的S值也與體積質(zhì)量負(fù)相關(guān)。
3)初步建議定水頭法測(cè)定砂姜黑土原狀土飽和導(dǎo)水率的測(cè)定時(shí)間為1 d。
[1] FARES A, ALVA A K, NKEDIKIZZA P, et al. Estimation of soil hydraulic properties of a sandy soil ssing capacitance probes and Guelph permeameter[J]. Soil Science, 2000, 165(10): 768-777.
[2] YANG J L, ZHANG G L. Water infiltration in urban soils and its effects on the quantity and quality of runoff[J]. Journal of Soils & Sediments, 2011, 11(5): 751-761
[3] EHIGIATOR O A, ANYATA B U. Effects of land clearing techniques and tillage systems on runoff and soil erosion in a tropical rain forest in Nigeria[J]. Journal of Environmental Management, 2011, 92(11): 2 875-2 880.
[4] ARMSTRONG A, QUINTON J N, FRANCIS B, et al. Controls over nutrient dynamics in overland flows on slopes representative of agricultural land in north west Europe[J]. Geoderma, 2011, 164(1): 2-10.
[5] 張瑜, 馮紹元, 蘇童, 等. 不同耕作方式下新復(fù)墾區(qū)春玉米試驗(yàn)研究[J]. 灌溉排水學(xué)報(bào), 2018, 37(8): 64-70.
ZHANG Yu, FENG Shaoyuan, SU Tong. Impact of different tillage on dynamics of soil moisture and nutrient and the growth of spring maize in newly reclaimed land [J]. Journal of Irrigation and Drainage, 2018, 37(8): 64-70.
[6] HILLEL D. Applications of soil physics[J]. Engineering Geology, 1980, 19(1): 70-71.
[7] 陳姣, 吳鳳平, 王輝, 等. 生物炭對(duì)南方紅壤和水稻土水力學(xué)特性的影響分析[J]. 灌溉排水學(xué)報(bào), 2020, 39(9): 73-80.
CHEN Jiao, WU Fengping, WANG Hui, et al. The Effects of Biochar Amendment on Hydraulic Properties of Red and Paddy Soils in Southern China [J]. Journal of Irrigation and Drainage, 2020, 39(9): 73-80.
[8] 李應(yīng)海, 王洪博, 王興鵬. 農(nóng)田排水與淡水交替灌溉對(duì)棗樹生理特性及品質(zhì)的影響[J]. 灌溉排水學(xué)報(bào), 2018, 37(8): 39-45.
LI Yinghai, WANG Hongbo, WANG Xingpeng. Efficacy of alternate irrigation with drainage-water and freshwater on photosynthetic traits and quality of jujube[J]. Journal of Irrigation and Drainage, 2018, 37(8): 39-45.
[9] 曹瑞雪,邵明安,賈小旭. 層狀土壤飽和導(dǎo)水率影響的試驗(yàn)研究[J]. 水土保持學(xué)報(bào), 2015, 29(3): 18-21.
CAO Ruixue, SHAO Ming’an, JIA Xiaoxu. Experimental study on effects of layered soils on saturated hydraulic conductivity[J]. Journal of Soil and Water Conservation, 2015, 29(3):18-21.
[10] 高紅貝, 邵明安. 溫度對(duì)土壤水分運(yùn)動(dòng)基本參數(shù)的影響[J]. 水科學(xué)進(jìn)展, 2011, 22(4): 484-494.
GAO Hongbei, SHAO Ming’an. Effect of temperature on soil moisture parameters[J]. Advances in Water Science, 2011, 22(4): 484-494.
[11] 楊繼偉, 湯廣民, 李如忠, 等. 受淹農(nóng)田土壤-上覆水氮磷遷移特征模擬研究[J]. 灌溉排水學(xué)報(bào), 2018, 37(12): 71-77.
YANG Jiwei, TANG Guangmin, LI Ruzhong, et al. Loss of nitrogen and phosphorus from soil and surface water in flooded cropland[J]. Journal of Irrigation and Drainage, 2018, 37(12): 71-77.
[12] 胡偉, 邵明安, 王全九, 等. 取樣尺寸對(duì)土壤飽和導(dǎo)水率測(cè)定結(jié)果的影響[J]. 土壤學(xué)報(bào), 2005, 42(6): 1 040-1 043.
HU Wei, SHAO Ming’an, WANG Quanjiu, et al. Effects of sampling size on measurements of soil saturated hydraulic conductivity[J]. Chinese Journal of Soil Science, 2005, 42(6):1 040-1 043.
[13] ARTHUR E, RAZZAGHI F, MOLDRUP P, et al. Simple predictive models for saturated hydraulic conductivity of technosands.[J]. Soil Science, 2012, 177(3): 153.
[14] 樊軍, 王全九, 邵明安, 等. 盤式吸滲儀測(cè)定土壤導(dǎo)水率的兩種新方法[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2007, 23(10): 14-18.
FAN Jun, WANG Quanjiu, SHAO Ming’an, et al. New methods for determining soil hydraulic conductivity by disc tension infiltrometers[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(10): 14-18.
[15] 姚淑霞, 趙傳成, 張銅會(huì). 科爾沁不同沙地土壤飽和導(dǎo)水率比較研究[J]. 土壤學(xué)報(bào), 2013, 50(3): 469-477.
YAO Suxia, ZHAO Chuancheng, ZHANG Tonghui. A comparison of soil saturated hydraulic conductivity (kfs) in different Horqin sand land[J]. Chinese Journal of Soil Science, 2013, 50(3): 469-477.
[16] KNOWLES P R, GRIFFIN P, DAVIES P A. Complementary methods to investigate the development of clogging within a horizontal sub-surface flow tertiary treatment wetland[J]. Water Research, 2010, 44(1): 320-330.
[17] 郭同鎧, 毛偉兵, 孫玉霞, 等. 腐殖酸對(duì)濱海黏質(zhì)鹽土持水性能的影響[J]. 灌溉排水學(xué)報(bào), 2020, 39(2): 32-36, 55.
GUO Tongkai, MAO Weibing, SUN Yuxia, et al. Effects of humic acid on water holding properties of clay solonchak[J]. Journal of Irrigation and Drainage, 2020, 39(2): 32-36, 55.
[18] 霍麗娟, 李一菲, 錢天偉. 定水頭法和降水頭法測(cè)定黃土的飽和導(dǎo)水率[J]. 太原科技大學(xué)學(xué)報(bào), 2010, 31(3): 256-259.
HUO Lijuan, LI Yifei, QIAN Tianwei. Determination of saturated hydraulic conductivity of loess soil by constant-head method and falling-head method[J]. Journal of Taiyuan University of Science and Technology, 2010, 31(3) : 256-259.
[19] 劉艷麗, 周蓓蓓, 王全九, 等. 納米碳對(duì)黃綿土Cu(Ⅱ)遷移影響的研究[J]. 水土保持研究, 2016, 23(1): 62-66.
LIU Yanli, ZHOU Beibei ,WANG Quanjiu, et al. Effects of nano-carbon on the migration of Cu(Ⅱ) in loessal soil[J]. Research of Soil and Water Conservation, 2016, 23(1): 62-66.
[20] 遲春明, 王志春. 蘇打堿土鹽分淋洗與飽和導(dǎo)水率的關(guān)系[J]. 土壤學(xué)報(bào), 2010, 47(2): 374-377.
CHI Chunming, WANG Zhichun. Relationship between salts leaching and saturated hydraulic conductivity of sodic soils[J]. Acta Pedologica Sinica, 2010, 47(2): 374-377.
[21] 姚毓菲, 邵明安. 測(cè)定時(shí)間對(duì)定水頭法土壤飽和導(dǎo)水率的影響[J]. 土壤通報(bào), 2015, 46(2): 327-333.
YAO Yufei, SHAO Ming’an. Effect of measuring time on soil saturated water conductivity with fixed head method[J]. Chinese Journal of Soil Science, 2015, 46(2): 327-333.
[22] PEDESCOLL A, UGGETTI E, LLORENS E, et al. Practical method based on saturated hydraulic conductivity used to assess clogging in subsurface flow constructed wetlands[J]. Ecological Engineering, 2009, 35(8): 1 216-1 224.
[23] 杜群, 歐陽竹. 淮北砂姜黑土區(qū)小麥單產(chǎn)變化及影響因素分析[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2008, 16(6): 1 434-1 438.
DU Qun, OUYANG Zhu. Changes in per-hectare yield of wheat and related factors in Shajiang black soilregion of the Huaibei Plain[J]. Chinese Journal of Eco-Agriculture, 2008, 16 (6): 1 434-1 438.
[24] 呂殿青, 邵明安, 劉春平. 體積質(zhì)量對(duì)土壤飽和水分運(yùn)動(dòng)參數(shù)的影響[J]. 水土保持學(xué)報(bào), 2006, 20(3): 154-157.
LYU Dianqing, SHAO Ming’an, LIU Chunping. Effect of bulk density on soil saturated water movement parameters[J]. Journal of Soil and Water Conservation, 2006, 20(3): 154-157.
[25] 李德成, 張甘霖, 龔子同. 我國(guó)砂姜黑土土種的系統(tǒng)分類歸屬研究[J]. 土壤, 2011, 43(4): 623-629.
LI Decheng, ZHANG Ganlin, GONG Zitong. On axonomy of Shajiang Black Soils in China[J]. Soils, 2011, 43(4): 623-629.
[26] 侯曉娜, 李慧, 朱劉兵, 等. 生物炭與秸稈添加對(duì)砂姜黑土團(tuán)聚體組成和有機(jī)碳分布的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(4): 705-712.
HOU Xiaona, LI Hui, ZHU Liubing, et al. Effects of biochar and straw additions on lime concretion black soil aggregate composition and organic carbon distribution[J]. Scientia Agricultura Sinica, 2015, 48(4): 705-712.
Saturated Soil Hydraulic Conductivity is not Constant But Varies with the Time It is Measured
WANG Xiangxiang1,2, CHENG Zhilong1,2, SU Guangchen1,2, YANG Ying1,2
(1.School of Environment and Energy, Anhui Jianzhu University, Hefei 230601, China; 2.Key Laboratory of Water Pollution Control and Wastewater Reuse, Anhui Jianzhu University, Hefei 230601, China)
【】Saturated soil hydraulic conductivity (S) is an important parameter characterizing the ability of soil to conduct water. It is often assumed to depend on soil structure and is hence constant for a given soil. The objective of this paper is to validate to what extent this common practice is valid. 【】We took vertisol soil in Huaibei Plain as an example, and conducted a series of experiments using both undisturbed soil cores with bulk density 0.96 g/cm3and repacked soil cores with bulk density in the range of 0.90 to1.30 g/cm3. For each soil core, we measured a time sequence of its saturated hydraulic conductivity (S) using the constant-head method.【】TheSof both intact and repacked soil cores showed a rapid decrease followed by a slow increase as time elapsed from inception of the experiment. For the undisturbed soil, its initialSwas 88.4 mm/h, but reduced to 5.0 mm/h 0.98 day (the deflection point) after inception of the experiment. As time elapsed, it eventually settled at 0.8 mm/h 12.94 day after commencing the experiment. Similar pheromone was also found for the repacked soil cores, although the deflection time and the time for Ks to asymptote varied with the repacking density. In general, as the bulk density increased, the initialSwas smaller and it took less time for itsSto reach the inflection point. TheSmeasured at any time was negatively correlated with soil bulk density.【】Contrary to what have been commonly assumed, saturated soil hydraulic conductivity does not appear to be constant but varies with the time it is measured. For the vertisol soil we studied, its hydraulic conductivity decreased first followed by an increase when time elapsed passing the deflection point though the time for the deflection to appear varied with soil bulk density.
vertisol soil; saturation hydraulic conductivity; shrinkage-expansion; constant head method
1672 - 3317(2021)12 - 0136 - 06
S152
A
10.13522/j.cnki.ggps.20190292
王翔翔, 程志龍, 蘇光辰, 等. 測(cè)定時(shí)間對(duì)淮北平原砂姜黑土飽和導(dǎo)水率的影響[J]. 灌溉排水學(xué)報(bào), 2021, 40(12): 136-141.
WANG Xiangxiang, CHENG Zhilong, SU Guangchen, et al. Saturated Soil Hydraulic Conductivity is not Constant But Varies with the Time It is Measured [J].Journal of Irrigation and Drainage, 2021, 40(12): 136-141.
2019-02-19
安徽省自然科學(xué)基金-青年項(xiàng)目(1908085QE241);安徽省科技重大專項(xiàng)(18030801106);中國(guó)長(zhǎng)江三峽集團(tuán)有限公司科研項(xiàng)目-長(zhǎng)江中游地區(qū)村鎮(zhèn)污水處理模式研究(202003082)
王翔翔(1986-),女。講師,博士,主要研究方向?yàn)橥寥牢锢?。E-mail:wangxiang156@126.com
責(zé)任編輯:韓 洋