黃思思 周芊芊 羅婷 謝偉全
摘 要 香豆素類化合物是傳統(tǒng)的中草藥成分,在自然界中普遍存在。近年來,其抗腫瘤作用得到了廣泛的關注。研究表明,香豆素類化合物可通過誘導腫瘤細胞凋亡、阻滯細胞分裂周期、抑制腫瘤血管生成及腫瘤細胞遷移和侵襲、抗氧化以及調控多種蛋白和酶的活性等機制發(fā)揮抗腫瘤作用。本文綜述了近年來香豆素類化合物抗腫瘤機制的研究進展,以期為香豆素類化合物的進一步研究和開發(fā)提供理論基礎和依據(jù)。
關鍵詞 香豆素 抗腫瘤 機制
中圖分類號:R965 文獻標志碼:A 文章編號:1006-1533(2022)01-0070-05
基金項目:湖南省自然科學基金項目(2019JJ40256)、2021年湖南省大學生創(chuàng)新創(chuàng)業(yè)訓練計劃項目(S202110555252)、2019年湖南省大學生創(chuàng)新創(chuàng)業(yè)訓練計劃項目(S201910555022)
Research progress in anti-cancer mechanism of coumarins
HUANG Sisi1, ZHOU Qianqian1, LUO Ting1, XIE Weiquan1,2
(1. School of Pharmacy, University of South China, Hengyang 421001, China; 2. School of Pharmacy, Guilin Medical University, Guilin 541001, China)
ABSTRACT Coumarins are traditional herbal ingredients that are commonly found in nature. In recent years, their anti-tumor effects have received widespread attention. Researches have shown that coumarins exert anti-tumor effects through inducing apoptosis, blocking cell cycle, inhibiting tumor angiogenesis, tumor cell migration and invasion and antioxidation, and regulating the activities of various proteins and enzymes. This article reviews the recent research progress in the anti-tumor mechanism of coumarins so as to provide theoretical basis for the further research and development of coumarins.
KEy wORDS coumarins; anti-tumor; mechanism
據(jù)全球最新統(tǒng)計數(shù)據(jù)顯示,2020年全球約有1 930萬例新增癌癥病例和近1 000萬例癌癥死亡病例[1],癌癥的發(fā)病率和死亡率逐年上升,已成為威脅人類健康的主要原因之一。在惡性腫瘤的三大療法中,藥物治療占有重要的地位。然而,大部分抗腫瘤藥物作用途徑單一,且在殺滅癌細胞的同時,也會對正常細胞造成損傷,使其在目前的臨床應用中存在一定的局限性。因此,尋找高效低毒的抗腫瘤藥物具有重要意義。
近年來,由于香豆素類化合物分子量小、生物利用度高、對人體的不良反應少且能通過多種機制和途徑發(fā)揮抗腫瘤作用而引起學者們的廣泛關注。香豆素類化合物是一類以苯駢α-吡喃酮為母核的天然化合物,廣泛存在于蛇床子、秦皮、補骨脂、白芷、獨活、前胡、茵陳等中藥材中。依據(jù)取代基在α-吡喃酮環(huán)上位置的不同,可將其分為簡單、呋喃、吡喃和其他香豆素類化合物。香豆素類化合物的抗凝血、抗炎、抗菌、抗氧化、抗癌等多種生物活性功能已被證實[2]。大量研究表明,其在乳腺癌、前列腺癌、宮頸癌、結直腸癌、黑色素瘤、腎細胞癌、肺癌、肝癌、白血病等多種癌癥中均表現(xiàn)出顯著的抗腫瘤活性[3-4]?,F(xiàn)就香豆素類化合物抗腫瘤機制的研究進展進行綜述。
1 香豆素類化合物抗腫瘤作用機制
1.1 誘導腫瘤細胞凋亡
細胞凋亡有三條途徑:①內(nèi)源性途徑,即線粒體凋亡通路;②外源性途徑,即死亡受體(DR)信號通路;③內(nèi)質網(wǎng)通路。多種香豆素衍生物被證實能通過上述途徑誘導腫瘤細胞凋亡。Perumalsamy等[5]發(fā)現(xiàn),苯乙烯雙香豆素(SSBC)能顯著誘導胃腺癌AGS細胞的凋亡,并推測SSBC通過內(nèi)源性途徑下調Bcl-2、上調Bax和細胞色素C的表達發(fā)揮作用。研究表明一種倍半萜香豆素GBA能通過激活半胱天冬酶(caspases)和DR5來增強腫瘤壞死因子相關的凋亡誘導配體(TRAIL)誘導的非小細胞肺癌H460/R細胞凋亡[6]。已證明補骨脂素可通過激活內(nèi)質網(wǎng)應激信號通路誘導肝癌SMMC7721細胞凋亡[7]。
1.2 阻滯細胞分裂周期
細胞周期是細胞生命活動的基本過程,包括有絲分裂間期(G1、S、G2期)和有絲分裂期(M期)。香豆素類化合物可在癌細胞分裂周期的不同階段發(fā)揮細胞毒性作用而阻滯細胞分裂,如傘形花內(nèi)酯可將口腔癌KB細胞的細胞周期阻滯在G0/G1期[8];7,8-二羥基-3-(4-硝基苯基)香豆素可將肝癌HepG2細胞的細胞周期進程阻滯在S期[9];東莨菪素可觸發(fā)宮頸癌HeLa細胞的G2/M細胞周期阻滯而發(fā)揮抗癌作用[10]。
參與細胞周期調控的分子主要有細胞周期蛋白(cyclin)、細胞周期蛋白依賴性激酶(CDK)和細胞周期蛋白依賴性激酶抑制劑(CKI)三大類。研究發(fā)現(xiàn),香豆素類化合物對腫瘤細胞周期的阻滯作用主要與cyclin和CDK有關。Park等[11]用蛇床子素處理乳腺癌BT-474和MCF-7細胞后,發(fā)現(xiàn)cyclin D1、cyclin E1、CDK2、CDK6的表達均顯著降低,表明蛇床子素在兩種不同類型的乳腺癌細胞系中均可通過調節(jié)細胞周期相關因子的表達誘導細胞周期阻滯。
1.3 抑制腫瘤血管生成
腫瘤組織由于氧氣和營養(yǎng)物質匱乏,需形成新生血管供其生長增殖。促血管生成因子和抗血管生成因子之間的不平衡驅動腫瘤組織異常的血管生成,這種不平衡主要是由血管內(nèi)皮生長因子(VEGF)的過度產(chǎn)生所引起[12]。香豆素可通過調控VEGF表達發(fā)揮抗血管生成作用。Park等[13]發(fā)現(xiàn),秦皮乙素能通過抑制VEGF-2磷酸化阻斷血管內(nèi)皮細胞中的信號傳遞,從而顯著抑制VEGF誘導的血管生成。Kim等[14]證明,異紫花前胡內(nèi)酯可抑制由VEGF-A介導的內(nèi)皮細胞增生,發(fā)揮對癌癥的防治效果。
1.4 抑制腫瘤細胞遷移和侵襲
細胞遷移是建立和維持細胞生物組織的基礎,而異常的細胞遷移通常與多種疾病的發(fā)生發(fā)展有關,如惡性癌細胞擴散等[15]。在腫瘤細胞遷移與侵襲方面,研究較多的是抑制基質金屬蛋白酶(MMP)的表達和上皮-間充質轉化(EMT)過程。MMP是降解細胞外基質成分的重要酶,研究發(fā)現(xiàn),香豆素類化合物能通過抑制MMP2和MMP9的表達來抑制腫瘤細胞的遷移和侵襲[16-17]。此外,天然香豆素類化合物可調控腫瘤細胞的EMT過程。如在肺癌A549細胞中,秦皮乙素能通過下調波形蛋白(vimentin)和Snail蛋白的表達,上調鈣黏附蛋白E(E-cadherin)的表達來調控EMT[18],蛇床子素可通過下調NF-kB-Snail通路抑制轉化生長因子-b(TGF-b)誘導的EMT[19]。
1.5 抗氧化
在腫瘤發(fā)生的初始階段,由于腫瘤細胞的高代謝使活性氧(ROS)水平顯著升高,ROS可通過加氫或去氫對堿基對進行修飾,從而誘導DNA鏈斷裂或DNA交聯(lián)引發(fā)基因突變,腫瘤細胞因此進入無限分裂過程[20]。香豆素及其衍生物是強效的活性氧自由基清除劑。其抗氧化活性可能與其結構和黃酮類、二苯甲酮類化合物相似有關,此種結構可通過結合過渡金屬離子抑制由芬頓反應產(chǎn)生的羥自由基和過氧化氫[21]。此外,由于電子在分子中的離域作用,香豆素類化合物中的羥基還可為自由基提供氫原子[22],傘型花內(nèi)酯、秦皮乙素、瑞香素和東莨菪素等具有酚羥基的結構,是天然的抗氧化劑[23]。Moustafa等[24]從茶飲醇中提取到一種結構罕見的香豆素類化合物,并證明其能顯著抑制活性氧的產(chǎn)生,發(fā)揮對肺癌H23細胞的細胞毒作用。
1.6 調控多種蛋白和酶的活性
①抑制環(huán)氧合酶2(COX-2)活性:Lu等[25]設計了一系列香豆素衍生物,并表明引入?;旰吐认愣顾氐玫降幕衔锟勺鳛橐环N高效的選擇性COX-2抑制劑逆轉前列腺素E2(PGE2)誘導的癌細胞進展。②抑制端粒酶活性:Lv等[26]合成了一系列2-苯基嘧啶香豆素衍生物,其中大部分可抑制端粒酶活性而影響腫瘤細胞增殖。③抑制碳酸酐酶(CA)活性:Meleddu等[27]合成了一系列香豆素類化合物,并證明其可抑制CA Ⅵ和CAⅦ阻滯腫瘤發(fā)展進程。④抑制芳香化酶活性:Ramdani等[28]合成的香豆素類化合物4HC可抑制芳香化酶的活性,誘導乳腺癌細胞的凋亡。⑤抑制拓撲異構酶活性:Konko?ová等[29]設計并合成的含有他克林和香豆素藥效基團的化合物均可抑制拓撲異構酶Ⅰ的活性從而發(fā)揮抗癌作用。⑥抑制15-脂氧合酶-1(15-LOX-1)的活性:Hosseinymehr等[30]發(fā)現(xiàn)一種香豆素的異戊基衍生物能夠抑制15-LOX-1活性從而誘導前列腺癌細胞凋亡。⑦抑制熱休克蛋白90(HSP90):Bai等[31]合成的一種新型香豆素吡唑啉衍生物DPB能抑制HSP90的活性并能誘導肺癌A549細胞凋亡。⑧抑制單羧酸轉運蛋白(MCT)表達:Ji等[32]合成了一系列以香豆素為骨架的衍生物,證明其可作為MCT1的抑制劑使MCT1高表達的宮頸癌Hela細胞和大腸癌HCT116細胞凋亡。⑨抑制類固醇硫酸酯酶(STS)活性:一種新型香豆素化合物可作為STS抑制劑發(fā)揮抗腫瘤作用[33]。
1.7 其他機制
①誘導腫瘤細胞自噬:用新型東莨菪素衍生物SC-Ⅲ3處理肝癌HepG2細胞后可表現(xiàn)出自噬誘導作用[34]。②逆轉耐藥性:與單用順鉑相比,順鉑聯(lián)合蛇床子素可顯著降低轉錄相關因子2(NRF2)在耐藥的CDDP宮頸癌細胞中的表達,逆轉耐藥的宮頸癌細胞對順鉑化療的耐藥性[35]。③雄激素受體拮抗作用:傘形花內(nèi)酯衍生物可作為雄激素受體拮抗劑發(fā)揮對前列腺癌和乳腺癌的潛在治療作用[36]。
2 展望
香豆素類化合物作為極具潛力的抗癌藥物,其抗癌機制涉及癌癥通路的多個方面,對大部分癌癥有效,且不良反應較少。目前,基于對高效低毒的抗腫瘤藥物的迫切需要,加之香豆素類化合物結構較為簡單,易于進行化學合成和修飾,一些香豆素類化合物正在被開發(fā)和篩選為抗癌藥物,如以香豆素為基礎的irosustat作為第一代不可逆類固醇硫酸酯酶抑制劑已經(jīng)完成了Ⅱ期臨床試驗[37],揭示了香豆素衍生物作為新型抗癌藥物的潛力。
隨著香豆素類化合物應用于癌癥治療的研究不斷深入,學者們對香豆素類化合物提出了新的構想。近年來,香豆素與其他抗癌藥效團的雜合或偶聯(lián)被廣泛研究,與母藥相比,雜合分子具有克服交叉耐藥、減少不良反應、提高療效和特異性的潛力,如香豆素-青蒿素雜合、香豆素-三唑類雜合等,均證明香豆素雜合物是開發(fā)新型抗癌化療藥物的有效骨架,可用于控制或甚至根除癌癥,這為發(fā)現(xiàn)新的抗癌候選藥物提供可能[38-39]。根據(jù)其作用機制,基于香豆素骨架的雜合物被廣泛設計成抗癌藥物。例如香豆素-鬼臼毒素雜合物能選擇性抑制拓撲異構酶Ⅱb而發(fā)揮對多種癌細胞株的細胞毒性作用[40];三苯基乙烯-香豆素雜合物通過降低VEGF誘導的血管生成來抑制腫瘤進展[41]等。然而,我國對香豆素類化合物的抗腫瘤活性研究起步較晚,對其抗腫瘤作用機制的研究尚不完全,構效關系的研究尚不全面,導致其臨床應用具有一定的局限性。因此,需要對香豆素類化合物進行更系統(tǒng)、更深入的研究,進一步闡明其抗腫瘤機制,總結其結構特點與活性和毒性的關系,從而更好地為開發(fā)抗腫瘤藥物提供指導。
參考文獻
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin. 2021, 71(3): 209-249.
[2] Annunziata F, Pinna C, Dallavalle S, et al. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities[J]. Int J Mol Sci, 2020, 21(13): 4618.
[3] Venkata Sairam K, Gurupadayya BM, Chandan RS, et al. A review on chemical profile of coumarins and their therapeutic role in the treatment of cancer[J]. Curr Drug Deliv, 2016, 13(2): 186-201.
[4] Ahmed S, Khan H, Aschner M, et al. Anticancer potential of furanocoumarins: mechanistic and therapeutic aspects[J]. Int J Mol Sci, 2020, 21(16): 5622.
[5] Perumalsamy H, Sankarapandian K, Veerappan K, et al. In silico and in vitro analysis of coumarin derivative induced anticancer effects by undergoing intrinsic pathway mediated apoptosis in human stomach cancer[J]. Phytomedicine, 2018, 46: 119-130.
[6] Kim YH, Shin EA, Jung JH, et al. Galbanic acid potentiates TRAIL induced apoptosis in resistant non-small cell lung cancer cells via inhibition of MDR1 and activation of caspases and DR5[J]. Eur J Pharmacol, 2019, 847: 91-96.
[7] Wang X, Peng P, Pan Z, et al. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells[J]. Biol Res, 2019, 52(1): 34.
[8] Vijayalakshmi A, Sindhu G. Umbelliferone arrest cell cycle at G0/G1 phase and induces apoptosis in human oral carcinoma(KB) cells possibly via oxidative DNA damage[J]. Biomed Pharmacother, 2017, 92: 661-671.
[9] Musa MA, Gbadebo AJ, Latinwo LM, et al. 7,8-Dihydroxy-3-(4-nitrophenyl) coumarin induces cell death via reactive oxygen species-independent S-phase cell arrest[J]. J Biochem Mol Toxicol, 2018, 32(12): e22203.
[10] Tian Q, Wang L, Sun X, et al. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signaling pathway[J]. J BUON, 2019, 24(3): 997-1002.
[11] Park W, Park S, Song G, et al. Inhibitory effects of osthole on human breast cancer cell progression via induction of cell cycle arrest, mitochondrial dysfunction, and ER stress[J]. Nutrients, 2019, 11(11): 2777.
[12] Jászai J, Schmidt MHH. Trends and challenges in tumor antiangiogenic therapies[J]. Cells, 2019, 8(9): 1102.
[13] Park SL, Won SY, Song JH, et al. Esculetin inhibits VEGFinduced angiogenesis both in vitro and in vivo[J]. Am J Chin Med, 2016, 44(1): 61-76.
[14] Kim JH, Kim JK, Ahn EK, et al. Marmesin is a novel angiogenesis inhibitor: regulatory effect and molecular mechanism on endothelial cell fate and angiogenesis[J]. Cancer Lett, 2015, 369(2): 323-330.
[15] Trepat X, Chen Z, Jacobson K. Cell migration[J]. Compr Physiol, 2012, 2(4): 2369-2392.
[16] Jamialahmadi K, Salari S, Alamolhodaei NS, et al. Auraptene inhibits migration and invasion of cervical and ovarian cancer cells by repression of matrix metalloproteinases 2 and 9 activity[J]. J Pharmacopuncture, 2018, 21(3): 177-184.
[17] Wu MH, Lin CL, Chiou HL, et al. Praeruptorin A inhibits human cervical cancer cell growth and invasion by suppressing MMP-2 expression and ERK1/2 signaling[J]. Int J Mol Sci, 2017, 19(1): 10.
[18] Li H, Wang Q, Wang Y, et al. Esculetin inhibits the proliferation of human lung cancer cells by targeting epithelial-to-mesenchymal transition of the cells[J]. Cell Mol Biol (Noisy-le-grand), 2019, 65(7): 95-98.
[19] Feng H, Lu JJ, Wang Y, et al. Osthole inhibited TGF b-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated snail activation in lung cancer A549 cells[J]. Cell Adh Migr, 2017, 11(5/6): 464-475.
[20] Srinivas US, Tan BWQ, Vellayappan BA, et al. ROS and the DNA damage response in cancer[J]. Redox Biol, 2019, 25: 101084.
[21] Farombi EO, Nwaokeafor IA. Anti-oxidant mechanisms of kolaviron: studies on serum lipoprotein oxidation, metal chelation and oxidative membrane damage in rats[J]. Clin Exp Pharmacol Physiol, 2005, 32(8): 667-674.
[22] Sharma SD, Rajor HK, Chopra S, et al. Studies on structure activity relationship of some dihydroxy-4-methylcoumarin antioxidants based on their interaction with Fe(Ⅲ) and ADP[J]. Biometals, 2005, 18(2): 143-154.
[23] Lin HC, Tsai SH, Chen CS, et al. Structure-activity relationship of coumarin derivatives on xanthine oxidaseinhibiting and free radical-scavenging activities[J]. Biochem Pharmacol, 2008, 75(6): 1416-1425.
[24] Moustafa ES, Swilam NF, Ghanem OB, et al. A coumarin with an unusual structure from Cuphea ignea, its cytotoxicity and antioxidant activities[J]. Pharmazie, 2018, 73(4): 241-243.
[25] Lu XY, Wang ZC, Ren SZ, et al. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis[J]. Bioorg Med Chem Lett, 2016, 26(15): 3491-3498.
[26] Lv N, Sun M, Liu C, et al. Design and synthesis of 2-phenylpyrimidine coumarin derivatives as anticancer agents[J]. Bioorg Med Chem Lett, 2017, 27(19): 4578-4581.
[27] Meleddu R, Deplano S, Maccioni E, et al. Selective inhibition of carbonic anhydrase Ⅳ and Ⅶ by coumarin and psoralen derivatives[J]. J Enzyme Inhib Med Chem, 2021, 36(1): 685-692.
[28] Ramdani LH, Talhi O, Decombat C, et al. Bis(4-hydroxy-2H-chromen-2-one) coumarin induces apoptosis in MCF-7 human breast cancer cells through aromatase inhibition[J]. Anticancer Res, 2019, 39(11): 6107-6114.
[29] Konko?ová E, Hudá?ová M, Hamu?aková S, et al. Tacrinecoumarin derivatives as topoisomerase inhibitors with antitumor effects on A549 human lung carcinoma cancer cell lines[J]. Molecules, 2021, 26(4): 1133.
[30] Hosseinymehr M, Matin MM, Sadeghian H, et al. 8-Farnesyloxycoumarin induces apoptosis in PC-3 prostate cancer cells by inhibition of 15-lipoxygenase-1 enzymatic activity[J]. Anticancer Drugs, 2016, 27(9): 854-862.
[31] Bai SY, Dai X, Zhao BX, et al. Discovery of a novel fluorescent HSP90 inhibitor and its anti-lung cancer effect[J]. Rsc Advances, 2014, 4(38): 19887-19890.
[32] Ji H, Tan Y, Gan N, et al. Synthesis and anticancer activity of new coumarin-3-carboxylic acid derivatives as potential lactate transport inhibitors[J]. Bioorg Med Chem, 2021, 29: 115870.
[33] Da?ko M, Demkowicz S, Biernacki K, et al. Novel steroid sulfatase inhibitors based on N-thiophosphorylated 3-(4-aminophenyl)-coumarin-7-O-sulfamates[J]. Drug Dev Res. 2019, 80(6): 857-866.
[34] Zhao P, Dou Y, Chen L, et al. SC-Ⅲ 3, a novel scopoletin derivative, induces autophagy of human hepatoma HepG2 cells through AMPK/mTOR signaling pathway by acting on mitochondria[J]. Fitoterapia, 2015, 104: 31-40.
[35] Su J, Zhang F, Li X, et al. Osthole promotes the suppressive effects of cisplatin on NRF2 expression to prevent drugresistant cervical cancer progression[J]. Biochem Biophys Res Commun, 2019, 514(2): 510-517.
[36] Kandil S, Westwell AD, McGuigan C. 7-Substituted umbelliferone derivatives as androgen receptor antagonists for the potential treatment of prostate and breast cancer[J]. Bioorg Med Chem Lett, 2016, 26(8): 2000-2004.
[37] Song F, Huo X, Guo Z. Anti-breast cancer potential of natural and synthetic coumarin derivatives[EB/OL]. (2021-03-03)[2021-03-19]. https://pubmed.ncbi.nlm.nih.gov/33655862/.
[38] Zhang L, Xu Z. Coumarin-containing hybrids and their anticancer activities[J]. Eur J Med Chem, 2019, 181: 111587.
[39] Song XF, Fan J, Liu L, et al. Coumarin derivatives with anticancer activities: an update[J]. Arch Pharm (Weinheim), 2020, 353(8): e2000025.
[40] Hao SY, Feng SL, Wang XR, et al. Novel conjugates of podophyllotoxin and coumarin: synthesis, cytotoxicities, cell cycle arrest, binding CT DNA and inhibition of Topo Ⅱb[J]. Bioorg Med Chem Lett, 2019, 29(16): 2129-2135.
[41] Cui N, Lin DD, Shen Y, et al. Triphenylethylene-coumarin hybrid tch-5c suppresses tumorigenic progression in breast cancer mainly through the inhibition of angiogenesis[J]. Anticancer Agents Med Chem, 2019, 19(10): 1253-1261.