李家旭 田瑋 谷迎松
間隙非線(xiàn)性氣動(dòng)彈性系統(tǒng)顫振及控制問(wèn)題研究進(jìn)展
李家旭1田瑋2谷迎松2
(1 陜西飛機(jī)工業(yè)(集團(tuán))公司設(shè)計(jì)院,漢中,723213;2 西北工業(yè)大學(xué)結(jié)構(gòu)動(dòng)力學(xué)與控制研究所,西安,710072)
含有間隙結(jié)構(gòu)的氣動(dòng)彈性系統(tǒng)非線(xiàn)性顫振問(wèn)題是飛行器氣動(dòng)彈性力學(xué)工程領(lǐng)域的研究熱點(diǎn)和難點(diǎn)。根據(jù)目前現(xiàn)代飛行器結(jié)構(gòu)輕量化設(shè)計(jì)及更大機(jī)動(dòng)性能的發(fā)展趨勢(shì),非線(xiàn)性顫振問(wèn)題日益突出,直接關(guān)系到飛行器的安全與性能。因此綜述了近幾十年來(lái)帶間隙非線(xiàn)性的非線(xiàn)性氣動(dòng)彈性力學(xué)模型、非線(xiàn)性系統(tǒng)辨識(shí)及非線(xiàn)性動(dòng)力學(xué)與控制等問(wèn)題的研究進(jìn)展。在已有相關(guān)研究成果的基礎(chǔ)上提出了今后值得進(jìn)一步解決和關(guān)注的研究問(wèn)題。
非線(xiàn)性顫振;間隙非線(xiàn)性;極限環(huán)振蕩;分岔;顫振抑制
近年來(lái),隨著我國(guó)航空航天事業(yè)的蓬勃發(fā)展,現(xiàn)代空天飛行器具備更高飛行速度及更強(qiáng)機(jī)動(dòng)性能,涉及的氣動(dòng)彈性問(wèn)題越來(lái)越復(fù)雜,帶來(lái)的非線(xiàn)性問(wèn)題也越發(fā)明顯,使得飛行器結(jié)構(gòu)的非線(xiàn)性氣動(dòng)彈性問(wèn)題得到了很大的重視,極大地推動(dòng)了我國(guó)飛機(jī)氣動(dòng)彈性力學(xué)的研究和發(fā)展[1]。對(duì)于線(xiàn)性顫振系統(tǒng)來(lái)說(shuō),當(dāng)飛行速度超過(guò)顫振邊界后,其響應(yīng)幅值隨時(shí)間增加而不斷提升,直到結(jié)構(gòu)發(fā)生破壞。然而真實(shí)的結(jié)構(gòu)往往是非線(xiàn)性的,所以當(dāng)飛行速度超過(guò)顫振穩(wěn)定邊界后,飛行器的顫振并不像線(xiàn)性系統(tǒng)無(wú)限增長(zhǎng),而是出現(xiàn)有限幅值的極限環(huán)運(yùn)動(dòng)。然而,從結(jié)構(gòu)疲勞的角度看,若結(jié)構(gòu)長(zhǎng)時(shí)間處于大幅的極限環(huán)振蕩,最終仍將導(dǎo)致飛行器的結(jié)構(gòu)破壞[2]。由于生產(chǎn)過(guò)程中的超差、裝配誤差以及相對(duì)運(yùn)動(dòng)過(guò)程中存在松動(dòng)和磨損等原因,導(dǎo)致結(jié)構(gòu)連接部位不可避免存在間隙非線(xiàn)性,它是飛行器中較為常見(jiàn)的一種集中式結(jié)構(gòu)非線(xiàn)性。對(duì)于帶有間隙非線(xiàn)性的氣動(dòng)彈性系統(tǒng),其顫振邊界將會(huì)遠(yuǎn)小于線(xiàn)性系統(tǒng)的顫振邊界,并且系統(tǒng)往往較低速度下便會(huì)表現(xiàn)為極限環(huán)顫振,甚至出現(xiàn)分岔和混沌等復(fù)雜動(dòng)力學(xué)行為[3]。近年來(lái),我國(guó)在多次型號(hào)試飛中也遇到了非線(xiàn)性顫振問(wèn)題,嚴(yán)重影響到顫振試飛的安全性。因此,含有間隙結(jié)構(gòu)的顫振系統(tǒng)非線(xiàn)性氣動(dòng)彈性問(wèn)題已成為國(guó)內(nèi)外科研人員的研究熱點(diǎn),它的研究對(duì)揭示飛行器非線(xiàn)性顫振機(jī)理具有重要意義,并且可提高對(duì)實(shí)際工程型號(hào)中非線(xiàn)性氣動(dòng)彈性問(wèn)題的理解與認(rèn)識(shí)。因此,本文針對(duì)帶有間隙非線(xiàn)性的氣動(dòng)彈性系統(tǒng),綜述了非線(xiàn)性顫振及控制問(wèn)題的相關(guān)研究成果和進(jìn)展,提出了今后值得進(jìn)一步研究的問(wèn)題。
針對(duì)帶有間隙非線(xiàn)性的氣動(dòng)彈性系統(tǒng),國(guó)內(nèi)外學(xué)者在理論分析、風(fēng)洞試驗(yàn)與飛行試驗(yàn)等方面做了大量的研究工作。根據(jù)研究對(duì)象不同,非線(xiàn)性氣動(dòng)彈性力學(xué)模型可分為二元機(jī)翼模型、三元機(jī)翼模型以及全機(jī)模型。
二元機(jī)翼是一種假想機(jī)翼,其模型簡(jiǎn)單,適用于各種氣動(dòng)彈性問(wèn)題的機(jī)理分析,有助于發(fā)掘非線(xiàn)性顫振誘發(fā)機(jī)制及其求解方法,并推廣到三元機(jī)翼模型中,因此它在在機(jī)翼非線(xiàn)性氣動(dòng)彈性問(wèn)題研究中占有重要地位。在間隙結(jié)構(gòu)非線(xiàn)性顫振研究中,最早由Lee等[4]對(duì)二元機(jī)翼非線(xiàn)性氣動(dòng)彈性問(wèn)題的研究現(xiàn)狀進(jìn)行了詳細(xì)總結(jié)。針對(duì)非線(xiàn)性顫振模型的非線(xiàn)性環(huán)節(jié)來(lái)說(shuō),大多是在俯仰自由度上帶有間隙非線(xiàn)性環(huán)節(jié)的二元機(jī)翼系統(tǒng)。例如,1990年趙令誠(chéng)和楊智春[5]研究了俯仰立方非線(xiàn)性的二自由度機(jī)翼系統(tǒng)在無(wú)粘流下的混沌等動(dòng)力學(xué)特性。Zhao等[6]分析了帶俯仰間隙的二元超音速雙楔型機(jī)翼的極限環(huán)特性。Li等[7]和Guo等[8]分別研究了帶俯仰間隙的二元機(jī)翼系統(tǒng)在亞音速無(wú)粘流下和超音速流下的非線(xiàn)性響應(yīng)特性。2019年李宇飛等[9]分析亞跨音速范圍間隙非線(xiàn)性對(duì)二元機(jī)翼顫振特性的影響,發(fā)現(xiàn)了預(yù)載能夠有效提高系統(tǒng)顫振速度。另外,牟讓科等[10]和Abbas等[11]對(duì)俯仰和沉浮兩個(gè)方向具有立方和間隙非線(xiàn)性的二元機(jī)翼進(jìn)行了極限環(huán)顫振特性的研究。對(duì)于帶有操縱面的二元機(jī)翼非線(xiàn)性顫振系統(tǒng)中,大多是在操縱面或副翼轉(zhuǎn)動(dòng)自由度上存在非線(xiàn)性環(huán)節(jié),由于非線(xiàn)性項(xiàng)的存在,導(dǎo)致整個(gè)機(jī)翼顫振系統(tǒng)出現(xiàn)極限環(huán)振蕩等非線(xiàn)性動(dòng)力學(xué)行為。Kholodar和Dowell[12]對(duì)操縱面鉸鏈處帶有間隙的二元機(jī)翼進(jìn)行了顫振特性分析;Conner等[13]同樣采用操縱面轉(zhuǎn)動(dòng)自由度帶有轉(zhuǎn)動(dòng)間隙的二元機(jī)翼系統(tǒng)作為研究對(duì)象,并建立了操縱面鉸鏈處含轉(zhuǎn)動(dòng)間隙非線(xiàn)性的實(shí)驗(yàn)?zāi)P?。Vasconcellos[14]等對(duì)帶有控制面間隙的二元機(jī)翼進(jìn)行了理論計(jì)算和風(fēng)洞試驗(yàn),他們利用分段和雙曲正切模擬間隙非線(xiàn)性,準(zhǔn)確預(yù)測(cè)了系統(tǒng)顫振穩(wěn)定性和非線(xiàn)性動(dòng)響應(yīng)特性。此外,一些文獻(xiàn)也對(duì)外掛帶有間隙非線(xiàn)性的機(jī)翼氣動(dòng)彈性系統(tǒng)進(jìn)行了極限環(huán)顫振和分岔特性的研究[15,16],并利用等效線(xiàn)化方法揭示了非線(xiàn)性顫振系統(tǒng)的運(yùn)動(dòng)規(guī)律,研究了間隙非線(xiàn)性對(duì)極限環(huán)振動(dòng)次諧響應(yīng)的影響[17]。2014年Chen和Liu[18]采用精細(xì)積分方法求解帶俯仰間隙的二元機(jī)翼外掛氣動(dòng)彈性系統(tǒng),研究了在不同初始條件下的LCO特性。
真實(shí)機(jī)翼模型屬于三元模型,通過(guò)對(duì)二元機(jī)翼模型的研究,其分析方法和影響規(guī)律可以推廣到實(shí)際三元機(jī)翼模型中。雖然三元機(jī)翼的模型建立、數(shù)值方法可能更為復(fù)雜,但能夠較為真實(shí)反映實(shí)際機(jī)翼的氣動(dòng)彈性特性。通常來(lái)說(shuō),大多采用有限元方法對(duì)其進(jìn)行數(shù)值模型建立,并利用實(shí)驗(yàn)?zāi)P蛯?duì)其進(jìn)行驗(yàn)證及進(jìn)一步用于實(shí)際工程應(yīng)用的探索。關(guān)于考慮間隙非線(xiàn)性機(jī)翼顫振問(wèn)題,Dowell[19]在數(shù)值仿真和風(fēng)洞試驗(yàn)兩方面研究成果[20-21]進(jìn)行了總結(jié),并指出考慮預(yù)載作用對(duì)含間隙非線(xiàn)性的機(jī)翼系統(tǒng)極限環(huán)顫振特性的關(guān)鍵影響。Tang和Dowell[22]對(duì)帶外掛間隙非線(xiàn)性三角翼模型進(jìn)行了顫振特性和LCO特性的研究。Firouz-Abadi等[23]考察了俯仰、沉浮和操縱面偏轉(zhuǎn)方向帶有間隙的三維機(jī)翼非線(xiàn)性顫振特性。Chen和Ritz等[24]分析了帶間隙非線(xiàn)性的縮比F-35平尾模型的LCO特性,并通過(guò)風(fēng)洞試驗(yàn)驗(yàn)證該模型的準(zhǔn)確性。Morino[25]提出一種基于CFD模型降階方法用于含有扭轉(zhuǎn)間隙的平尾模型分析,研究證實(shí)該方法能夠有效預(yù)測(cè)系統(tǒng)LCO特性。此外,對(duì)于超聲速/高超聲速飛行器,控制舵結(jié)構(gòu)是一個(gè)相對(duì)薄弱的環(huán)節(jié),它起著操控飛行器的作用,然而舵軸連接處或操縱環(huán)節(jié)不可避免存在間隙,同時(shí)高速飛行時(shí)會(huì)受到嚴(yán)重的氣動(dòng)熱效應(yīng),使得控制舵結(jié)構(gòu)的操縱效率降低,甚至發(fā)生顫振失穩(wěn),該問(wèn)題也受到了大量研究學(xué)者的關(guān)注[26-27]。Yang[28]針對(duì)含間隙非線(xiàn)性舵結(jié)構(gòu),提出了一種利用動(dòng)態(tài)子結(jié)構(gòu)法的氣動(dòng)彈性建模的方法用于非線(xiàn)性顫振分析。何昊南等[29]從實(shí)驗(yàn)和仿真兩方面對(duì)間隙可調(diào)折疊舵面的地面振動(dòng)響應(yīng)及建模方法進(jìn)行了研究,定性揭示了實(shí)驗(yàn)中存在的非線(xiàn)性動(dòng)力學(xué)現(xiàn)象,驗(yàn)證了非線(xiàn)性建模方法的有效性。Tian等[30]針對(duì)含有間隙的三維全動(dòng)舵面模型,考察了氣動(dòng)載荷和熱載荷作用下間隙對(duì)非線(xiàn)性氣動(dòng)彈性響應(yīng)特性的影響規(guī)律。
除了間隙非線(xiàn)性機(jī)翼顫振模型,在全機(jī)顫振模型中也有考慮間隙非線(xiàn)性的影響。2008年Gold和Karpel[31]建立了一種全機(jī)降階氣動(dòng)伺服彈性模型,考慮了控制舵間隙對(duì)飛行器非線(xiàn)性動(dòng)力學(xué)響應(yīng)的影響。Banavara等[32]研究了考慮作動(dòng)器間隙非線(xiàn)性的全機(jī)氣動(dòng)伺服彈性問(wèn)題。隨后,Karpel等[33]發(fā)展了一種增階建模方法用于求解帶間隙非線(xiàn)性單元的飛行器非線(xiàn)性氣動(dòng)彈性響應(yīng)。同年,Silva 等[34]對(duì)考慮舵機(jī)間隙非線(xiàn)性的全機(jī)模型進(jìn)行非線(xiàn)性動(dòng)力學(xué)響應(yīng)分析,提出了一種新的殘差向量方法用于模型降階,并與整機(jī)模型結(jié)果進(jìn)行了對(duì)比驗(yàn)證。Kholodar[35]建立了考慮副翼、升降舵、方向舵與外掛含間隙非線(xiàn)性全機(jī)模型,著重考察了間隙大小駕駛艙舒適度及操作性能的影響。上述這些研究表明,間隙非線(xiàn)性的存在也會(huì)顯著影響全機(jī)在飛行過(guò)程中的穩(wěn)定性和操控性能。
在氣動(dòng)彈性系統(tǒng)中,間隙非線(xiàn)性會(huì)引起機(jī)翼或飛行器在遠(yuǎn)低于線(xiàn)性顫振邊界內(nèi)發(fā)生多種形式的極限環(huán)振蕩。目前關(guān)于間隙非線(xiàn)性問(wèn)題的研究更多側(cè)重于在建模及求解方法、非線(xiàn)性現(xiàn)象分析等方面,這些理論研究更多是在已知間隙非線(xiàn)性特征前提下進(jìn)行的動(dòng)力學(xué)分析。然而實(shí)際飛行器結(jié)構(gòu)中的真實(shí)間隙非線(xiàn)性不易測(cè)量,而理論分析模型很難準(zhǔn)確預(yù)測(cè)真實(shí)非線(xiàn)性氣動(dòng)彈性現(xiàn)象。因此通常需要利用系統(tǒng)辨識(shí)來(lái)建立結(jié)構(gòu)的數(shù)學(xué)模型。非線(xiàn)性動(dòng)力學(xué)辨識(shí)的研究始于20世紀(jì)70年代,在近二十余年取得了顯著的進(jìn)步。非線(xiàn)性模型參數(shù)化估計(jì)算法分為七類(lèi),分別為:線(xiàn)性化方法[36]、時(shí)域法[37]、頻率法[38]、時(shí)-頻法[39]、模態(tài)法[40]、黑箱法[41]、模型更新法[42]。隨著非線(xiàn)性動(dòng)力學(xué)系統(tǒng)辨識(shí)的迅速發(fā)展,使其逐漸從學(xué)術(shù)研究向?qū)嶋H工程應(yīng)用推廣,新發(fā)展的多自由度非線(xiàn)性系統(tǒng)辨識(shí)算法也逐漸面向復(fù)雜的非線(xiàn)性工程結(jié)構(gòu)。其中時(shí)域辨識(shí)方法能夠直接辨識(shí)獲得非線(xiàn)性剛度的具體參數(shù),因此受到了更廣泛地關(guān)注。Baldelli等[43]和Kukreja等[44]分別采用五次多項(xiàng)式和雙曲正切函數(shù)對(duì)間隙結(jié)構(gòu)進(jìn)行參數(shù)辨識(shí)。Jones等[45]基于對(duì)數(shù)和雙曲正切函數(shù)來(lái)對(duì)間隙非線(xiàn)性進(jìn)行模擬同時(shí)采用特征系統(tǒng)實(shí)現(xiàn)法對(duì)二元機(jī)翼進(jìn)行系統(tǒng)辨識(shí),得到了二元機(jī)翼的跨音速顫振及極限環(huán)特性。隨后,Abdelkefi等[46]采用三次多項(xiàng)式模擬間隙非線(xiàn)性剛度,并基于實(shí)驗(yàn)數(shù)據(jù)對(duì)二元機(jī)翼非線(xiàn)性剛度進(jìn)行了參數(shù)辨識(shí)。Feldman[47]提出了Hilbert 時(shí)域辨識(shí)方法,用于考慮摩擦和間隙非線(xiàn)性剛度的辨識(shí),隨后將其用于辨識(shí)控制舵結(jié)構(gòu)的非線(xiàn)性參數(shù),驗(yàn)證了該方法的有效性。Li等[48-49]對(duì)含間隙剛度的二元機(jī)翼進(jìn)行了參數(shù)辨識(shí),獲得了包括間隙切換點(diǎn)在內(nèi)的非線(xiàn)性參數(shù)。
楊永新等[50]發(fā)展了一種非線(xiàn)性離散系統(tǒng)參數(shù)辨識(shí)方法,通過(guò)獲取系統(tǒng)的激勵(lì)和響應(yīng)便可以估計(jì)出系統(tǒng)的參數(shù)。在此基礎(chǔ)上建立了直接參數(shù)估計(jì)法,為非線(xiàn)性系統(tǒng)參數(shù)估計(jì)提供了一種新方式。閔建琴等[51]采用直接參數(shù)識(shí)別法和四階差分直接參數(shù)識(shí)別法對(duì)空間對(duì)接機(jī)構(gòu)的非線(xiàn)性參數(shù)進(jìn)行辨識(shí),并驗(yàn)證了這兩種方法的準(zhǔn)確性。劉杰[52]提出一種改進(jìn)的恢復(fù)力曲線(xiàn)辨識(shí)方法,利用空間正交投影技術(shù)來(lái)辨識(shí)非線(xiàn)性參數(shù),并利用帶有間隙的懸臂梁模型進(jìn)行試驗(yàn)驗(yàn)證,證明了該方法的準(zhǔn)確性。同樣,王博等[53]采用直接參數(shù)估計(jì)方法建立帶有間隙非線(xiàn)性折疊舵面的辨識(shí)模型,并引入顯著因子剔除多項(xiàng)式中影響度較低的基函數(shù),獲得非線(xiàn)性參數(shù)的高精度辨識(shí),且具有對(duì)系統(tǒng)非線(xiàn)性特性進(jìn)行定位的能力。孫玉凱等[54]采用條件逆譜法和時(shí)域非線(xiàn)性子空間法對(duì)二元機(jī)翼模型的間隙非線(xiàn)性參數(shù)進(jìn)行辨識(shí),通過(guò)數(shù)值模擬證實(shí)這兩種方法均可準(zhǔn)確地辨識(shí)出結(jié)構(gòu)的標(biāo)稱(chēng)線(xiàn)性系統(tǒng)。
根據(jù)上述文獻(xiàn)分析,目前大多數(shù)研究都是從正問(wèn)題入手,基于已知的間隙非線(xiàn)性線(xiàn)性模型和確定的剛度參數(shù)來(lái)對(duì)非線(xiàn)性動(dòng)力學(xué)系統(tǒng)進(jìn)行分析,對(duì)氣動(dòng)彈性系統(tǒng)的間隙非線(xiàn)性特征進(jìn)行辨識(shí)的研究相對(duì)較少,受限于動(dòng)力學(xué)模型描述和辨識(shí)方法的不足,飛行器結(jié)構(gòu)的真實(shí)間隙非線(xiàn)性特征依舊難以準(zhǔn)確辨識(shí)。所以,將上述非線(xiàn)性系統(tǒng)辨識(shí)方法應(yīng)用于實(shí)際氣動(dòng)彈性系統(tǒng)時(shí)還存在諸多問(wèn)題,仍是一個(gè)極具挑戰(zhàn)的動(dòng)力學(xué)反問(wèn)題。
由于非線(xiàn)性因素的存在,使得非線(xiàn)性氣動(dòng)彈性系統(tǒng)在低于線(xiàn)性顫振邊界速度便出現(xiàn)LCO運(yùn)動(dòng),而較大幅值的極限環(huán)振蕩也會(huì)導(dǎo)致結(jié)構(gòu)發(fā)生疲勞破壞,影響飛行器安全及穩(wěn)定性。因此,準(zhǔn)確預(yù)測(cè)和分析極限環(huán)顫振臨界點(diǎn)及響應(yīng)幅值對(duì)評(píng)估飛行器飛行安全十分重要。
Safi等[55]研究發(fā)現(xiàn),初始條件(質(zhì)量平衡、阻尼和間隙大?。?duì)LCO特性有很大影響,尤其是間隙參數(shù)顯著影響LCO幅值大小。Bae等[56]的研究表明對(duì)于分析含操縱面間隙非線(xiàn)性和雙線(xiàn)性非線(xiàn)性的兩種機(jī)翼顫振系統(tǒng),可能表現(xiàn)出完全不同的非線(xiàn)性動(dòng)力學(xué)行為,系統(tǒng)的非線(xiàn)性氣動(dòng)彈性特性隨著間隙區(qū)剛度的提高而變得更好。2012年Liu等[57]對(duì)帶有俯仰遲滯非線(xiàn)性的二元機(jī)翼系統(tǒng)LCO特性,分別計(jì)算了預(yù)載和間隙大小對(duì)LCO幅值和頻率的影響規(guī)律。同年,Guo和Chen[8]著重分析了不同間隙參數(shù)下機(jī)翼極限環(huán)顫振特性,并發(fā)現(xiàn)了響應(yīng)幅值的跳躍現(xiàn)象,而通過(guò)增大間隙區(qū)域的線(xiàn)性剛度可以消除幅值跳躍現(xiàn)象。2013年Lee和Tang[58]通過(guò)數(shù)值仿真研究了帶扭轉(zhuǎn)間隙非線(xiàn)性的全動(dòng)平尾模型LCO特性,由于實(shí)驗(yàn)存在摩擦的作用,數(shù)值結(jié)果與實(shí)驗(yàn)測(cè)試結(jié)果存在一定誤差,并發(fā)現(xiàn)根部初始角、慣性載荷和間隙大小對(duì)LCO特性有重要影響。Bansal[59]考察了機(jī)翼與副翼之間的連接間隙對(duì)三維機(jī)翼顫振特性的影響,結(jié)果表明當(dāng)間隙發(fā)生較小的變化時(shí)將導(dǎo)致LCO幅值發(fā)生較大變化。此外,Seo等[60]對(duì)比研究了二元機(jī)翼在沉浮和俯仰方向均帶有間隙與僅在俯仰方向帶有間隙的非線(xiàn)性氣動(dòng)彈性系統(tǒng)之間的差異,考察了不同幅值/間隙比下系統(tǒng)的非線(xiàn)性動(dòng)力學(xué)響應(yīng)特性。他們發(fā)現(xiàn)在單一間隙非線(xiàn)性顫振系統(tǒng)中俯仰運(yùn)動(dòng)LCO幅值隨間隙大小的增加而增加,而帶有多個(gè)間隙非線(xiàn)性環(huán)節(jié)時(shí),俯仰和沉浮運(yùn)動(dòng)LCO幅值隨間隙變化的趨勢(shì)是相反的。另外,一些研究考察了外部載荷對(duì)系統(tǒng)非線(xiàn)性顫振特性的影響。在抖振氣流中含操縱面偏轉(zhuǎn)間隙的機(jī)翼顫振系統(tǒng)非線(xiàn)性動(dòng)力學(xué)響應(yīng)也進(jìn)行了分析,由于抖振氣流的作用產(chǎn)生預(yù)載,導(dǎo)致操縱面在間隙的間隙上邊界運(yùn)動(dòng),并未出現(xiàn)LCO運(yùn)動(dòng),這樣改變間隙大小對(duì)操縱面動(dòng)響應(yīng)影響不大;此時(shí)抖振頻率發(fā)揮顯著的作用,當(dāng)接近操縱面偏轉(zhuǎn)模態(tài)頻率時(shí),系統(tǒng)發(fā)生劇烈的動(dòng)力學(xué)響應(yīng)[61]。2013年Kholodar[62]考察了有預(yù)載和無(wú)預(yù)載作用下機(jī)翼的非線(xiàn)性動(dòng)力學(xué)響應(yīng)特性,并與Tang和Dowell[63]的研究進(jìn)行了很好比較,結(jié)果發(fā)現(xiàn)預(yù)載對(duì)非線(xiàn)性顫振系統(tǒng)動(dòng)力學(xué)響應(yīng)起著重要作用。此外,一些研究也表明,減小間隙大小,適當(dāng)賦予一定的預(yù)載荷,增加結(jié)構(gòu)阻尼等措施可改善系統(tǒng)非線(xiàn)性顫振特性,預(yù)載的存在也會(huì)抑制復(fù)雜動(dòng)力學(xué)響應(yīng),且系統(tǒng)LCO幅值不受初始條件的影響[64-65]。上述研究在揭示非線(xiàn)性參數(shù)對(duì)顫振系統(tǒng)非線(xiàn)性氣動(dòng)彈性特性的影響規(guī)律方面有著非常重要的參考意義。
除了極限環(huán)振蕩運(yùn)動(dòng),間隙非線(xiàn)性會(huì)誘發(fā)出動(dòng)力學(xué)分岔及混沌等復(fù)雜動(dòng)力學(xué)行為。在動(dòng)力學(xué)分岔中,對(duì)Hopf分岔的研究較為重要,它是指系統(tǒng)參數(shù)變化經(jīng)過(guò)臨界值時(shí),平衡點(diǎn)穩(wěn)定性的改變并從中分支出極限環(huán)。而極限環(huán)分岔有極限環(huán)叉式分岔、極限環(huán)鞍結(jié)分岔、極限環(huán)跨臨界分岔和極限環(huán)的倍周期分岔。前三者與不動(dòng)點(diǎn)的靜態(tài)分岔對(duì)應(yīng),后者是非線(xiàn)性彈性系統(tǒng)通往混純運(yùn)動(dòng)的途徑,它的特點(diǎn)是周期點(diǎn)由一分二,二分四,一直分下去導(dǎo)致無(wú)限周期的混沌現(xiàn)象的出現(xiàn)。
Librescu[66]著重分析了結(jié)構(gòu)非線(xiàn)性和氣動(dòng)非線(xiàn)性之間的相互影響,并考察了它們對(duì)極限環(huán)顫振及分岔行為的影響規(guī)律。隨后,基于非線(xiàn)性振動(dòng)理論方法,Liu等[67]和丁千等[68]考察了二元機(jī)翼非線(xiàn)性顫振系統(tǒng)的動(dòng)力學(xué)分岔特性,并深入分析了相關(guān)現(xiàn)象產(chǎn)生的機(jī)理。Dimitriadis[69]通過(guò)研究操縱面偏轉(zhuǎn)自由度帶有間隙的機(jī)翼顫振系統(tǒng),結(jié)合等效線(xiàn)化法、分支追蹤法和基于打靶法的數(shù)值延拓算法計(jì)算了系統(tǒng)的完整分岔特性。Vasconcellos等[70]研究了俯仰間隙對(duì)二元機(jī)翼的擦邊分岔特性影響,通過(guò)對(duì)建立狀態(tài)空間求解線(xiàn)性系統(tǒng)的顫振速度,并得到相關(guān)的阻尼、頻率比與顫振特性的關(guān)系。另外,Chung[71]采用增量—攝動(dòng)法分析含間隙非線(xiàn)性二元機(jī)翼的LCO和Hopf分岔特性,同時(shí)得到穩(wěn)定和不穩(wěn)定的LCO,而且該方法能夠預(yù)測(cè)到非常復(fù)雜的動(dòng)力學(xué)行為,包括倍周期分岔、鞍結(jié)分岔、Neimark-Sacker分岔以及多種極限環(huán)并存的情況。因此,需要引入一定的控制手段來(lái)消除不利分岔行為來(lái)改善系統(tǒng)的動(dòng)力學(xué)特性,這也是控制領(lǐng)域的新分支[72]。
對(duì)于非線(xiàn)性系統(tǒng),混沌運(yùn)動(dòng)是另外一種復(fù)雜動(dòng)力學(xué)現(xiàn)象,探究發(fā)生混沌的參數(shù)規(guī)律以及通往混沌的途徑具有重要的理論研究?jī)r(jià)值。此外對(duì)混沌運(yùn)動(dòng)的數(shù)值識(shí)別也是非線(xiàn)性動(dòng)力學(xué)數(shù)值研究的重要方面,目前主要的混沌識(shí)別方法有Poincare映射圖、李雅普諾夫指數(shù)、分形維數(shù)、功率譜和熵等[73]。1990年趙令誠(chéng)和楊智春[74]通過(guò)改變彈性軸位置首次在二元機(jī)翼系統(tǒng)中發(fā)現(xiàn)了混沌運(yùn)動(dòng)。隨后Lee和Kim[75]通過(guò)調(diào)整間隙/俯仰角的比值,在三元柔性操縱面非線(xiàn)性系統(tǒng)發(fā)現(xiàn)混沌運(yùn)動(dòng)。國(guó)內(nèi)Li等[7]研究了在亞音速無(wú)粘流下帶有俯仰間隙的二元機(jī)翼系統(tǒng)在亞音速無(wú)粘流下的混沌運(yùn)動(dòng),并詳細(xì)研究得到不同彈性軸位置、翼型集中質(zhì)量比及預(yù)載荷下的俯仰運(yùn)動(dòng)分岔特性。另外,與LCO特性相比,非線(xiàn)性顫振系統(tǒng)的混沌特性更加依賴(lài)初始條件及結(jié)構(gòu)參數(shù)的影響,而參數(shù)不確定性會(huì)導(dǎo)致系統(tǒng)響應(yīng)發(fā)生顯著改變,因此關(guān)于非線(xiàn)性顫振系統(tǒng)的參數(shù)不確定性研究也是不可缺少的。
非線(xiàn)性顫振是現(xiàn)代航空航天飛行器氣動(dòng)彈性設(shè)計(jì)中難點(diǎn)問(wèn)題之一,通常來(lái)說(shuō)可以采用兩種途徑實(shí)現(xiàn)機(jī)翼顫振抑制的目的,即被動(dòng)控制和主動(dòng)控制。其中,被動(dòng)顫振抑制方法存在設(shè)計(jì)和制造成本高的劣勢(shì),需要對(duì)飛行器進(jìn)行重新結(jié)構(gòu)設(shè)計(jì)。近年來(lái),一種具有特殊結(jié)構(gòu)的非線(xiàn)性吸振器及非線(xiàn)性能量阱(Nonlinear Energy Sink, NES),受到了振動(dòng)控制領(lǐng)域研究學(xué)者的廣泛關(guān)注。非線(xiàn)性能量阱具有質(zhì)量輕、吸振頻率寬、吸振效率高及能量靶向傳遞等優(yōu)點(diǎn)。Lee等[76]通過(guò)理論和試驗(yàn)兩個(gè)方面驗(yàn)證了NES對(duì)機(jī)翼顫振抑制的有效性,采用能量傳遞、時(shí)頻分析及能頻分析等方法,給出了NES對(duì)機(jī)翼顫振抑制的機(jī)理。2016年Ebrahimzade等[77]利用非線(xiàn)性能量阱對(duì)二元機(jī)翼模型進(jìn)行顫振被動(dòng)抑制,相比于線(xiàn)性吸振器,具有更好的穩(wěn)定性和非線(xiàn)性性能,并通過(guò)優(yōu)化NES參數(shù)獲得更優(yōu)的控制性能。Bichiou等[78]同樣利用NES對(duì)二元機(jī)翼系統(tǒng)進(jìn)行顫振控制,考察了在不同條件下NES質(zhì)量和安裝位置等參數(shù)對(duì)抑制不利氣動(dòng)彈性行為的影響。研究結(jié)果顯示,NES在延遲顫振發(fā)生、改變失穩(wěn)類(lèi)型或降低LCO幅值等方面的影響是有限的。國(guó)內(nèi)一些學(xué)者也對(duì)基于非線(xiàn)性能量阱的機(jī)翼顫振抑制也進(jìn)行了相關(guān)的研究。陳恒等[79]將非線(xiàn)性能量阱被應(yīng)用到帶操縱面間隙的二元機(jī)翼系統(tǒng)中,通過(guò)諧波平衡方法分析了非線(xiàn)性能量阱參數(shù)對(duì)機(jī)翼顫振的影響,驗(yàn)證了三類(lèi)不同形式的顫振抑制。Guo等[80]同樣建立了帶控制面的機(jī)翼與非線(xiàn)性能量阱耦合氣動(dòng)彈性系統(tǒng),研究表明,由于NES的存在,線(xiàn)性和帶間隙非線(xiàn)性的機(jī)翼系統(tǒng)的顫振邊界均發(fā)生提高,相應(yīng)LCO幅值也發(fā)生降低。在顫振主動(dòng)控制技術(shù)研究方面,間隙或遲滯非線(xiàn)性可采用有理多項(xiàng)式擬合法描述,利用獨(dú)立狀態(tài)Riccati方程得到狀態(tài)反饋控制律用于顫振主動(dòng)控制。Huang等[81]研究了操縱面間隙對(duì)三維機(jī)翼的非線(xiàn)性顫振特性的影響,分析了帶間隙的開(kāi)/閉環(huán)氣動(dòng)彈性系統(tǒng)的非線(xiàn)性氣動(dòng)彈性響應(yīng),對(duì)于小間隙值情況,設(shè)計(jì)的多輸入多輸出控制器仍然有效,但其顫振邊界變得更低。隨后,Karpel等[82]采用虛擬質(zhì)量法模擬結(jié)構(gòu)間隙非線(xiàn)性,并提出一種增階建模方法用于帶作動(dòng)器非線(xiàn)性的閉環(huán)反饋系統(tǒng)的氣動(dòng)伺服彈性分析,該方法也為工程領(lǐng)域非線(xiàn)性動(dòng)力學(xué)分析提供指導(dǎo)。此外,其他一些主動(dòng)控制方法也陸續(xù)提出被用于非線(xiàn)性顫振系統(tǒng)中,并獲得很好的顫振抑制效果。
本文主要對(duì)間隙非線(xiàn)性氣動(dòng)彈性系統(tǒng)的力學(xué)模型、非線(xiàn)性系統(tǒng)辨識(shí)及動(dòng)力學(xué)行為進(jìn)行了綜述,根據(jù)目前現(xiàn)代飛行器輕量化結(jié)構(gòu)設(shè)計(jì)及更大機(jī)動(dòng)性能的發(fā)展趨勢(shì),結(jié)構(gòu)非線(xiàn)性效應(yīng)會(huì)變得更加顯著,飛行器結(jié)構(gòu)會(huì)表現(xiàn)出各類(lèi)非線(xiàn)性動(dòng)力學(xué)現(xiàn)象。大多研究集中在舵面/機(jī)翼氣動(dòng)彈性系統(tǒng),而非線(xiàn)性因素不僅會(huì)影響飛行器局部結(jié)構(gòu)非線(xiàn)性顫振特性,還會(huì)改變整個(gè)飛行器結(jié)構(gòu)的動(dòng)力學(xué)特性,甚至降低飛行器飛行性能。因此,有必要綜合考慮飛行力學(xué)與氣動(dòng)彈性,完善非線(xiàn)性氣動(dòng)伺服彈性建模與分析方法,并考察各類(lèi)非線(xiàn)性因素對(duì)全機(jī)非線(xiàn)性氣動(dòng)彈性及氣動(dòng)伺服彈性特性的影響。由于實(shí)際工程結(jié)構(gòu)的較為復(fù)雜,非線(xiàn)性環(huán)節(jié)可能包含碰撞、摩擦等復(fù)雜因素,使得精確辨識(shí)非線(xiàn)性參數(shù)變得困難,需要在非線(xiàn)性辨識(shí)方法中加入抗噪性及魯棒性等算法對(duì)真實(shí)結(jié)構(gòu)的非線(xiàn)性參數(shù)進(jìn)行辨識(shí)。隨著現(xiàn)代高性能飛機(jī)的研制和發(fā)展,飛行過(guò)程中可能同時(shí)受到非線(xiàn)性氣動(dòng)力、氣動(dòng)熱及噪聲載荷作用,進(jìn)一步加重非線(xiàn)性效應(yīng),并帶來(lái)更為不利的非線(xiàn)性氣動(dòng)彈性行為。因此需要考慮多場(chǎng)耦合作用對(duì)非線(xiàn)性動(dòng)力學(xué)特性的影響,解決高速飛行器氣動(dòng)彈性實(shí)際工程問(wèn)題。
[1] Dowell EH.A modern course in aeroelasticity [M].4th revised and enlarged edition. New York: kluwer academic publishers, 2004.
[2] 田瑋. 高超聲速非線(xiàn)性氣動(dòng)彈性問(wèn)題研究[D]. 西安: 西北工業(yè)大學(xué), 2018.
[3] 楊智春, 田瑋, 谷迎松, 等.帶集中非線(xiàn)性的機(jī)翼氣動(dòng)彈性問(wèn)題研究進(jìn)展[J]. 航空學(xué)報(bào), 2016, 37(7): 2013-2044.
[4] Lee BHK, Price SJ, Wong YS. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos[J]. Progress in aerospace sciences, 1999, 35(3): 205-334.
[5] Zhao LC, Yang ZC. Chaotic motions of an airfoil with non-linear stiffness in incompressible flow[J]. Journal of Sound and Vibration, 1990, 138(2): 245-254.
[6] Zhao H, Cao D, Zhu X.Aerodynamic flutter and limit cycle analysis for a 2-D wing with pitching freeplay in the supersonic flow[C].Systems and control in aeronautics and astronautics,3rd international symposium on IEEE, 2010: 1105-1109.
[7] Li D,Guo S,Xiang J.Study of the conditions that cause chaotic motion in a two- dimensional airfoil with structural nonlinearities in subsonic flow[J]. Journal of fluids and structures,2012, 33:109-126.
[8] Guo HL, Chen YS. Dynamic analysis of two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flow [J]. Applied Mathematics and Mechanics, 2012, 33(1): 1-14.
[9] 李宇飛, 白俊強(qiáng), 劉南, 等.間隙非線(xiàn)性對(duì)二元翼段顫振特性影響[J]. 哈爾濱工程大學(xué)學(xué)報(bào), 2019(4): 730-737.[LI Yufei, BAI Junqiang, LIU Nan, et al.Analysis of aeroelastic characteristics of 2-D wing with free play[J].Journal of Harbin Engineering University, , 2019(4): 730-737.]
[10] 牟讓科, 楊永年, 葉正寅. 帶有結(jié)構(gòu)剛度非線(xiàn)性的跨音速翼型顫振特性研究[J]. 振動(dòng)工程學(xué)報(bào), 2001(3): 75-77.[Mou Rangke Yang Yongnian Ye Zhengyin .Investigation of Transonic Flutter Characterstics of Airfoil with Nonlinear Structure Stiffness[J].Journal of Vibration Engineering, , 2001(3): 75-77.]
[11] Abbas L K, Chen Q, O'Donnell K, et al. Numerical studies of a non-linear aeroelastic system with plunging and pitching freeplays in supersonic/hypersonic regimes[J]. Aerospace Science and Technology, 2007, 11(5): 405-418.
[12] Kholodar D B, Dowell E H. Behavior of airfoil with control surface freeplay for nonzero angles of attack [J]. AIAA Journal, 1999, 37(5): 651-653.
[13] Conner MD,Tang DM, Dowell EH, et al.Nonlinear behavior of a typical airfoil section with control surface freeplay A numerical and experimental study[J].Journal of Fluids and Structures,1997,11: 89-109.
[14] Vasconcellos R, Abdelkefi A, Marques F D, et al. Representation and analysis of control surface freeplay nonlinearity[J]. Journal of Fluids & Structures, 2012, 31:79-91.
[15] Yang Y R. KBM Method of Analyzing Limit Cycle Flutter of a Wing with an External Store and Comparison with a Wing-Tunnel Test [J]. Journal of Sound and Vibration, 1995, 187(2): 27l-280.
[16] 楊翊仁, 趙令誠(chéng).帶外掛二元翼極限環(huán)顫振的高次線(xiàn)化分析[J].應(yīng)用力學(xué)學(xué)報(bào),1992.[Yang Yiren, Zhao lingcheng. Wing-store limit cycle flutter analysis using higher order linearization[J].Chinese Journal of Applied Mechanics, 1992.]
[17] Yang YR,Zhao LC.Subharmonic bifurcation analysis of wing with store flutter[J].Journal of Sound and Vibration,1992(3): 77-84.
[18] Chen YM, Liu JK. Nonlinear aeroelastic analysis of an airfoil-store system with a freeplay by precise integration method[J]. Journal of Fluids and Structures, 2014, 46: 149-164.
[19] Dowell EH. Some recent advances in nonlinear aeroelasticity: fluid-structure interaction in the 21st century[C]. Proceedings of 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2010.
[20] Tang D, Dowell E H. Aeroelastic airfoil with free play at angle of attack with gust excitation[J]. AIAA Journal, 2010, 48(2): 427-442.
[21] Sebastiano Fichera S, Quaranta G, Ricci S. Behaviour of an aeroelastic T-tail model with rudders freeplay experimental and numerical investigation [J]. The Journal of Aerospace Science, Technology and Systems, 2012, 91(3): 86-97.
[22] Tang D,Dowell EH.Flutter and limit-cycle oscillations for a wing-store model with freeplay[J]. Journal of Aircraft,2006,43(2): 487-503.
[23] Firouz-Abadi RD, Alavi SM, Salarieh H. Analysis of non-linear aeroelastic response of a supersonic thick fin with plunging, pinching and flapping free-plays[J]. Journal of Fluids and Structures, 2013, 40: 163-184.
[24] Chen P C, Ritz E, Lindsley N. Nonlinear flutter analysis for the scaled f-35 with horizontal-tail free play[J]. Journal of Aircraft, 2015, 51(3):883-889.
[25] Morino H,Obayashi S. Nonlinear aeroelastic analysis of control surface with freeplay using computational-fluid- dynamics- based reduced-order models[J].Journal of Aircraft, 2015,52(2):569- 583.
[26] Tian W, Yang ZC, Zhao T, et al. Nonlinear vibrations and chaotic responses of three-dimensional all movable fin with freeplay nonlinearity[C]. 25th International Congress on Sound and Vibration, ICSV 2018, 8-12 July 2018.
[27] Wu Z, Yang N, Yang C. Identification of nonlinear structures by the conditioned reverse path method [J]. Journal of Aircraft, 2015, 52(2):373-386.
[28] Yang N,Wang N, Zhang X,et al. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities [J]. Chinese Journal of Aeronautics, 2016, 29(1): 144-159.
[29] 何昊南,于開(kāi)平,唐宏,等.有間隙折疊舵面的振動(dòng)實(shí)驗(yàn)與非線(xiàn)性建模研究[J].力學(xué)學(xué)報(bào),2019,51(5):1476-1488.[He Haonan,Yu Kaiping,Tang Hong, et al. Vibration experiment and nonlinear modeling research on the folding fin with freeplay[J].Chinese Journal of Theoretical and Applied Mechanics,2019, 51(5): 1476-1488.]
[30] Tian W, Yang Z, Zhao T. Nonlinear aeroelastic characteristics of an all-movable fin with freeplay and aerodynamic nonlinearities in hypersonic flow[J]. International Journal of Non-linear Mechanics, 2019, 116:123-139.
[31] Gold P, Karpel M. Reduced-size aeroservoelastic modeling and limit-cycle-oscillation simulations with structurally nonlinear actuators[J]. Journal of Aircraft, 2008, 45(2): 471-477.
[32] Banavara N K, Newsom J R. Framework for aeroservoelastic analyses involving nonlinear actuators[J]. Journal of Aircraft, 2012, 49(3): 774-780.
[33] Karpel M, Shousterman A, Maderuelo C, et al. Dynamic aeroservoelastic response with nonlinear structural elements[J]. AIAA Journal, 2015, 53(11):3233-3239.
[34] Silva G, Rossetto G, Dimitriadis G. Reduced-order analysis of aeroelastic systems with freeplay using an augmented modal basis[J]. Journal of Aircraft, 2015, 52(4): 1312-1325.
[35] Kholodar D B. Aircraft control surface and store freeplay-induced vibrations in aeroelastic stability envelope. Journal of Aircraft, 2016, 53(5): 1538-1548.
[36] Sracic M W, Allen M S. Identifying parameters of multi-degree-of-freedom nonlinear structural dynamic systems using linear time periodic approximations[J]. Mechanical Systems & Signal Processing, 2014, 46(2):325-343.
[37] No?l JP, Renson L, Kerschen G. Complex dynamics of a nonlinear aerospace structure: experimental identification and modal interactions [J]. Journal of Sound and Vibration, 2014, 333(10): 2588-2607.
[38] No?l JP, Kerschen G. Frequency-domain subspace identification of nonlinear mechanical systems: application to a solar array structure [J]. Mechanical Systems & Signal Processing, 2013, 40(2): 701-717.
[39] Feldman M. Identification of weakly nonlinearities in multiple coupled oscillators[J].Journal of Sound and Vibration,2007, 303(1-2): 357-370.
[40] Ehrhardt D A,Allen M S.Measurement of nonlinear normal modes using multi-harmonic stepped force appropriation and free decay[J].Mechanical systems and signal processing, 2016,76-77:612-633.
[41] Pei J, Mai E C, Wright J P, et al. Mapping some basic functions and operations to multilayer feedforward neural networks for modeling nonlinear dynamical systems and beyond[J]. Nonlinear Dynamics, 2013, 71(1): 371-399.
[42] Kuit M, Eriten M, McFarland D M, et al. Methodology for model updating of mechanical components with local nonlinearities[J]. Journal of Sound and Vibration, 2015, 357: 331-348.
[43] Baldelli DH, Lind R, Brenner M. Robust match-point solutions using describing function method[J]. Journal of Aircraft, 2005, 42(6): 1596-1604.
[44] Kukreja SL, Brenner MJ. Nonlinear black-box modeling of aeroelastic systems using structure detection approach: application to F/A-18 aircraft data[J]. Journal of Guidance Control & Dynamics, 2007, 30(2): 557-564.
[45] Jones D P, Roberts I, Gaitonde A L. Identification of limit cycles for piecewise nonlinear aeroelastic systems[J]. Journal of Fluids & Structures, 2007, 23(7):1012-1028.
[46] Abdelkefi A, Vasconcellos R, Marques F D, et al. Modeling and identification of freeplay nonlinearity[J]. Journal of Sound & Vibration, 2012, 331(8):1898-1907.
[47] Feldman M. Hilbert transform in vibration analysis[J]. Mechanical Systems & Signal Processing, 2011, 25(3):735-802.
[48] 李治濤, 韓景龍. 間隙非線(xiàn)性氣動(dòng)彈性系統(tǒng)的辨識(shí)[J]. 航空學(xué)報(bào), 2012, 33(11): 2002-2009.[Li Zhitao, Han Jinglong. Identification of a Nonlinear Aeroelastic System with Freeplay[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2002-2009.]
[49] Li Z T, Han J L, Yun H W. Identification of piecewise linear aeroelastic systems[J]. Journal of Vibro engineering, 2013, 15(3): 1526-1536.
[50] 楊永新. Ibrahim SR. 非線(xiàn)性集總參數(shù)振動(dòng)系統(tǒng)的一個(gè)非參數(shù)識(shí)別方法[J]. 振動(dòng)與沖擊, 1985(1): 15-27.[Yang Yongxin, S. R. Ibrahxim. A nonparametric identification technique for a variety of discrete nonlinear vibrating systems[J].Journal of Vibration and Shock, 1985(1): 15-27.]
[51] 閔建琴, 陸秋海, 葛東云, 等. 對(duì)接機(jī)構(gòu)非線(xiàn)性物理參數(shù)辨識(shí)方法[J]. 工程力學(xué), 2006(11): 58-62.[MIN Jianqin, Lu Qiuhai, GE Dong-yun.Nonlinear physical parameter identification of the docking mechanism[J].Engineering Mechanics, 2006(11): 58-62.]
[52] 劉杰, 李兵, 韓羅峰, 等. 一種用于多自由度非線(xiàn)性間隙值識(shí)別的改進(jìn)恢復(fù)力曲線(xiàn)方法[J]. 機(jī)械工程學(xué)報(bào), 2016, 52(14):1-7.
[53] 王博, 馬志賽, 丁千, 等. 基礎(chǔ)激勵(lì)下含間隙折疊舵面非線(xiàn)性系統(tǒng)辨識(shí)[J]. 振動(dòng)與沖擊, 2020, 39(4): 122-128.[Wang Bo, Ma Zhisai, Ding Qian. System identification of folding rudders with freeplay nonlinearity under base excitation[J].Journal of Vibration and Shock, 2020, 39(4): 122-128.]
[54] 孫玉凱, 楊超, 吳志剛. 含間隙非線(xiàn)性二元翼段的系統(tǒng)辨識(shí)[J]. 北京航空航天大學(xué)學(xué)報(bào), 2021. 47(1): 140-149.
[55] Safi S A, Kelly D W, Archer R D. Interaction between wear processes and limit cycle oscillations of a control surface with free-play non-linearity[J]. Journal of Aerospace Engineering, 2002, 216: 143-153.
[56] Bae J S,Inman D J,Lee I. Effects of structural nonlinearity on subsonic aeroelastic characteristics of an aircraft wing with control surface[J]. Journal of Fluids and Structures,2004,19: 747-763.
[57] Liu J K, Chen F X, Chen Y M. Bifurcation analysis of aeroelastic systems with hysteresis by incremental harmonic balance method[J].Applied Mathematics and Computation,2012: 2398-2411.
[58] Tang D, E H Dowell. Computational/experimental aeroelastic study for a horizontal- tail model with free play[J]. AIAA Journal, 2013, 52(2): 341-352.
[59] Prasun Bansal, Dale M Pitt. Uncertainties in control surface free-play and structural properties and their effect on flutter and LCO[C]. Proceedings of 55th AIAA/ASM/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, 2014.
[60] Seo Y J, Lee S J, Bae J S, et al. Effects of multiple structural nonlinearities on limit cycle oscillation of missile control fin[J]. Journal of Fluids and Structures, 2011, 27: 623-635.
[61] Tang D, Dowell E H. Experimental aeroelastic response for a freeplay control surface in buffeting flow[J]. AIAA Journal, 2013, 51(12): 2852-2861.
[62] Kholodar D. Nature of freeplay-induced aeroelastic oscillations[J]. Journal of Aircraft, 2014, 1-13.
[63] Tang D, Kholodar D, Dowell E H. Nonlinear response of airfoil section with control surface freeplay to gust loads[J]. AIAA Journal, 2000, 38(9): 1543-1557.
[64] 任愛(ài)娣, 張琪昌.具有不對(duì)稱(chēng)間隙的二元機(jī)翼顫振研究[J]. 工程力學(xué), 2006, 23(9): 25-29.[Ren Aidi, Zhang Qichang. The flutter study of a two-dimensional airfoil with asymmetry freeplay[J].Engineering Mechanics, 2006, 23(9): 25-29.]
[65] 王忠波, 李增文, 張偉偉. 旋轉(zhuǎn)間隙非線(xiàn)性舵面的顫振特性[C]. 第十一屆全國(guó)空氣動(dòng)彈性性學(xué)術(shù)交流會(huì)會(huì)議論文集. 2009.
[66] Librescu L, Chiocchia G, Marzocca P. Implications of cubic physical/aerodynamic nonlinearities on the character of the flutter instability boundary[J]. International Journal of Non-Linear Mechanics, 2003, 38(2): 173-199.
[67] Liu L, Dowell E H. Higher order harmonic balance analysis of an airfoil with a freeplay control surface [J]. AIAA Journal, 2005, 43(4): 802-815.
[68] 丁千,王冬立.結(jié)構(gòu)和氣動(dòng)非線(xiàn)性機(jī)翼顫振分析[J].動(dòng)力學(xué)與控制學(xué)報(bào),2005,2(3):18-23.[Ding Qian, Wang Dongli.Study on airfoil flutter with cubic structural and aerodynamical nonlinearity[J].Journal of Dynamics and Control,2005,2(3):18-23.]
[69] Dimitriadis G. Complete bifurcation behaviour of aeroelastic systems with freeplay[C]. In: Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011.
[70] Vasconcellos R, Abdelke? A, Hajj M R, et al. Grazing bifurcation in aeroelastic systems with freeplay nonlinearity[J]. Commun Nonlinear Sci Numer Simulat, 2014, 19: 1611-1625.
[71] Chung K W, Chan C L, Lee B H K. Bifurcation analysis of a two-degree-of-freedom aeroelastic system with freeplay structural nonlinearity by a perturbation-incremental method[J]. Journal of Sound and Vibration, 2007 (3): 520-539.
[72] 吳志強(qiáng), 張建偉, 王喆, 極限環(huán)高階分岔控制, 動(dòng)力學(xué)與控制學(xué)報(bào), 2007, 5(1): 23-26.[Wu Zhiqiang, Zhang Jianwei, Wang Zhe. Higher order limit-cycle bifurcation control[J].Journal of Dynamics and Control, 2007, 5(1): 23-26.]
[73] 劉延柱,陳立群.非線(xiàn)性振動(dòng)[M].北京: 高等教育出版社, 2001.
[74] Zhao L C, Yang Z C. Chaotic motions of an airfoil with non-linear stiffness in incompressible flow[J]. Journal of Sound and Vibration, 1990, 138(2):245-254.
[75] Lee I, Kim S H. Aeroelastic analysis of a flexible control surface with structural nonlinearity[J]. Journal of Aircraft, 1995, 32(4):868-874.
[76] Lee Y S, Kerschen G, McFarland D M, et al. Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 2: experiments[J]. AIAA Journal, 2007, 45(10):2391-2400.
[77] Ebrahimzade N, Dardel M, Shafaghat R. Performance comparison of linear and nonlinear vibration absorbers in aeroelastic characteristics of a wing model[J]. Nonlinear Dynamics, 2016, 86(2):1075-1094.
[78] Bichiou Y, Hajj M R, Nayfeh A H. Effectiveness of a nonlinear energy sink in the control of an aeroelastic system[J]. Nonlinear Dynamics, 2016, 86(4): 2161-2177.
[79] 陳恒,王揚(yáng)渝, 金江明.帶控制截面機(jī)翼結(jié)構(gòu)基于非線(xiàn)性能量阱的顫振抑制[J]. 動(dòng)力學(xué)與控制學(xué)報(bào), 2017, 15(5):459-466.[Chen Heng, Wang Yangyu, Jin Jiangming. Flutter suppression for a rigid airfoil with a control surface based on nonlinear energy sink[J].Journal of Dynamics and Control, 2017, 15(5):459-466.]
[80] Guo H L, Cao S Q, Yang T Z, et al. Aeroelastic suppression of an airfoil with control surface using nonlinear energy sink[J]. Nonlinear Dynamics, 2018: 1-16.
[81] Huang R, Hu H Y, Zhao Y H. Nonlinear aeroservoelastic analysis of a controlled multiple-actuated-wing model with free-play[J]. Journal of Fluids and Structures, 2013, 42: 245-269.
[82] Karpel M, Shousterman A, Maderuelo C, et al. Dynamic Aeroservoelastic Response with Nonlinear Structural Elements[J]. AIAA Journal, 2015, 53(11):3233-3239.
Advance in the Study on Nonlinear Flutter and Control of Aeroelastic System with Freeplay Nonlinearity
LI Jia-xu1TIAN Wei2GU Ying-song2
(1 Shaanxi Aircraft Industry Group Corporation of Aviation Industry Corporation of China, Hanzhong, 723213, China;2 Institute of Structural Dynamics and Control, Northwestern Polytechnical University, Xi'an 710072, China)
The nonlinear flutter problem of aeroelastic system with freeplay nonlinearity has become one of the hottest and most challenging topics in the engineering field of aircraft aeroelasticity. Based on the development of lightweight structure design and high maneuver performance for modern aircrafts, nonlinear effect become more remarkable, which can affect the flight security and performance of aircrafts. In this paper, researches activities on nonlinear flutter and control of aeroelastic systems with freeplay nonlinearity are reviewed, including nonlinear aeroelastic model, nonlinear system identification and nonlinear dynamic behaviors. Furthermore, the existing research results are discussed and some suggestions about the development trend of nonlinear flutter are given.
Aeroelastic; Freeplay nonlinearity; All-movable fin; Limit cycle oscillations; Chaos
V415.3
A
1006-3919(2021)04-0018-08
10.19447/j.cnki.11-1773/v.2021.04.004
2020-10-13;
2021-02-20
國(guó)家自然科學(xué)基金資助項(xiàng)目(51375490)
李家旭(1983—),男,高級(jí)工程師,研究方向:氣動(dòng)彈性力學(xué)及結(jié)構(gòu)動(dòng)力學(xué)設(shè)計(jì);(723213)陜西飛機(jī)工業(yè)(集團(tuán))公司設(shè)計(jì)院.