楊子琴,李建國(guó),張蕾,李松剛,洪繼旺,黃旭明
摘? 要:海南反季節(jié)龍眼采前落果普遍發(fā)生,嚴(yán)重制約了反季節(jié)龍眼產(chǎn)業(yè)的發(fā)展。而果柄分離力可以反映果實(shí)離層活動(dòng)的狀況,成為果實(shí)脫落進(jìn)程的重要指標(biāo),但未見在龍眼上使用的報(bào)道。本研究以DS2-1000 gf和DS2-5000 gf型推拉力儀檢測(cè)果柄分離力,并分析果實(shí)脫落過程中各項(xiàng)生理特性參數(shù),旨在弄清龍眼果實(shí)脫落過程中果柄分離力與果實(shí)碳水化合物、呼吸速率和離層細(xì)胞壁代謝酶活性的關(guān)系。數(shù)據(jù)表明反季節(jié)龍眼果實(shí)脫落過程中,果柄分離力的變化范圍為0~3000 gf,且果柄分離力低于1000 gf會(huì)導(dǎo)致果實(shí)呈現(xiàn)脫落趨勢(shì);落果率與果柄分離力呈現(xiàn)顯著負(fù)相關(guān)性(r=–0.984,P=0.000);果實(shí)總糖和淀粉含量與果柄分離力呈現(xiàn)顯著正相關(guān)性,相關(guān)系數(shù)分別為0.942(P=0.005)和0.952(P=0.003);果柄呼吸耗氧速率與果柄分離力呈負(fù)相關(guān)性(r=–0.807,P=0.099);果柄離層纖維素酶和β-甘露聚糖酶活性也與果柄分離力呈顯著分負(fù)相關(guān)性,相關(guān)系數(shù)分別為–0.936(P=0.019)和–0.954(P=0.002)。結(jié)果表明反季節(jié)龍眼果實(shí)脫落進(jìn)程可用果柄分離力的變化體現(xiàn),果實(shí)脫落進(jìn)程伴隨著果柄分離力的不斷降低,與果柄細(xì)胞壁降解酶活性的增加呈線性關(guān)系;脫落的發(fā)生與碳水化合物含量關(guān)系密切,而高的果實(shí)呼吸消耗,可能加快果實(shí)脫落進(jìn)程。
關(guān)鍵詞:龍眼;果柄分離力;果實(shí);脫落
中圖分類號(hào):S667.1? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A
Relativity Analysis Between Characteristic Parameters of Off-season Longan Abscission and Its Fruit Removal Force
YANG Ziqin1, LI Jianguo2, ZHANG Lei1, LI Songgang1, HONG Jiwang1, HUANG Xuming2*
1. Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences / National Center for Crops Varieties Improvement, Haikou, Hainan 571101, China; 2. College of Horticulture, South China Agricultural University / State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou, Guangdong 510642, China
Abstract: Pre-harvest fruit abscission phenomenon is intensive in off-season longan in Hainan, China, which seriously restricts the development of the off-season longan. Pedicel detaching force or fruit removal force, reflecting the separation status of the abscission zone, has been adopted as a direct index reflecting the process of fruit abscission. However, there has been no report about its use in longan. The purpose of our study was to evaluate the use of pedicel detaching force to reflect fruit abscission in off-season longan and clarify its correlation with availability of carbohydrates, fruit respiration rate and activities of wall-degrading enzymes in the abscission zone. Small clusters of fruit were harvested and pedicel detaching force was measured using DS2-1000 gf or DS2-5000 gf force gauges every day. At the same time, correlation of various physiological parameters with pedicel detaching force was analyzed. The pedicel detaching force of the off-season longan of ‘Chuliang ranged between 0 and 3000 gf. When it became less than 1000 gf, the fruit was doomed to abscise. The cumulative abscission rate was significantly and negatively correlated to pedicel detaching force, with a coefficient of –0.948 (P=0.000). Total sugar and starch content in fruit was significantly and positive correlated to pedicel detaching force with a correlation coefficient of 0.942 (P=0.005) and 0.952 (P=0.003), respectively. A moderate positive bud insignificant correlation was found between respiratory oxygen consumption and pedicel detaching force (r=–0.807, P=0.099). Activity of cellulase and β-mannanase in the abscission zone was negatively correlated to pedicel detaching force, with a correlation coefficient of ?0.936 (P=0.019) and –0.954 (P=0.002), respectively. The results showed changes in pedicel detaching force could be used to reflect the process of fruit abscission. Fruit abscission was accompanied by significant decrease in pedicel detaching force, which was highly correlated with carbohydrate availability and cell wall degrading enzyme activity in the abscission zone, and high fruit respiration consumption may accelerate the process of fruit abscission.
Keywords: longan; fruit removal force; fruits; abscission
DOI: 10.3969/j.issn.1000-2561.2021.10.032
龍眼(Dimocarpus longan Loureiro)是我國(guó)南方主栽熱帶亞熱帶果樹之一,正常情況下,其坐果力強(qiáng),素有“愛果不惜樹”之印象[1]。海南以生產(chǎn)反季節(jié)龍眼為主,但是反季節(jié)龍眼采前落果現(xiàn)象普遍發(fā)生,嚴(yán)重制約了產(chǎn)業(yè)的發(fā)展。如何促進(jìn)反季節(jié)龍眼保果增產(chǎn)是亟待解決的產(chǎn)業(yè)難題。前人的研究表明龍眼果實(shí)的脫落除了和授粉受精不良有關(guān)外,主要由營(yíng)養(yǎng)供應(yīng)不足及營(yíng)養(yǎng)競(jìng)爭(zhēng)導(dǎo)致[2]。海南反季節(jié)龍眼夏秋季節(jié)花、果、梢同時(shí)生長(zhǎng)對(duì)營(yíng)養(yǎng)的競(jìng)爭(zhēng)極大,恰逢高溫、高濕、多雨天氣,光合產(chǎn)物積累不足;秋冬季果實(shí)發(fā)育期營(yíng)養(yǎng)供給后力不足。因此針對(duì)光合產(chǎn)物供應(yīng)不足條件下龍眼果實(shí)脫落調(diào)控機(jī)理的研究具有重要的理論意義,對(duì)海南當(dāng)?shù)佚堁郛a(chǎn)業(yè)來(lái)說,有地域特殊性。
果實(shí)是一個(gè)大量消耗養(yǎng)分的異養(yǎng)生殖器官。在果實(shí)發(fā)育過程中,落果是果樹減少果實(shí)負(fù)載量,集中樹體資源保證留樹果實(shí)個(gè)體發(fā)育的正?,F(xiàn)象。這種現(xiàn)象被視為果樹果實(shí)負(fù)載量的自我調(diào)節(jié)機(jī)制。果柄分離力大小是決定果實(shí)是否脫落的重要衡量指標(biāo)。為了更好的了解果柄分離力及果實(shí)脫落相關(guān)參數(shù)的關(guān)系,前人在研究果實(shí)早期脫落的同時(shí)對(duì)果實(shí)生理生化變化與其果柄分離力之間的關(guān)系進(jìn)行了研究[3-7]。Ferrara等[8]利用乙烯利處理刺激成熟葡萄漿果的脫落,降低了果實(shí)分離力,并促進(jìn)了柄端疤痕的形成,進(jìn)一步促進(jìn)高品質(zhì)無(wú)柄鮮食葡萄的生產(chǎn)。用莖腐病Diplodia侵染柑橘加劇采前落果,PCR鑒定Diplodia CT值與果實(shí)脫離力呈正相關(guān)(R=0.855)[9]。乙烯利和CMNP(水果特異性脫落劑)誘導(dǎo)柑橘果實(shí)分離力降低,進(jìn)而誘發(fā)果實(shí)早期脫落[10]。
目前對(duì)龍眼果實(shí)脫落過程中生理特性參數(shù)相關(guān)研究較多,還沒有龍眼果實(shí)脫落過程中果柄分離力變化的報(bào)道。龍眼果實(shí)脫落程度還沒有判定標(biāo)準(zhǔn),至今只還停留在“落或不落”層面。結(jié)合脫落過程中果實(shí)落果率、總糖和淀粉含量、果柄呼吸耗氧量、果柄離層纖維素酶和β-甘露聚糖酶活性等指標(biāo),研究龍眼果實(shí)脫落各項(xiàng)生理特性參數(shù)變化,分析果實(shí)脫落相關(guān)的生理指標(biāo)與果柄分離力之間的關(guān)系可有效的確立果柄分離力對(duì)果實(shí)脫落程度的詮釋。
反季節(jié)龍眼果實(shí)發(fā)育過程中極易發(fā)生落果,果柄分離力的大小決定著果實(shí)附著于樹體的壽命長(zhǎng)短,分析龍眼各項(xiàng)生理特性與果柄分離力的相關(guān)性,不僅為研究落果與果柄分離力的關(guān)系,也為研究反季節(jié)龍眼科學(xué)保果提供參考。
1? 材料與方法
1.1? 材料
試驗(yàn)于2020年6月,在中國(guó)熱帶農(nóng)業(yè)科學(xué)院熱帶作物品種資源研究所國(guó)家熱帶果樹品種改良中心龍眼種質(zhì)圃內(nèi)進(jìn)行。反季節(jié)龍眼為5年生‘儲(chǔ)良龍眼,3月初株施0.4 kg氯酸鉀催花處理,于4月底盛花。盛花后50 d,選取樹勢(shì)一致、坐果量相近、果實(shí)大小一致的4株龍眼樹做試驗(yàn)用樹。田間常規(guī)肥水管理。
1.2? 方法
1.2.1? 樣品處理? 受光照、養(yǎng)分等因素的影響,果樹長(zhǎng)勢(shì)會(huì)有差異,尤其內(nèi)膛果長(zhǎng)勢(shì)弱。因此取樣時(shí)選擇外周中上部坐果量相近的果穗進(jìn)行。每株選取5~8 mm直徑的30個(gè)結(jié)果母枝,在距果穗基部約10 cm處環(huán)剝,寬度2 mm,深達(dá)木質(zhì)部,同時(shí)摘除環(huán)剝口以上的葉片,中斷果實(shí)碳水化合物供應(yīng),人為制造果實(shí)饑餓脅迫。處理后每日跟蹤調(diào)查果實(shí)脫落情況,同時(shí)采集果穗做檢測(cè)。為了方便測(cè)量果柄分離力,樣品果實(shí)隨果穗一起剪下,冰盒帶回實(shí)驗(yàn)室檢測(cè)。
1.2.2? 果柄分離力? 使用智取DS2-1000 gf、DS2-5000 gf推拉力試驗(yàn)機(jī)。
測(cè)試前將上端夾具卸除,將底座夾具螺旋固定在原上端夾具位置。果實(shí)連同一段果枝夾在上端固定裝置上,按下ZERO和PEAK鍵,手動(dòng)向下拉果柄,記錄在離層部位斷裂的最大拉力值。每處理果柄分離力取5次測(cè)量的平均值。
所有測(cè)量果柄分離力手動(dòng)拉力方向均為豎直向下,因此要求果柄與夾具在同一垂直線。
1.2.3? 果實(shí)落果率? 以處理當(dāng)天為初始值(落果率0%)計(jì)算落果率動(dòng)態(tài),直至處理果穗果實(shí)全部脫落。每株選10個(gè)處理(環(huán)剝+去葉)的果穗分別掛牌編號(hào)記錄。
1.2.4? 總糖和淀粉含量? 蒽酮法測(cè)定總糖含量[11];KI-I比色法測(cè)定淀粉含量[12]。
1.2.5? 果柄呼吸耗氧量? 采用氧電極(Hansatech Oxygraph)測(cè)定,反應(yīng)體系2 mL,反應(yīng)底物為溶解有飽和氧的超純水,零氧線建立用高純氮。反應(yīng)溫度25 ℃,反應(yīng)時(shí)間取斜率穩(wěn)定的一段計(jì)數(shù),設(shè)3次重復(fù),計(jì)算果柄呼吸耗氧量。
1.2.6? 果柄離層纖維素酶和β-甘露聚糖酶活性? ? 果柄離層纖維素酶和β-甘露聚糖酶活性采用瓊脂糖凝膠擴(kuò)散法[13-14],設(shè)6次重復(fù)。
1.3? 數(shù)據(jù)處理
果柄分離力與龍眼各項(xiàng)生理參數(shù)測(cè)試數(shù)據(jù)采用SPSS 21.0統(tǒng)計(jì)分析軟件進(jìn)行分析。根據(jù)方差分析結(jié)果,對(duì)不同龍眼品種的果柄分離力相對(duì)于果實(shí)落果率、總糖和淀粉含量、果柄呼吸耗氧量、果柄離層纖維素酶和β-甘露聚糖酶活性進(jìn)行回歸分析,并建立回歸模型,分析回歸模型的相關(guān)系數(shù),確定回歸模型的可靠性。
2? 結(jié)果與分析
2.1? 龍眼果實(shí)各項(xiàng)參數(shù)的測(cè)定結(jié)果
龍眼果實(shí)各項(xiàng)參數(shù)連續(xù)測(cè)量結(jié)果曲線如圖1所示,脫落過程持續(xù)6 d,總糖和淀粉含量28.34~ 48.84 mg/g、9.80~12.76 mg/g;果柄呼吸耗氧量58.90~258.94 nmol/(ming)、果柄離層纖維素酶相對(duì)活性0~1.84(活性值取對(duì)數(shù))和β-甘露聚糖酶活性0.47~2.48(活性值取對(duì)數(shù))。從圖1可以看出,3 d開始啟動(dòng)大量落果,4 d落果率激增至51.10%。隨著果實(shí)脫落進(jìn)程的推進(jìn),果實(shí)總糖含量不斷下降(圖2),淀粉含量小幅下降(圖3),果柄呼吸耗氧量持續(xù)上升(圖4),果柄離層纖維素酶和β-甘露聚糖酶相對(duì)活性持續(xù)上升(圖5、圖6),果柄分離力不斷下降(圖7)。
2.2? 龍眼各項(xiàng)參數(shù)對(duì)果柄分離力的影響
2.2.1? 落果率與果柄分離力的關(guān)系? 落果率越高,樹體產(chǎn)量越低,直接影響了經(jīng)濟(jì)效益,因此保果對(duì)反季節(jié)龍眼生產(chǎn)尤為重要。隨著落果率的上升,果柄分離力逐漸下降。通過每日監(jiān)測(cè)果實(shí)落果動(dòng)態(tài)計(jì)算落果率,相關(guān)性檢驗(yàn)在0.01顯著水平下果柄分離力與落果率顯著相關(guān)。為確定顯著性相關(guān)規(guī)律,對(duì)果柄分離力進(jìn)行曲線回歸分析表明:試驗(yàn)中龍眼果柄分離力與落果率多項(xiàng)式曲線回歸方程為:y=1141.9e?0.039x;R?=0.9681,擬合度很高。從圖8可以看出:隨著果柄分離力不斷降低,落果率逐漸上升。
2.2.2? 果實(shí)糖含量與果柄分離力的關(guān)系? 果實(shí)是一個(gè)庫(kù)力強(qiáng)大的異養(yǎng)器官,主要依賴外源營(yíng)養(yǎng)供給[15]。光合產(chǎn)物的供求平衡在坐果/脫落平衡中扮演重要的調(diào)節(jié)作用[16]。果實(shí)糖含量是衡量果實(shí)光合產(chǎn)物積累量的重要指標(biāo)。前期的研究表明對(duì)正造龍眼結(jié)果母枝環(huán)割+去葉處理引發(fā)果實(shí)大量脫落,且果實(shí)糖含量可能存在一個(gè)閾值,低于該閾值,便觸發(fā)果實(shí)的脫落[14],即碳水化合物的缺乏是導(dǎo)致龍眼更快速脫落的關(guān)鍵誘因。果柄分離力的檢測(cè)是將脫落過程這一抽象的進(jìn)程進(jìn)行量化研究,更科學(xué)的判斷脫落的發(fā)展階段。通過對(duì)處理后果實(shí)糖含量變化檢測(cè),相關(guān)性檢驗(yàn)在0.01顯著水平下果柄分離力與果實(shí)糖含量顯著相關(guān)。為確定顯著性相關(guān)規(guī)律,對(duì)果柄分離力進(jìn)行曲線回歸分析表明:試驗(yàn)中龍眼果柄分離力與果實(shí)糖含量多項(xiàng)式曲線回歸方程為:y=72.467x?1894.2;R2=0.8877,擬合度較高。從圖9可以看出,隨著果實(shí)糖含量的下降,果柄分離力不斷降低。
2.2.3? 果實(shí)淀粉含量與果柄分離力的關(guān)系? 果實(shí)淀粉含量是果實(shí)碳水化合物積累量的另一的重要形式。晚熟臍橙正常果中葡萄糖、蔗糖和淀粉含量均顯著高于脫落果,碳水化合物向果實(shí)的富集,對(duì)減輕第一次和第二次生理落果具有重要影響[17]。通過對(duì)處理后果實(shí)淀粉含量變化檢測(cè),相關(guān)性檢驗(yàn)在0.01顯著水平下果柄分離力與果實(shí)淀粉含量顯著相關(guān)。曲線回歸分析表明:試驗(yàn)中龍眼果柄分離力與果實(shí)淀粉含量多項(xiàng)式曲線回歸方程為:y=548.49x?5529.7;R2=0.9055,擬合度較高。從圖10可以看出:隨著果實(shí)淀粉含量的下降,果柄分離力不斷降低。
2.2.4? 果柄呼吸耗氧量與果柄分離力的關(guān)系? 呼吸耗氧量在一定程度上反應(yīng)了果柄所處的狀態(tài),呼吸耗氧量越高,則對(duì)碳水化合物消耗越快,進(jìn)而加速果實(shí)脫落進(jìn)程。通過對(duì)每日果柄呼吸耗氧量的檢測(cè),相關(guān)性檢驗(yàn)在0.01顯著水平下,果柄分離力與果柄呼吸耗氧量顯著相關(guān)。曲線回歸方程為:y = ?6.270 2x + 2079;R2= 0.650 9,擬合度較高。從圖11可以看出:隨著果柄呼吸耗氧量的上升,果柄分離力不斷降低。
2.2.5? 離層纖維素酶相對(duì)活性與果柄分離力的關(guān)系? 纖維素酶在植物器官脫落中起重要作用[18]。通過對(duì)處理后果柄離層纖維素酶相對(duì)活性變化檢測(cè),相關(guān)性檢驗(yàn)在0.01顯著水平下果柄分離力與果柄離層纖維素酶相對(duì)活性顯著相關(guān)。曲線回歸分析表明:試驗(yàn)中龍眼果柄分離力與果柄離層纖維素酶活性多項(xiàng)式曲線回歸方程為:y=?787.8x+ 1425.1;R2=0.8767,擬合度高。從圖12可以看出:隨著果柄離層纖維素酶活性的上升,果柄分離力不斷降低。
2.2.6? β-甘露聚糖酶相對(duì)活性與果柄分離力的關(guān)系? 通過對(duì)處理后果柄離層β-甘露聚糖酶相對(duì)活性變化檢測(cè),相關(guān)性檢驗(yàn)在0.01顯著水平下果柄分離力與果柄離層β-甘露聚糖酶活性顯著相關(guān)。曲線回歸分析表明:試驗(yàn)中龍眼果柄分離力與果柄離層β-甘露聚糖酶活性多項(xiàng)式曲線回歸方程為:y=?736.6x+1815;R2=0.9108,擬合度極高。從圖13可以看出:隨著果柄離層β-甘露聚糖酶活性的上升,果柄分離力不斷降低。
3? 討論
龍眼的早期落果嚴(yán)重制約了反季節(jié)龍眼產(chǎn)業(yè)的發(fā)展,保果技術(shù)的研發(fā)成為目前最迫切的技術(shù)需求。龍眼果實(shí)脫落伴隨著一系列的特性參數(shù)的變化,對(duì)其變化與果柄分離力變化進(jìn)行相關(guān)性分析,對(duì)保果技術(shù)的研究具有重要的指導(dǎo)意義。果樹樹體碳水化合物營(yíng)養(yǎng)儲(chǔ)備不足,常出現(xiàn)果實(shí)發(fā)育障礙,落果現(xiàn)象十分嚴(yán)重[19]。荔枝在碳水化合物供應(yīng)不足的情況下也發(fā)生類似情況的大量落果,如:陰雨連綿、光照不足和光合葉片數(shù)量不足[20-21]。樹干注射蔗糖溶液明顯促進(jìn)柑橘幼果中蔗糖、淀粉含量的積累,有利于坐果[22]。溫州蜜柑和日本甜夏橙的淀粉含量與幼果相對(duì)脫落率均呈負(fù)相關(guān)[23]。本研究也有相同結(jié)論,龍眼果實(shí)糖和淀粉含量與果柄分離力正相關(guān),與落果率呈負(fù)相關(guān)。
植物呼吸作用為生物合成提供能量,其與光合作用的平衡決定了植物生物量的積累率[24]。阿月混子的花芽在脫落前會(huì)出現(xiàn)呼吸上升現(xiàn)象[25];佘小平等[26]報(bào)道GA誘導(dǎo)大葉黃楊離體莖段的葉柄脫落,同時(shí)可誘導(dǎo)呼吸顯著提高。本研究中伴隨著龍眼果實(shí)脫落,果柄呼吸耗氧量也出現(xiàn)上升現(xiàn)象,且與果柄分離力呈負(fù)相關(guān)。
大量研究表明纖維素酶(EG)在組織脫落中具有重要作用[27-29]。本研究證實(shí)纖維素酶在龍眼果實(shí)脫落過程中活性上升。
β-甘露聚糖酶是降解植物細(xì)胞壁半纖維素的主要酶類,前人的研究表明該酶在植物種子萌發(fā)、果實(shí)成熟和花粉發(fā)育等過程中有作用,但對(duì)于該酶在器官脫落中的作用還存在爭(zhēng)議。任艷芳等[30]在臍橙離區(qū)克隆了β-甘露聚糖酶基因片段,進(jìn)一步肯定了β-甘露聚糖酶在植物脫落器官離區(qū)中的存在。Belfield等[31]認(rèn)為β-甘露聚糖酶雖在脫落中活性水平和基因水平上有一定表達(dá),但它不是引起脫落的關(guān)鍵酶。在大豆葉柄脫落的研究中發(fā)現(xiàn)內(nèi)切-β-甘露聚糖酶GmMAN1與葉脫落無(wú)關(guān),但可能參與了對(duì)傷害的反應(yīng)[32]。本研究發(fā)現(xiàn)了果實(shí)脫落過程中β-甘露聚糖酶活性上升。
目前還沒有通過果柄分離力來(lái)判斷龍眼果實(shí)脫落程度的報(bào)道,通過直接觀測(cè)的方法具有很大的局限性,因此采用推拉力試驗(yàn)機(jī)測(cè)量果柄分離力的變化范圍,能夠更精確地判斷果實(shí)脫落的程度。將果實(shí)脫落這一抽象參數(shù)進(jìn)行量化的研究,更加科學(xué)地判斷果實(shí)是否有脫落的趨向,進(jìn)而為新型保果技術(shù)的研發(fā)提供參考。
4? 結(jié)論
龍眼果柄分離力是直觀反映果實(shí)分離動(dòng)態(tài)的一個(gè)重要參數(shù)。本研究結(jié)果表明:果實(shí)脫落相關(guān)的特性參數(shù)和果柄分離力之間有著很高的相關(guān)性,其中落果率與果柄分離力相關(guān)系數(shù)為?0.984;果實(shí)總糖和淀粉含量與果柄分離力相關(guān)系數(shù)分別為0.942和0.952;果柄呼吸耗氧量與果柄分離力相關(guān)系數(shù)為?0.807;果柄離層纖維素酶和β-甘露聚糖酶活性與果柄分離力相關(guān)系數(shù)分別為?0.936、?0.954;通過對(duì)果柄分離力與生理特性參數(shù)進(jìn)行曲線擬合分析,得到擬合方程和曲線。果實(shí)脫落過程龍眼果柄分離力的變化范圍為0~3000 gf,且果柄分離力低于1000 gf會(huì)導(dǎo)致果實(shí)呈現(xiàn)脫落趨勢(shì),低于400 gf時(shí)果實(shí)極易脫落。
參考文獻(xiàn)
[1] 楊子琴, 李? 茂, 章笑赟, 等. 饑餓脅迫對(duì)龍眼果實(shí)脫落及糖代謝的影響[J]. 果樹學(xué)報(bào), 2011, 28(3): 428-432.
[2] 韓冬梅, 郭棟梁, 潘學(xué)文, 等. 不同品種龍眼果實(shí)發(fā)育進(jìn)程對(duì)其生理落果和熟性的影響[J]. 廣東農(nóng)業(yè)科學(xué), 2011, 38(7): 59-62.
[3] Rizzuti A, Aguilera-saez L M, Gallo V, et al. On the use of ethephon as abscising agent in cv. crimson seedless table grape production: combination of fruit detachment force, fruit drop and metabolomics[J]. Food Chemistry, 2015, 171(15): 341-350.
[4] Goldental-cohen S, Burstein C, Biton I, et al. Ethephon induced oxidative stress in the olive leaf abscission zone enables development of a selective abscission compound[J]. BMC Plant Biology, 2017, 17(1): 87.
[5] Maule A, Henning G, Patterson S. Love me not meter: A sensor device for detecting petal detachment forces in Arabidopsis thaliana[J]. Methods in Molecular Biology, 2017(1573): 245-252.
[6] Garcia-rojas M, Meneses M, Oviedo K, et al. Exogenous gibberellic acid application induces the overexpression of key genes for pedicel lignification and an increase in berry drop in table grape[J]. Plant Physiology and Biochemistry, 2018(126): 32-38.
[7] Lanza F E, Marti W, Silva G J, et al. Characteristics of citrus canker lesions associated with premature drop of sweet orange fruit[J]. Phytopathology, 2019, 109(1): 44-51.
[8] Ferrara G, Mazzeo A, Matarrese A M, et al. Ethephon as a potential abscission agent for table grapes: effects on pre-harvest abscission, fruit quality, and residue[J]. Frontiers in Plant Science, 2016(7): 620.
[9] Zhao W, Bai J H, Mccollum G, et al. High incidence of preharvest colonization of huanglongbing-symptomatic citrus sinensis fruit by Lasiodiplodia theobromae (Diplodia natalensis) and exacerbation of postharvest fruit decay by that fungus[J]. Applied and Environmental Microbiology, 2015, 81(1): 364-372.
[10] Malladi A, Burns J K. CsPLDα1 and CsPLDγ1 are differentially induced during leaf and fruit abscission and diurnally regulated in Citrus sinensis[J]. Journal of Experimental Botany, 2008, 59(13): 3729-3739.
[11] 寧正祥. 食品成分分析手冊(cè)[M]. 北京: 中國(guó)輕工業(yè)出版社, 1998: 26-27.
[12] 徐昌杰, 陳文峻, 陳昆松, 等. 淀粉含量測(cè)定的一種簡(jiǎn)便方法——碘顯色法[J]. 生物技術(shù), 1998, 8(2): 41-43.
[13] 楊子琴, 李建國(guó), 王惠聰, 等. 一種測(cè)定龍眼果柄離層纖維素酶活性的方法[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 33(2): 175-177.
[14] 楊子琴. 饑餓脅迫誘導(dǎo)龍眼果實(shí)脫落的信號(hào)發(fā)生與調(diào)控機(jī)理研究[D]. 廣州: 華南農(nóng)業(yè)大學(xué), 2011.
[15] Hieke S, Menzel C M, Lüdders P. Effects of leaf, shoot and fruit development on photosynthesis of lychee trees (Litchi chinensis)[J]. Tree Physiology, 2002, 22(13): 955-961.
[16] Lakso A N, Greene D W, Palmer J W. Improvements on an apple carbon balance model[J]. Acta Hortic, 2006(707): 57-61.
[17] 姚珍珍. 晚熟臍橙落花落果生態(tài)影響因子及生理機(jī)制研究[D]. 重慶: 西南大學(xué), 2012.
[18] Li C Q, Zhao M L, Ma X S, et al. Two cellulases involved in litchi fruit abscission are directly activated by an HD-Zip transcription factor LcHB2[J]. Journal of Experimental Botany, 2019.
[19] Yang W H, Zhu X C, Bu J H, et al. Effects of bagging on fruit development and quality in cross-winter off-season longan[J]. Scientia Horticulturae, 2009, 120(2): 194-200.
[20] Yuan R C, Huang H B. Litchi fruit abscission: its patterns, effect of shading and relation to endogenous abscisic acid[J]. Scientia Horticulturae, 1988, 36: 281-292.
[21] 黃永敬, 吳 文, 曾繼吾, 等. 夏梢生長(zhǎng)條件下樹干供糖對(duì)‘砂糖橘幼果糖代謝及脫落的影響[J]. 熱帶作物學(xué)報(bào), 2019, 40(8): 1522-1528.
[22] 徐昌杰, 張上隆. 柑橘幼果發(fā)育期碳水化合物代謝及其與生長(zhǎng)發(fā)育的關(guān)系[J]. 果樹學(xué)報(bào), 2001, 18(1): 20-23.
[23] Millar A H, Whelan J, Soole K L, et al. Organization and regulation of mitochondrial respiration in plants[J]. Annual Review of Plant Biology, 2011, 62(1): 79-104.
[24] Vemmos S N. Pontikis C A, Tolza-marioli A P. Respiration rate and ethylene production in inflorescence buds of pistachio in relation to alternate bearing[J]. Scientia Horticulturae, 1994, 57: 165-172.
[25] Kalaitzis P, Hong S B, Solomos T, et al. Molecular characterization of a tomato endo-β-1,4-glucanase gene expressed in mature pistils, abscission zones and fruit[J]. Plant and Cell Physiology, 1999, 40(8): 905-908.
[26] 佘小平, 黃維玉. GA3處理后離區(qū)組織呼吸途徑的改變與脫落的關(guān)系[J]. 西北植物學(xué)報(bào), 1989, 9(1): 20-25.
[27] Libertini E, Li Y, Mcqueen-mason S J. Phylogenetic analysis of the plant endo-β-1,4-glucanase gene family[J]. Journal of Molecular Evolution, 2004, 58(5): 506-515.
[28] Trainotti L, Pavanello A, Zanin D. PpEG4 is a peach endo-β-1,4-glucanase gene whose expression in climacteric peaches does not follow a climacteric pattern[J]. Journal of Experimental Botany, 2006, 57(3): 589-598.
[29] Flors V, Leyva mde L, Vicedo B, et al. Absence of the endo-β-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato[J]. The Plant Journal, 2008, 52(6): 1027-1040.
[30] 任艷芳, 劉厚宇, 何俊瑜. 臍橙離區(qū)β-甘露聚糖酶基因片段克隆和序列分析[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2011, 27(2): 119- 122.
[31] Belfield E J, Ruperti B, Roberts J A, et al. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra[J]. Journal of Experimental Botany, 2005, 56(413): 817-823.
[32] Yan M, Zhang Y F, Guo W J, et al. Soybean endo-β-mannanase GmMAN1 is not associated with leaf abscission, but might be involved in the response to wounding[J]. PLoS One, 2012, 7(11): e49197.
責(zé)任編輯:白? 凈