岳盈肖,何近剛,趙江麗,閆子茹,程玉豆,武肖琦,王永霞,關(guān)軍鋒
窖藏和冷藏條件下鴨梨揮發(fā)性物質(zhì)及其相關(guān)基因表達(dá)分析
1河北工程大學(xué)生命科學(xué)與食品工程學(xué)院,河北邯鄲056038;2河北省農(nóng)林科學(xué)院生物技術(shù)與食品科學(xué)研究所/河北省植物轉(zhuǎn)基因中心,石家莊050051
【】比較窖藏和冷藏過(guò)程中,鴨梨果實(shí)品質(zhì)、呼吸速率、乙烯釋放速率、電子鼻特征、揮發(fā)性物質(zhì)及其相關(guān)基因表達(dá)的差異,進(jìn)一步解析兩種貯藏方式對(duì)鴨梨香氣物質(zhì)形成的影響及其機(jī)制。鴨梨采收后以窖藏和冷藏兩種方式貯藏,測(cè)定貯藏期間果實(shí)硬度、可溶性固形物含量(SSC)、可滴定酸(TA)含量、呼吸速率和乙烯釋放速率,使用電子鼻檢測(cè)揮發(fā)性物質(zhì)變化,利用氣質(zhì)聯(lián)用色譜(GC-MS)測(cè)定揮發(fā)性物質(zhì)成分及含量,利用熒光定量PCR(Real-time PCR)技術(shù)分析乙烯生成(、)及其信號(hào)轉(zhuǎn)導(dǎo)(、、、、、)、揮發(fā)性物質(zhì)合成(、、、、、、)相關(guān)基因的表達(dá)量變化情況。冷藏期間,鴨梨果實(shí)硬度變化較小,SSC上升,TA含量下降。窖藏時(shí),果實(shí)硬度下降比較明顯,但對(duì)SSC的影響較小,而TA含量增加。與冷藏相比,窖藏下果實(shí)呼吸速率較高,乙烯釋放高峰提前1個(gè)月出現(xiàn),且其峰值較高。電子鼻可有效區(qū)分兩種貯藏方式下的揮發(fā)性物質(zhì),其中W1W、W5S、W2W、W1S這4種傳感器對(duì)揮發(fā)性物質(zhì)區(qū)分起主要作用;窖藏期間果實(shí)揮發(fā)性物質(zhì)較多。鴨梨果皮和果肉的揮發(fā)性物質(zhì)包含醛類、酯類、醇類、萜類、烷烴類等,且果皮中含量較高;窖藏果皮和果肉、冷藏果皮和果肉中分別檢出36種和33種、28種和24種揮發(fā)性物質(zhì),窖藏鴨梨較冷藏時(shí)生成更多的乙酯類化合物,其中己酸乙酯、辛酸乙酯、丁酸乙酯、(E,Z)2,4-癸二烯酸乙酯等為果皮主要香味物質(zhì),己酸乙酯、丁酸乙酯為果肉主要香味物質(zhì)。相關(guān)基因的表達(dá)分析表明,與冷藏相比,窖藏明顯上調(diào)鴨梨果皮和果肉ACC氧化酶()脂氧合酶()和醇?;D(zhuǎn)移酶()相關(guān)基因的表達(dá),下調(diào)乙烯不敏感轉(zhuǎn)錄因子()的表達(dá)。在貯藏3個(gè)月內(nèi),與冷藏鴨梨相比,窖藏條件明顯促進(jìn)乙烯生成()和香氣合成(、)等基因的表達(dá),此時(shí)果實(shí)具有較多的香氣物質(zhì)種類和較高含量,表現(xiàn)出香味濃郁的特點(diǎn)。
鴨梨;品質(zhì);揮發(fā)性物質(zhì);電子鼻;乙烯;基因表達(dá)
【研究意義】揮發(fā)性芳香物質(zhì)是水果風(fēng)味物質(zhì)的重要組成部分,濃郁的果香氣味深受消費(fèi)者喜歡。鴨梨是我國(guó)主栽梨品種之一,但目前對(duì)鴨梨揮發(fā)性物質(zhì)生成的調(diào)控機(jī)理研究較少。深入研究鴨梨果實(shí)的揮發(fā)性物質(zhì),尤其是探討香味物質(zhì)的生成規(guī)律,對(duì)闡明鴨梨風(fēng)味品質(zhì)的形成具有重要意義。【前人研究進(jìn)展】果實(shí)的香氣是由多種揮發(fā)性化合物組成的復(fù)雜混合物,其中包括酯類、醛類、萜類、醇類、羰基化合物及硫化物等。根據(jù)果實(shí)揮發(fā)性物質(zhì)合成前體不同,其合成分為脂肪酸途徑、氨基酸途徑、萜類合成途徑,其中脂肪酸代謝中的脂氧合酶(LOX)途徑、-氧化途徑是芳香化合物合成的主要方式,由此生成的己酯及乙酯類化合物促成了果實(shí)的果香味[1-2]。LOX是脂肪酸代謝途徑中的關(guān)鍵酶,其他如乙醇脫氫酶(ADH)、氫過(guò)氧化物裂解酶(HPL)、醇?;D(zhuǎn)移酶(AAT)等在果實(shí)香氣物質(zhì)形成過(guò)程中也發(fā)揮重要作用,這些酶的相關(guān)基因表達(dá)發(fā)生顯著變化[3-10]。就梨果實(shí)而言,低溫、乙烯、采收期和貯藏條件等均會(huì)影響揮發(fā)性物質(zhì)的生成[8-15],其中低溫會(huì)減少果實(shí)貯藏過(guò)程中香氣物質(zhì)的形成[8-10],在其他水果中也存在類似情況[16-17]?!颈狙芯壳腥朦c(diǎn)】在我國(guó),地下通風(fēng)窖藏是一種傳統(tǒng)的水果貯藏方式,不僅具有節(jié)能環(huán)保的優(yōu)勢(shì),而且貯藏后果實(shí)香味濃郁,但果實(shí)容易衰老,不宜長(zhǎng)期貯藏。相對(duì)來(lái)說(shuō),冷藏仍是當(dāng)前商業(yè)貯藏的主要形式,但冷藏果實(shí)的香氣物質(zhì)明顯減少[8-10]。鴨梨貯藏期間揮發(fā)性物質(zhì)變化很大[18]。但目前為止,尚未見(jiàn)鴨梨在窖藏、冷藏過(guò)程中揮發(fā)性物質(zhì)成分變化的報(bào)道。【擬解決的關(guān)鍵問(wèn)題】本研究通過(guò)分析窖藏和冷藏期間,鴨梨品質(zhì)、揮發(fā)性物質(zhì)成分和電子鼻信號(hào)響應(yīng)情況,檢測(cè)香氣物質(zhì)形成相關(guān)基因的表達(dá),進(jìn)一步闡明這兩種貯藏方式對(duì)鴨梨果實(shí)香氣物質(zhì)形成的影響及其調(diào)控機(jī)制。
供試套袋(外灰內(nèi)黑單層紙袋)鴨梨于2019年9月27日采于趙縣基地果園,果實(shí)采后當(dāng)天解袋,進(jìn)行分揀,除去病蟲(chóng)害和殘次果。選取大小一致的果實(shí)(平均單果重238 g),裝入紙箱內(nèi),每箱40個(gè)果實(shí)。次日存放于當(dāng)?shù)乩鋷?kù)(庫(kù)容量:175 t;(0±0.5)℃,空氣濕度(79.47±4.16)%)和地下通風(fēng)窖(庫(kù)容量:150 t;溫度從入庫(kù)初期的20℃逐漸下降至12月的7℃,空氣濕度(78.70±8.35)%)。在貯藏初期(入庫(kù)當(dāng)天)、1個(gè)月、2個(gè)月、3個(gè)月時(shí),將貯藏的果實(shí)(每次每處理3箱)運(yùn)回實(shí)驗(yàn)室,經(jīng)室溫(25℃±1℃)過(guò)夜后進(jìn)行品質(zhì)和生理指標(biāo)檢測(cè),并對(duì)果皮和果肉分別進(jìn)行取樣,經(jīng)液氮速凍后,于-80℃凍藏備用。
1.2.1 硬度、可溶性固形物及可滴定酸含量測(cè)定 采用GY-4型果實(shí)硬度計(jì)(浙江托普儀器有限公司)測(cè)定果實(shí)赤道部位去皮硬度;榨取果汁,采用PAL-1型手持?jǐn)?shù)字糖度計(jì)(日本愛(ài)拓公司生產(chǎn))測(cè)定果實(shí)可溶性固形物含量(SSC)。采用酸堿滴定法測(cè)定可滴定酸(TA)含量,用蘋果酸含量表示。每次重復(fù)3次,每重復(fù)5個(gè)果實(shí)。
1.2.2 呼吸速率和乙烯釋放速率測(cè)定 將果實(shí)置于密閉容器中,密封30 min抽取氣體10 mL,用HWF-1紅外線分析器(江蘇金壇市科析儀器有限公司)測(cè)定CO2濃度,換算為呼吸速率。果實(shí)密封3 h后,抽取氣體1 mL,用GC9790Ⅱ氣相色譜儀(浙江福立分析儀器有限公司)測(cè)定乙烯濃度,換算為乙烯釋放速率。每次重復(fù)3次,每重復(fù)10個(gè)果實(shí)。
1.2.3 電子鼻檢測(cè) 將果實(shí)置于密閉容器中,密封2 h時(shí),使用PEN3便攜型電子鼻(德國(guó)Airsense公司)進(jìn)行測(cè)定[19](表1)。測(cè)定條件:氣體流量400 mL·min-1,清洗時(shí)間60 s,調(diào)零時(shí)間5 s,準(zhǔn)備時(shí)間5 s,測(cè)定時(shí)間100 s,選取97—99 s 3個(gè)點(diǎn)的響應(yīng)值用于數(shù)據(jù)分析。每次重復(fù)3次,每重復(fù)10個(gè)果實(shí)。
1.2.4 揮發(fā)性物質(zhì)含量測(cè)定 準(zhǔn)確稱取果皮和果肉粉末凍樣,加入適量飽和氯化鈉,磁力攪拌,40℃水浴中預(yù)熱30 min后,經(jīng)固相微萃取柱(PDMS/DVB,65 μm)吸附30 min,采用TQ-8040型氣相色譜-質(zhì)譜聯(lián)用(GC-MS)(日本島津公司)測(cè)定揮發(fā)性物質(zhì)成分[20]。GC條件:SH-Rxi-5Sil MS毛細(xì)管柱(30 m×0.25 mm,0.25 μm);升溫程序:40℃下保持1 min;2℃·min-1升溫至100℃,保持2 min;5℃·min-1升溫至250℃,保持5 min。進(jìn)樣口溫度250℃,載氣:高純氦,柱流量1 mL·min-1。MS條件:電離方式為電子電離源,電子能量70 eV,接口溫度250℃,離子源溫度200℃,溶劑延遲時(shí)間3 min,m/z 35—500下進(jìn)行質(zhì)量掃描,測(cè)定時(shí)加入200 ng 2-辛酮作為內(nèi)標(biāo)物,通過(guò)匹配質(zhì)譜數(shù)據(jù)庫(kù)NIST17及保留指數(shù)對(duì)揮發(fā)性物質(zhì)進(jìn)行定性分析,計(jì)算各成分的含量,并進(jìn)行差異顯著性分析。重復(fù)3次。
表1 PEN3型電子鼻傳感器陣列
1.2.5 RNA提取與定量分析 采用改良CTAB法[21]提取總RNA??俁NA經(jīng)DNase清除DNA后,用反轉(zhuǎn)錄試劑盒Primescript TM RT reagent Kit(寶生物工程(大連)有限公司)進(jìn)行反轉(zhuǎn)錄,按照定量PCR反應(yīng)試劑盒TB GreenTMPremix Ex Taq II(寶生物工程(大連)有限公司)說(shuō)明書進(jìn)行定量分析。定量PCR儀為美國(guó)Applied BiosystemsTMABI 7500型。參照Genbank登記序列,使用Primer Premier 5.0軟件設(shè)計(jì)引物。所有引物(表2)委托上海生物工程有限公司合成。以為內(nèi)參基因[22],通過(guò)2-??CT法計(jì)算待測(cè)基因相對(duì)表達(dá)量。
采用Excel 2007軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)處理,利用SPSS 20.0軟件Duncan多重比較法進(jìn)行差異顯著性分析,<0.05為差異顯著;電子鼻信號(hào)采用系統(tǒng)自帶的Winmuster軟件進(jìn)行主成分分析(PCA)和線性判別分析(LDA)。
窖藏條件下,鴨梨貯藏1個(gè)月時(shí)硬度有所增加,此后緩慢降低,至3個(gè)月時(shí)最小。窖藏時(shí)果實(shí)的SSC先明顯增加,之后下降;冷藏果實(shí)后期具有較高的SSC,窖藏果實(shí)的SSC較低。冷藏時(shí),TA含量逐漸下降,而窖藏保持較高的TA含量(表3)。
表2 定量PCR引物序列
兩種貯藏方式下,鴨梨果實(shí)呼吸速率均表現(xiàn)為逐漸上升趨勢(shì),且同期窖藏果實(shí)顯著高于冷藏果實(shí);果實(shí)乙烯釋放速率均呈現(xiàn)先上升后下降的趨勢(shì),其中果實(shí)窖藏1個(gè)月時(shí)達(dá)到高峰,且峰值明顯高于同期冷藏果實(shí),果實(shí)冷藏2個(gè)月時(shí)達(dá)到峰值;貯藏3個(gè)月時(shí),二者的乙烯釋放速率差異不顯著(圖1)。
PCA結(jié)果表明,電子鼻檢測(cè)數(shù)據(jù)可降維成主成分1(PC1)和主成分2(PC2)。其中PC1貢獻(xiàn)率97.75%,為影響各樣品的主要因素。根據(jù)圖形分布將坐標(biāo)圖分為兩個(gè)區(qū)域,其中貯藏初期、冷藏鴨梨處于PC1值較小的區(qū)域。貯藏初期鴨梨氣味對(duì)應(yīng)的PC1特征值最小,冷藏鴨梨試樣呈相互交叉分布,位于貯藏初期和窖藏1月之間,與貯藏初期位置更相近。窖藏鴨梨在PC1上變化范圍大,相對(duì)應(yīng)PC1值由小到大排列分別是:窖藏1月、窖藏3月、窖藏2月(圖2)。表明冷藏期間鴨梨氣味較初始時(shí)變化較小,揮發(fā)性成分性質(zhì)相近;窖藏鴨梨揮發(fā)性物質(zhì)成分變化大,其含量較高,并以貯藏2月時(shí)最高。
表3 鴨梨窖藏、冷藏期硬度、可溶性固形物和可滴定酸含量變化
不同小寫字母表示差異顯著(<0.05)。下同
Different lowercase letters indicate significant difference (<0.05). The same as below
不同小寫字母表示差異顯著(P<0.05)。下同
進(jìn)一步采用線性判別分析(LDA)表明,不同貯藏時(shí)期鴨梨樣品均能集中獨(dú)立分布且不存在相互交叉現(xiàn)象,并且窖藏2個(gè)月時(shí)的距離最遠(yuǎn),說(shuō)明此時(shí)分離程度最大(圖3),這表明電子鼻可有效區(qū)分窖藏、冷藏鴨梨的揮發(fā)性物質(zhì),反映出貯藏方式顯著影響果實(shí)的揮發(fā)性物質(zhì)含量。
電子鼻傳感器響應(yīng)雷達(dá)圖分析表明,由雷達(dá)圖中心向外擴(kuò)展始于貯藏初期,之后冷藏1個(gè)月、2個(gè)月、3個(gè)月時(shí),交叉疊加分布,然后窖藏1個(gè)月、3個(gè)月、2個(gè)月,逐步外延。就傳感器的變化而言,W1W(代表硫化物、萜烯類)、W5S(代表氮氧化合物)、W2W(代表有機(jī)硫化物、芳香成分)、W1S(代表甲烷)變化程度較大。因此,這4種傳感器對(duì)揮發(fā)性物質(zhì)的區(qū)分起主要作用(圖4)。
GC-MS分析表明,鴨梨中揮發(fā)性物質(zhì)主要為醛類、酯類、醇類、烷烴類、萜類化合物等。將兩種貯藏方式同期果皮、果肉中揮發(fā)性物質(zhì)進(jìn)行比較表明,果肉中揮發(fā)性成分種類及同類別物質(zhì)含量均少于同期果皮。貯藏期鴨梨酯類含量增加,香氣物質(zhì)增多。果皮、果肉酯類物質(zhì)含量依次為:窖藏下果皮(8.696—16.336 mg·kg-1)>窖藏下果肉(1.188—6.149 mg·kg-1)>冷藏下果皮(0.148—0.308 mg·kg-1)>冷藏下果肉(0.015—0.039 mg·kg-1)(表4、表5)。
冷藏-1、冷藏-2、冷藏-3分別為冷藏1個(gè)月、2個(gè)月、3個(gè)月;窖藏-1、窖藏-2、窖藏-3分別為窖藏1個(gè)月、2個(gè)月、3個(gè)月。0為貯藏初期。下同
圖3 基于電子鼻窖藏及冷藏鴨梨揮發(fā)性成分LDA分析
就鴨梨果皮而言,貯藏期內(nèi),鴨梨果皮中揮發(fā)性物質(zhì)總量呈現(xiàn)先升高后降低的規(guī)律,且窖藏果皮明顯高于同期冷藏果皮,其中差別比較明顯的香氣物質(zhì)為酯類、醇類化合物,其含量高峰出現(xiàn)在貯藏2個(gè)月,分別高于冷藏果實(shí)53.11、56.22倍。具體成分表現(xiàn)為,窖藏鴨梨果皮中檢出36種成分,含量較高的物質(zhì)為酯類、醛類、醇類、萜類,其中酯類為主要香氣物質(zhì)。酯類主要是乙酯和甲酯類,其中己酸乙酯、辛酸乙酯、丁酸乙酯、乙酸己酯、乙酸辛酯為主要成分,并且2-己烯酸乙酯、庚酸乙酯和(E, Z)-2,4-癸二烯酸乙酯等為窖藏過(guò)程中特有的酯類物質(zhì);醛類主要為E-2-己烯醛,以及新生成的(E, Z)-2,4-癸二烯醛;醇類主要為Z-4-癸烯醇、正辛醇和正癸醇;萜類主要是-法尼烯和6-甲基-5-庚烯-2-酮(MHO)。冷藏鴨梨果皮中檢出28種揮發(fā)性物質(zhì)成分,含量較高的物質(zhì)為醛類、烷烴、萜類等,其中醛類主要為己醛、反-2-己烯醛;酯類物質(zhì)(主要是丁酯類)相對(duì)較少,而此時(shí)出現(xiàn)較多的烷烴類物質(zhì),且主要是癸烷,而窖藏卻未檢出烷烴類物質(zhì)(表4)。
表4 窖藏、冷藏鴨梨果皮中揮發(fā)性成分變化
續(xù)表4 Continued table 4
圖4 窖藏及冷藏鴨梨電子鼻傳感器響應(yīng)雷達(dá)圖
就鴨梨果肉來(lái)說(shuō),窖藏時(shí)果肉中的揮發(fā)性物質(zhì)總量明顯高于冷藏果肉,尤其是萜類、酯類、醇類物質(zhì)的差別更為顯著,其總量高峰均出現(xiàn)在貯藏2個(gè)月時(shí),分別是冷藏果肉的16.10、78.43、158.60倍。窖藏鴨梨果肉中檢出33種揮發(fā)性物質(zhì)成分,主要為酯類和萜類,未檢出烷烴類物質(zhì),酯類主要為己酸乙酯、丁酸乙酯,萜類以-法尼烯為主。冷藏鴨梨果肉中檢出24種揮發(fā)性物質(zhì)成分,主要為烷烴類和醛類。烷烴類以癸烷為主,醛類以己醛為主(表5)。
進(jìn)一步相關(guān)分析表明,鴨梨果皮、果肉中醇類物質(zhì)與酯類物質(zhì)總量之間呈極顯著正相關(guān)(=0.9902、0.9599),說(shuō)明酯類物質(zhì)的生成與醇類物質(zhì)向酯類的轉(zhuǎn)化有密切關(guān)系。
貯藏時(shí),鴨梨果皮和果肉、、表達(dá)量明顯上調(diào),其中果肉的上調(diào)幅度顯著大于果皮,并以窖藏果肉表現(xiàn)更為明顯。在貯藏后期,窖藏果皮、、表達(dá)量低于冷藏果皮。此外,、表達(dá)量上調(diào)后下降,相對(duì)來(lái)說(shuō),冷藏果肉具有較高的表達(dá)量;表達(dá)量相對(duì)較小,窖藏果皮與果肉的表達(dá)量低于冷藏果實(shí)。在果皮中的表達(dá)量高于果肉,果皮和果肉的變化趨勢(shì)不同,并且窖藏的果肉表達(dá)量明顯低于冷藏果肉(圖5)。
圖5 窖藏和冷藏下鴨梨乙烯生成及其信號(hào)轉(zhuǎn)導(dǎo)、香氣物質(zhì)合成相關(guān)基因表達(dá)熱圖
表5 窖藏、冷藏鴨梨果肉中揮發(fā)性成分變化
續(xù)表5 Continued table 5
貯藏初期,果皮中表達(dá)量高于果肉。隨著貯藏時(shí)間延長(zhǎng),果皮中表達(dá)量呈下降趨勢(shì)。同時(shí),窖藏果肉的表達(dá)迅速提高,明顯高于冷藏果肉。、表達(dá)量呈下降趨勢(shì)。與冷藏相比,窖藏果實(shí)的表達(dá)量下調(diào)更為迅速。表達(dá)量在貯藏期呈升高趨勢(shì),并且以冷藏果肉的基因表達(dá)上調(diào)較為明顯。
貯藏過(guò)程中,表達(dá)量以窖藏果肉上調(diào)表現(xiàn)明顯。表達(dá)量與之不同,貯藏初期,窖藏果肉的表達(dá)量高于冷藏果肉;而貯藏后期,窖藏果皮的表達(dá)量高于冷藏的果皮。相對(duì)來(lái)說(shuō),鴨梨表達(dá)量變化較小。與冷藏相比,窖藏果皮的差別較小,但果肉的表達(dá)量低于果皮(圖5)。
根據(jù)果實(shí)揮發(fā)性香氣物質(zhì)測(cè)定結(jié)果,、表達(dá)量與香氣變化模式呈相似變化規(guī)律。因此,其表達(dá)可能是影響香氣物質(zhì)合成的主要原因。相關(guān)性分析表明(表6),與表達(dá)量呈顯著正相關(guān)的基因有和,與表達(dá)量呈顯著負(fù)相關(guān)的基因有、、和;與表達(dá)量呈顯著正相關(guān)的基因有、、和;與的表達(dá)量呈顯著負(fù)相關(guān)的基因有、和。因此,上述這些基因的表達(dá)在不同程度上影響香氣的合成。
本研究表明,與冷藏相比,窖藏鴨梨果實(shí)的SSC變化較小,TA含量有所增加,但貯藏3個(gè)月時(shí)硬度明顯下降,反映出窖藏鴨梨后熟衰老進(jìn)程快于冷藏。因此,窖藏時(shí)間不宜太長(zhǎng)。
研究表明,低溫抑制梨果實(shí)香氣物質(zhì)的生成與積累[4,8-10,13,17]。本研究證明,窖藏溫度始終高于冷藏。電子鼻分析結(jié)果表明,窖藏2個(gè)月時(shí)果實(shí)揮發(fā)性物質(zhì)較多,其信號(hào)明顯區(qū)別于其他時(shí)間,與GC-MS測(cè)得的揮發(fā)性物質(zhì)總量變化相一致。窖藏鴨梨果實(shí)的揮發(fā)性物質(zhì)種類和含量較多,其含量高峰出現(xiàn)在貯藏2個(gè)月時(shí),尤其是代表性香氣物質(zhì)—酯類化合物的表現(xiàn)更為明顯(表4、表5),其中主要酯類物質(zhì)有己酸乙酯、辛酸乙酯、丁酸乙酯、(E,Z)2,4-癸二烯酸乙酯,這些是鴨梨果實(shí)的特征性香氣成分,與前人的報(bào)道相近[18]。相對(duì)來(lái)說(shuō),冷藏鴨梨酯類香氣物質(zhì)較少,這是窖藏果實(shí)果香味濃郁的物質(zhì)基礎(chǔ)。
果實(shí)香氣物質(zhì)的形成與乙烯生成及作用有密切關(guān)系[2-3,5-6,16]。如‘蘋香’梨酯類物質(zhì)合成途徑中的、、及與乙烯合成途徑中的、、表達(dá)密切相關(guān)[3]。冷藏抑制‘南果’梨乙烯生物合成和信號(hào)轉(zhuǎn)導(dǎo)能力,降低LOX、HPL、AAT活性及其基因表達(dá),減少香氣物質(zhì)生成[10]。本研究發(fā)現(xiàn),窖藏鴨梨乙烯釋放高峰早于冷藏果實(shí),且峰值高于冷藏果實(shí)(圖1),此時(shí)期果實(shí)乙烯的大量生成,與表達(dá)量上調(diào)(圖5)有關(guān);同時(shí),窖藏還刺激乙烯受體表達(dá)上調(diào),但下調(diào)、的表達(dá)。這說(shuō)明,窖藏和冷藏影響果實(shí)乙烯生成與信號(hào)轉(zhuǎn)導(dǎo)過(guò)程。果實(shí)揮發(fā)性物質(zhì)生成與、、等基因的表達(dá)有關(guān)[2]。本研究結(jié)果表明,乙酯是鴨梨窖藏過(guò)程中生成較多的酯類,并且鴨梨揮發(fā)性物質(zhì)變化模式與、的基因表達(dá)規(guī)律類似(圖5)?;邙喞娴孽ヮ惪偭颗c醇類物質(zhì)總量呈顯著正相關(guān)關(guān)系,由此推測(cè),鴨梨果實(shí)的香氣生成與脂肪酸代謝途徑密切相關(guān),經(jīng)過(guò)脂肪酸?;?CoA的作用,轉(zhuǎn)化為短鏈?;?CoAs,繼而與醇在AAT催化作用下生成乙酯類等短鏈酯類[1,23]。因此,、可能是影響鴨梨果實(shí)香氣形成的關(guān)鍵基因。進(jìn)一步通過(guò)相關(guān)分析表明,表達(dá)量與的表達(dá)量呈極顯著正相關(guān),而、表達(dá)量與呈顯著負(fù)相關(guān),說(shuō)明香氣物質(zhì)的產(chǎn)生與乙烯生成和信號(hào)轉(zhuǎn)導(dǎo)具有密切關(guān)系。同時(shí),、、、、表達(dá)量之間呈顯著或極顯著關(guān)系,這說(shuō)明乙烯和揮發(fā)性物質(zhì)生成相關(guān)基因的表達(dá)之間具有相關(guān)性,并一起關(guān)系到果實(shí)揮發(fā)性物質(zhì)的生成。這些結(jié)果進(jìn)一步證明,溫度和乙烯在調(diào)控果實(shí)香氣生成中發(fā)揮重要作用,乙烯具有正調(diào)控功能[24-27]。
此外,窖藏鴨梨果皮比冷藏時(shí)含有較高的-法尼烯和6-甲基-5-庚烯-2-酮(MHO)含量(表4)。盡管這兩種物質(zhì)參與了蘋果和梨果皮的虎皮病發(fā)生[28-30],而本研究尚未發(fā)現(xiàn)虎皮病現(xiàn)象,但至少說(shuō)明,窖藏條件刺激了-法尼烯和MHO的生成與積累。這種現(xiàn)象可能與窖藏時(shí)果皮衰老較快有關(guān)。
表6 窖藏和冷藏下鴨梨乙烯生成及其信號(hào)轉(zhuǎn)導(dǎo)、香氣物質(zhì)合成相關(guān)基因表達(dá)量之間相關(guān)性分析
0.05=0.514,0.01= 0.641
冷藏能更好地維持鴨梨果實(shí)硬度,保持較高的SSC,適合長(zhǎng)期貯藏,以保持果實(shí)口感,但揮發(fā)性物質(zhì)較少。相對(duì)冷藏而言,窖藏過(guò)程中,鴨梨容易軟化,但生成更多酯類、醇類等香氣物質(zhì),擁有較多的香氣成分,香味濃郁。相關(guān)基因表達(dá)分析表明,鴨梨果實(shí)香氣物質(zhì)的生成與、、的表達(dá)呈正相關(guān)關(guān)系,而與呈負(fù)相關(guān)關(guān)系。
[1] EL HADI M A M, ZHANG F J, WU F F, ZHOU C H, TAO J. Advances in fruit aroma volatile research. Molecules, 2013, 18(7): 8200-8229.
[2] HEINZ D E, JENNINGS W G. Volatile components of Bartlett pear. Journal of Food Science, 2010, 31(1): 69-80.
[3] LI G P, JIA H J, LI J H, WANG Q, ZHANG M J, TENG Y W. Emission of volatile esters and transcription of ethylene- and aroma-related genes during ripening of ‘Pingxiangli’ pear fruit (Maxim). Scientia Horticulturae, 2014, 170: 17-23.
[4] ZHOU X, DONG L, LI R, ZHOU Q, WANG J W, JI S J. Low temperature conditioning prevents loss of aroma-related esters from ‘Nanguo’ pears during ripening at room temperature. Postharvest Biology and Technology, 2015, 100: 23-32.
[5] ZHOU X, DONG L, ZHOU Q, WANG J W, CHANG N, LIU Z Y, JI S J. Effects of intermittent warming on aroma-related esters of 1-methylcyclopropene-treated ‘Nanguo’ pears during ripening at room temperature. Scientia Horticulturae, 2015, 185: 82-89.
[6] LI G P, JIA H J, LI J H, LI H X, TENG Y W. Effects of 1-MCP on volatile production and transcription of ester biosynthesis related genes under cold storage in ‘Ruanerli’ pear fruit (Maxim.). Postharvest Biology and Technology, 2016, 111: 168-174.
[7] WEI S W, TAO S T, QIN G H, WANG S M, TAO J H, WU J, ZHANG S L. Transcriptome profiling reveals the candidate genes associated with aroma metabolites and emission of pear (cv. ‘Nanguoli’). Scientia Horticulturae, 2016, 206: 33-42.
[8] SHI F, ZHOU X, ZHOU Q, TAN Z, YAO M M, WEI B D, JI S J. Membrane lipid metabolism changes and aroma ester loss in low-temperature stored Nanguo pears. Food Chemistry, 2018, 245: 446-453.
[9] SHI F, ZHOU X, ZHOU Q, TAN Z, YAO M M, WEI B D, JI S J. Transcriptome analyses provide new possible mechanisms of aroma ester weakening of ‘Nanguo’ pear after cold storage. Scientia Horticulturae, 2018, 237: 247-256.
[10] SHI F, ZHOU X, YAO M M, ZHOU Q, JI S J, WANG Y. Low-temperature stress-induced aroma loss by regulating fatty acid metabolism pathway in ‘Nanguo’ pear. Food Chemistry, 2019, 297: 124927.
[11] CHERVIN C, SPEIRS J, LOVEYS B, PATTERSON B D. Influence of low oxygen storage on aroma compounds of whole pears and crushed pear flesh. Postharvest Biology and Technology, 2000, 19(3): 279-285.
[12] LARA I, MIRó R M, FUENTES T, SAYEZ G, LóPEZ M L. Biosynthesis of volatile aroma compounds in pear fruit stored under long-term controlled-atmosphere conditions. Postharvest Biology and Technology, 2003, 29(1): 29-39.
[13] YAO M M, ZHOU X, ZHOU Q, SHI F, WEI B D, CHENG S C, TAN Z, JI S J. Low temperature conditioning alleviates loss of aroma- related esters of ‘Nanguo’ pears by regulation of ethylene signal transduction. Food Chemistry, 2018, 264: 263-269.
[14] ZLATI E, ZADNIK V, FELLMAN J, DEM?AR L, HRIBAR J, CEJI ?, VIDRIH R. Comparative analysis of aroma compounds in ‘Bartlett’ pear in relation to harvest date, storage conditions, and shelf-life. Postharvest Biology and Technology, 2016, 117: 71-80.
[15] SUN H J, LUO M L, ZHOU X, ZHOU Q, SUN Y Y, GE W Y, WEI B D, CHENG S C, JI S J. Exogenous glycine betaine treatment alleviates low temperature-induced pericarp browning of ‘Nanguo’ pears by regulating antioxidant enzymes and proline metabolism. Food Chemistry, 2020, 306: 125626.
[16] ZHANG B, YIN X R, LI X, YANG S L, FERGUSON I B, CHEN K S. Lipoxygenase gene expression in ripening kiwifruit in relation to ethylene and aroma production. Journal of Agricultural and Food Chemistry, 2009, 57(7): 2875-2881.
[17] ZHANG B, XI W P, WEI W W, SHEN J Y, FERGUSON I, CHEN, K S. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf life of peach fruit. Postharvest Biology and Technology, 2011, 60(1): 7-16.
[18] CHEN J L , YAN S, FENG Z, XIAO L, HU X S. Changes in the volatile compounds and chemical and physical properties of ‘Yali’ pear (Reld) during storage. Food Chemistry, 2006, 97: 248-255.
[19] INFANTE R, FARCUH M, MENESES C. Monitoring the sensorial quality and aroma through an electronic nose in peaches during cold storage. Journal of the Science of Food and Agriculture, 2010, 88(12): 2073-2078.
[20] CHEN Y Y, YIN H, WU X, SHI X J, QI K J, ZHANG S L. Comparative analysis of the volatile organic compounds in mature fruits of 12 Occidental pear (L.) cultivars. Scientia Horticulturae, 2018, 240: 239-248.
[21] GASIC K, HERNANDEZ A, KORBAN S S. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Molecular Biology Reporter, 2004, 22(4): 437-438.
[22] CHENG Y D, LIU L Q, ZHAO G Q, SHEN C G, YAN H B, GUAN J F, YANG K. The effects of modified atmosphere packaging on core browning and the expression patterns ofandgenes in ‘Yali’ pears during cold storage. LWT-Food Science and Technology, 2015, 60(2): 1243-1248.
[23] DEFILIPPI B G, KADER A A, DANDEKAR A M. Apple aroma: Alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Science, 2005, 168: 1199-1210.
[24] YANG X T, SONG J, DU L N, FORNEY C, CAMPBELL-PALMER L, FILLMORE S, WISMER P, ZHANG Z Q. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food Chemistry, 2016, 194: 325-336.
[25] DEFILIPPI B G, DANDEKAR A M, KADER A A. Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. Journal of Agricultural and Food Chemistry, 2005, 53(8): 3133-3141.
[26] GüNTHER C S, MARSH K B, WINZ R A, HARKER R F, WOHLERS M W, WHITE A, GODDARD M R. The impact of cold storage and ethylene on volatile ester production and aroma perception in ‘Hort16A’ kiwifruit. Food Chemistry, 2015, 169: 5-12.
[27] AUBERT C, BONY P, CHALOT G, LANDRY P, LUROL S. Effects of storage temperature, storage duration, and subsequent ripening on the physicochemical characteristics, volatile compounds, and phytochemicals of Western Red nectarine (L. Batsch). Journal of Agricultural and Food Chemistry, 2014, 62: 4707-4724.
[28] HUI W, NIU J P, XU X Y, GUAN J F. Evidence supporting the involvement of MHO in the formation of superficial scald in ‘Dangshansuli’ pears. Postharvest Biology and Technology, 2016, 121: 43-50.
[29] 惠偉, 牛瑞雪, 宋要強(qiáng), 李德英. 1-MCP和DPA對(duì)碭山酥梨黑皮病的抑制效果. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(6): 1212-1219.
HUI W, NIU R X, SONG Y Q, LI D Y. Inhibitory effects of 1-MCP and DPA on superficial scald of ‘Dangshansuli’ pear. Scientia Agricultura Sinica, 2010, 43(6): 1212-1219. (in Chinese)
[30] FARNETI B, BUSATTO N, KHOMENKO I, CAPPELLIN L, GUTIERREZ S, SPINELLI F, VELASCO R, BIASIOLI F, COSTA G, COSTA F. Untargeted metabolomics investigation of volatile compounds involved in the development of apple superficial scald by PTR-ToF-MS. Metabolomics, 2015, 11(2): 341-349.
Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition
YUE YingXiao1, 2, HE JinGang2, ZHAO JiangLi2, YAN ZiRu2, CHENG YuDou2, WU XiaoQi2, WANG YongXia1, GUAN JunFeng
1College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, Hebei;2Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Plant Genetic Engineering Center, Shijiazhuang 050051
【】The aim of this study was to compare the differences of fruit quality, respiration rate, ethylene production rate, electronic nose characteristics, volatile compounds and related gene expression in Yali pear between cold and cellar storage, and to further analyze the effects of two storage methods on the formation of aroma substances and its mechanism. 【】Postharvest Yali pear was stored in cold and cellar condition, and the fruit firmness, soluble solids content (SSC), titratable acid (TA) content, respiration rate and ethylene production rate were measured. The changes of volatile compounds during storage were measured by electronic nose, and the components and contents of volatile substances were determined by GC-MS. The expression of genes related to ethylene biosynthesis (and), signal transduction (,,,,and) and volatile compound synthesis (,,,,,and) was analyzed by real-time PCR. 【】During cold storage of Yali pear fruit, the firmness had no obvious variation, and the SSC increased, while the TA content decreased. During cellar storage, there was a remarkable decrement in firmness and increment in TA content, but there was no obvious variation in SSC. Compared with cold storage, the respiration rate was higher and the peak of ethylene production rate appeared one month earlier under cellar storage. The results showed that the electronic nose could effectively distinguish the volatile compounds of Yali pear in different storage methods. Four sensors, including W1W, W5S, W2W and W1S, played the critical role in the identification of volatile compounds, and there were more volatile substances in cellar storage. The volatile compounds, such as aldehydes, esters, alcohols, terpenes, alkanes, etc, were found in the peel and flesh of Yali pear, and which contents were higher in peel than that in flesh. 36, 33 and 28, 24 kinds of volatile compounds were detected in peel and flesh of fruit under celler, cold storage, respectively. There were more ester compounds in cellar storage than those in cold one, among which, ethyl caproate, ethyl octanoate, ethyl butyrate, (E, Z) 2,4-decadiene ester were the main aroma substances in the peel, ethyl caproate and ethyl butyrate were the main aroma substances in flesh. The analysis on expression of genes related to ethylene and aroma compound synthesis showed that the expression of ACC oxidase (), lipoxygenase () and alcohol acyltransferase () genes were significantly increased, and the expression of ethylene insensitive transcriptional regulator gene () was down regulated in cellar storage in contrast to cold storage. 【】Compared with cold storage, cellar storage condition promoted ethylene production and the expression of genes related to ethylene biosynthesis () and aroma compound synthesis (and), thus, made more kinds and contents of aroma substances, and exhibited more rich aroma in Yali pear.
Yali pear; quality; volatile compound; electronic nose; ethylene; gene expression
10.3864/j.issn.0578-1752.2021.21.013
2021-01-11;
2021-04-30
財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS-28-23)、河北省農(nóng)林科學(xué)院創(chuàng)新工程(2019-2-1)
岳盈肖,E-mail:yyingxiao@163.com。何近剛,E-mail:hejingang2000@163.com。岳盈肖和何近剛為同等貢獻(xiàn)作者。通信作者王永霞,E-mail:wyxhd2004@126.com。通信作者關(guān)軍鋒,E-mail:junfeng-guan@263.net
(責(zé)任編輯 趙伶俐)