文/河南省鶴壁市致遠(yuǎn)中小學(xué) 李雙陽
勾股定理占據(jù)了幾何學(xué)的半壁江山。當(dāng)我剛接觸勾股定理時(shí),就被那簡單的公式迷住了。
那天,數(shù)學(xué)老師讓我們根據(jù)導(dǎo)學(xué)案來探究勾股定理的證明方法。導(dǎo)學(xué)案上有兩個(gè)圖形,分別是“趙爽弦圖”和“畢達(dá)哥拉斯證明圖”。通過觀察,我隱約感覺它們之間有著某種聯(lián)系。因?yàn)閿?shù)學(xué)老師一直教導(dǎo)我們,對于數(shù)學(xué)一定要有鉆研精神,所以我試著把兩個(gè)圖形比較了一下,發(fā)現(xiàn)當(dāng)直角三角形全等的時(shí)候,“趙爽弦圖”正好可以和“畢達(dá)哥拉斯證明圖”中間的正方形重合,于是我就把兩個(gè)圖拼到了一起,得到了一個(gè)新的圖形(如圖1)??粗@個(gè)熟悉又陌生的圖形,我不禁想,這個(gè)圖是不是也能證明勾股定理呢?
圖1
“趙爽弦圖”和“畢達(dá)哥拉斯證明法”都是根據(jù)面積關(guān)系列出等式而證明的,所以我猜想,這個(gè)新圖形應(yīng)該也可以根據(jù)面積來證明。我發(fā)現(xiàn),把每個(gè)圖形的面積都表示出來比較麻煩,但是結(jié)合“趙爽弦圖”和“畢達(dá)哥拉斯證明法”中的面積表示,就會(huì)簡單很多。
下面是我的證明過程。
如圖1,正方形ABCD由八個(gè)全等的直角三角形和一個(gè)正方形MNPQ構(gòu)成,其中,AE=a,BE=b,EH=c。根據(jù)“畢達(dá)哥拉斯證法”可知,SABCD=(a+b)2,而由“趙爽弦圖”可知,SMNPQ=(b-a)2,SEFGH=c2。在圖1中,可得SABCD+SMNPQ=2SEFGH,即(a+b)2+(b-a)2=2c2,整理得a2+b2=c2,則證得勾股定理。
通過本次對勾股定理的探索和證明,我受益匪淺,也更加喜歡數(shù)學(xué)了。數(shù)學(xué),真的是一門神奇的學(xué)科。一個(gè)勾股定理就有這么大魅力,數(shù)學(xué)中還會(huì)有多少美妙的東西等著我們?nèi)ヌ剿靼l(fā)現(xiàn)呢?
教師點(diǎn)評
小作者善于觀察和思考,能在已有知識的基礎(chǔ)上,勇于創(chuàng)新,發(fā)現(xiàn)不同于我們常用的證明方法,充分體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中的創(chuàng)造力,很了不起!