亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        求解帶擾動的線性方程組的貪婪隨機Kaczmarz方法

        2021-11-08 02:54:42巫文婷
        同濟大學學報(自然科學版) 2021年10期
        關(guān)鍵詞:方法

        巫文婷

        (北京理工大學數(shù)學與統(tǒng)計學院,北京 100081)

        對于系數(shù)矩陣為A∈Cm×n且右端向量為b∈Cm的大規(guī)模相容線性代數(shù)方程組

        的求解,Kaczmarz方法[1]是經(jīng)典的行處理迭代方法,在信號與圖像處理領(lǐng)域有著廣泛的應(yīng)用。其每步迭代只需按照給定的循環(huán)順序選取系數(shù)矩陣的某一行,并將當前迭代向量正交投影至由該行所形成的超平面上。Strohmer等[2]提出按照與系數(shù)矩陣每一行的歐氏范數(shù)平方成比例的概率準則隨機選取系數(shù)矩陣的行,得到了收斂更為快速的隨機Kaczmarz方法。若用(·)*表示相應(yīng)矩陣或向量的共軛轉(zhuǎn)置,則當初始迭代向量在A*的列空間中時,隨機Kaczmarz方法期望線性收斂[2-5]到線性代數(shù)方程組(1)的最小歐氏范數(shù)解x?=A?b,其中A?表示系數(shù)矩陣A的Moore-Penrose偽逆。當線性代數(shù)方程組(1)的右端向量發(fā)生擾動時,Needell[6]給出了隨機Kaczmarz方法的期望解誤差的上界,并說明了隨著迭代步數(shù)的增長,隨機Kaczmarz方法的期望解誤差會以線性速率下降至一個誤差閾值。之后,Zouzias等[7]對Needell所提出的期望解誤差的上界進行了改進。

        影響隨機Kaczmarz方法收斂速率的關(guān)鍵在于其中所蘊含的用于選取每步迭代所需調(diào)用的系數(shù)矩陣行的概率準則。為了提高隨機Kaczmarz方法的收斂速率,Bai等[8-9]提出了一個可以獲取每步迭代中殘向量的模較大分量的概率準則,并基于該概率準則構(gòu)造出了貪婪隨機Kaczmarz方法。當初始迭代向量在A*的列空間時,貪婪隨機Kaczmarz方法所產(chǎn)生的迭代序列收斂到線性代數(shù)方程組(1)的最小范數(shù)解x?=A?b且具有期望線性收斂速率

        當線性代數(shù)方程組(1)的右端向量b被加上一個不為零的擾動向量r∈Cm時,實際求解的線性代數(shù)方程組問題將變?yōu)?/p>

        其中,y=b+r。若對任意矩陣G∈Cm×n和任意向量u∈Cm,用G(i)和u(i)分別表示矩陣G的第i行和向量u的第i個分量,由于貪婪隨機Kaczmarz方法的第k步迭代將當前迭代向量x k投影至超平面=上,而線性代數(shù)方程組(1)的最小范數(shù)解x?=A?b滿足Ax?=y-r,故其并不能收斂到x?。在這種情況下,本文對貪婪隨機Kaczmarz方法的期望解誤差進行分析,得到了其上界,證明了隨著迭代步數(shù)的增長,由貪婪隨機Kaczmarz方法所產(chǎn)生的迭代解與原線性代數(shù)方程組(1)的最小范數(shù)解x?之間的誤差以線性速率下降至一個給定閾值。數(shù)值實驗表明本文所給出的閾值能夠很好地估計貪婪隨機Kaczmarz方法的迭代解誤差所能達到的最小值。

        1 貪婪隨機Kaczmarz方法

        不失一般性,在本文的討論中,總是假設(shè)系數(shù)矩陣A不存在零行,即A(i)≠0,i=1,2,…,m。當線性代數(shù)方程組(1)的右端向量發(fā)生擾動時,求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法[8]如下:

        輸入:A,y,?與x0

        輸出:x?

        1:fork=0,1,…,?-1 do

        2:計算

        3: 確定正整數(shù)指標集

        4: 計算向量r?k∈Cm的第i個分量

        7:endfor

        令R(A)和R(A)⊥分別為系數(shù)矩陣A的像空間和其像空間的正交補子空間,則有r=r R(A)+r R(A)⊥,其中r R(A)和r R(A)⊥分別表示向量r在R(A)和R(A)⊥上的正交投影。若線性代數(shù)方程組(1)右端向量的擾動r在系數(shù)矩陣A的像空間R(A)中,則線性代數(shù)方程組(2)等價于線性代數(shù)方程組

        易知線性代數(shù)方程組(3)是相容的且其最小范數(shù)解為=A?(b+r R(A))。此時,若初始迭代向量在A*的列空間中,則求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法所產(chǎn)生的迭代序列期望線性收斂到x??。

        2 誤差分析

        與求解原線性代數(shù)方程組(1)的貪婪隨機Kaczmarz方法的分析[8]類似,根據(jù)求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法中εk的定義可知,對于k=1,2,…,由于

        而對于k=0,有

        因此,可得引理1。

        引理1求解系數(shù)矩陣為A∈Cm×n且右端向量為y∈Cm的線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法的概率準則中的量εk,k=0,1,2,…,滿足

        當線性代數(shù)方程組(1)右端向量的擾動r在R(A)中時,若初始迭代向量在A*的列空間中,則求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法所產(chǎn)生的迭代向量期望線性收斂到線性代數(shù)方程組(3)的最小范數(shù)解x??。對于一般的擾動情形,求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法所產(chǎn)生的迭代向量與x??之間的期望誤差的上界可以由引理2給出。

        引理2如果初始迭代向量x0∈Cn在A*的列空間中,則貪婪隨機Kaczmarz方法求解擾動后的線性代數(shù)方程組(2)所產(chǎn)生的迭代序列與線性代數(shù)方程組(3)的最小范數(shù)解之間的期望誤差滿足

        其中

        證明:由求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法的定義和Ax??=b+r R(A)可知

        其中I表示具有合適階數(shù)的單位矩陣,則有

        用Ek表示固定前k步迭代的條件期望,即Ek[·]=E[·|i0,i1,…,ik-1],其中il(l=0,1,…,k-1)為第l步迭代所選取的行指標,則對等式(5)兩邊取條件期望可得

        由于

        可知

        則根據(jù)正整數(shù)指標集Uk的定義可得

        對于在矩陣A*的像空間R(A*)中的任意向量u,有不等式

        成立。利用該不等式,通過引理1、向量b+r R(A)-Ax k=A(-x k)∈R(A)和向量r R(A)⊥的正交性、x k-∈R(A*)以 及可 知,對 于k=1,2,…,有

        而對于k=0,有

        對不等式兩邊取期望可得對于k=1,2,…,有

        而對于k=0,有

        因此,由于0<α<1,β≥0,對于k=1,2,…,有

        由Jensen不等式可知

        基于引理2,關(guān)于求解擾動后的線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法所產(chǎn)生的迭代近似解與原線性代數(shù)方程組(1)的最小范數(shù)解x?之間的期望誤差的上界,可以給出如下定理。

        定理1如果初始迭代向量x0∈Cn在A*的列空間中且為線性代數(shù)方程組(3)的最小范數(shù)解,則貪婪隨機Kaczmarz方法求解擾動后的線性代數(shù)方程組(2)所產(chǎn)生的迭代序列與原線性代數(shù)方程組(1)的最小范數(shù)解x?=A?b之間的期望誤差滿足

        其中,α、α0和β如(4)式中定義。

        證明:因為-x?∈R(A*),則通過不等式(6)可知

        又因為有

        成立,則由引理2可得

        定理1說明了當?shù)綌?shù)k趨于無窮時,貪婪隨機Kaczmarz方法求解擾動后的線性代數(shù)方程組(2)所產(chǎn)生的迭代序列的期望相對解誤差以的線性速率下降至某個閾值,并給出了該閾值的估計

        若r R(A)⊥為零,則擾動后的線性代數(shù)方程組(2)即為相容的線性代數(shù)方程組(3)。因此,求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法的迭代序列收斂到線性代數(shù)方程組(3)的最小范數(shù)解,且其與原線性代數(shù)方程組(1)的最小范數(shù)解x?的差趨于-x?。此時,如果初始迭代向量在A*的列空間中,則求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法所產(chǎn)生的迭代序列滿足

        若r R(A)為零,則線性代數(shù)方程組(3)即為線性代數(shù)方程組(1),且線性代數(shù)方程組(3)的最小范數(shù)解即為x?=A?b。此時,如果初始迭代向量在A*的列空間中,則求解線性代數(shù)方程組(2)的貪婪隨機Kaczmarz方法所產(chǎn)生的迭代序列滿足

        3 數(shù)值實驗

        通過數(shù)值實驗測試貪婪隨機Kaczmarz方法求解帶右端項擾動的線性代數(shù)方程組(2)時的數(shù)值表現(xiàn),并將所估計的閾值與貪婪隨機Kaczmarz方法所產(chǎn)生的真實迭代解誤差進行比較。

        所測試的系數(shù)矩陣A分為兩類:一類為利用MATLAB函數(shù)randn隨機產(chǎn)生的元素服從標準正態(tài)分布的矩陣,矩陣維數(shù)分別為200×100 000和100000×200;另一類為取自稀疏矩陣庫[10]的稀疏矩陣bibd_16_8和ash958,矩陣維數(shù)分別為120×12870和958×292。

        線性代數(shù)方程組(1)的右端向量b取為Ax*,其中x*∈Rn是利用MATLAB函數(shù)randn隨機產(chǎn)生的。線性代數(shù)方程組(1)的右端項的擾動向量r分為三類:一類為隨機擾動,一類為在系數(shù)矩陣的像空間中的擾動,另一類為在系數(shù)矩陣的像空間的正交補空間中的擾動。這三類擾動均由MATLAB函數(shù)randn生成,并且其歐氏范數(shù)為原始右端向量b的歐氏范數(shù)的0.0005倍。由于200×100000的隨機矩陣和稀疏矩陣bibd_16_8為行滿秩矩陣,故其所對應(yīng)的右端項擾動r一定在其像空間中。所有計算均從初始向量x0=0開始。

        圖1描繪了當線性代數(shù)方程組(1)的系數(shù)矩陣為隨機產(chǎn)生的矩陣且右端項擾動r為隨機擾動時,貪婪隨機Kaczmarz方法重復運行50次所產(chǎn)生的相對解誤差ERS的中值和閾值τ分別取以10為底的對數(shù)之后相對于迭代步數(shù)的曲線,其中

        從圖1可以看出,貪婪隨機Kaczmarz方法所產(chǎn)生的相對解誤差下降至10-3左右之后不再減小,且閾值τ能夠很好地給出該最小值的估計。特別地,當系數(shù)矩陣為200×100 000的隨機矩陣時,τ與真實相對解誤差所能達到的最小值非常接近。

        圖1 當m=200,n=100 000和m=100 000,n=200時,lg E RS和lgτ相對于迭代步數(shù)的曲線Fig.1 Pictures of lg E RS and lgτversus the iteration step when m=200,n=100000 and m=100000,n=200

        圖2描繪了對于100 000×200的隨機產(chǎn)生的系數(shù)矩陣,當線性代數(shù)方程組(1)的右端項擾動r分別在系數(shù)矩陣的像空間和系數(shù)矩陣的像空間的正交補空間中時,貪婪隨機Kaczmarz方法重復運行50次所產(chǎn)生的相對解誤差的中值和閾值τ分別取以10為底的對數(shù)之后相對于迭代步數(shù)的曲線。從圖2可以看出,貪婪隨機Kaczmarz方法所產(chǎn)生的相對解誤差下降至10-3左右之后不再減小,且閾值τ能夠很好地給出該最小值的估計,特別當擾動向量r在系數(shù)矩陣的像空間中時。

        圖2 當m=100 000,n=200且r∈R(A)和r∈R(A)⊥時,lg E RS和lgτ相對于迭代步數(shù)的曲線Fig.2 Pictures of lg E RS and lgτversus the iteration step when m=100 000,n=200,and r∈R(A)and r∈R(A)⊥

        當線性代數(shù)方程組(1)的系數(shù)矩陣為稀疏矩陣bibd_16_8和ash958時,圖3描繪了右端項擾動r為隨機擾動時,貪婪隨機Kaczmarz方法重復運行50次所產(chǎn)生的相對解誤差的中值和閾值τ分別取以10為底的對數(shù)之后相對于迭代步數(shù)的曲線;圖4描繪了右端項擾動r分別在系數(shù)矩陣的像空間和系數(shù)矩陣的像空間的正交補空間中時的相應(yīng)曲線。類似地,從圖3和圖4可以看出,貪婪隨機Kaczmarz方法所產(chǎn)生的相對解誤差下降至10-3左右之后不再減小,且閾值τ能夠很好地給出該最小值的估計,特別當系數(shù)矩陣為bibd_16_8和當系數(shù)矩陣為ash958且擾動向量r在系數(shù)矩陣的像空間中時。

        圖3 當矩陣為bibd_16_8和ash958時,lg E RS和lgτ相對于迭代步數(shù)的曲線Fig.3 Pictures of lg E RS and lgτversus the iteration step when the matrices are bibd_16_8 and ash958

        圖4 當矩陣為ash958且r∈R(A)和r∈R(A)⊥時,lg E RS與lgτ相對于迭代步數(shù)的曲線Fig.4 Pictures of lg E RS and lgτversus the iteration step when the matrix is ash958,and r∈R(A)and r∈R(A)⊥

        4 結(jié)論

        當線性代數(shù)方程組的右端向量發(fā)生擾動時,證明了貪婪隨機Kaczmarz方法的期望解誤差以線性速率下降至一個給定閾值。數(shù)值實驗表明該閾值能夠很好地估計貪婪隨機Kaczmarz方法的迭代解誤差所能達到的最小值??梢园l(fā)現(xiàn)當擾動不是很大且對解的精度要求不是很高時,貪婪隨機Kaczmarz方法仍然能夠很好地給出原線性代數(shù)方程組最小范數(shù)解的近似。

        猜你喜歡
        方法
        中醫(yī)特有的急救方法
        中老年保健(2021年9期)2021-08-24 03:52:04
        高中數(shù)學教學改革的方法
        河北畫報(2021年2期)2021-05-25 02:07:46
        化學反應(yīng)多變幻 “虛擬”方法幫大忙
        變快的方法
        兒童繪本(2020年5期)2020-04-07 17:46:30
        學習方法
        可能是方法不對
        用對方法才能瘦
        Coco薇(2016年2期)2016-03-22 02:42:52
        最有效的簡單方法
        山東青年(2016年1期)2016-02-28 14:25:23
        四大方法 教你不再“坐以待病”!
        Coco薇(2015年1期)2015-08-13 02:47:34
        賺錢方法
        午夜精品人妻中字字幕| 亚洲国产激情一区二区三区| 无码丰满少妇2在线观看| A阿V天堂免费无码专区| 蜜桃成人精品一区二区三区| 亚洲亚色中文字幕剧情| 国模无码一区二区三区不卡| 无遮挡亲胸捏胸免费视频| 美女熟妇67194免费入口| 国产三级av在线精品| 日韩久久无码免费毛片软件| 国产又黄又大又粗的视频| 国产老妇伦国产熟女老妇高清| 少妇性l交大片免费1一少| 亚洲人成网站在线播放2019| 少妇无码一区二区三区免费| 国产欧美另类精品久久久| 中文字幕亚洲中文第一| 在线观看人成视频免费| 久久乐国产精品亚洲综合| 亚洲先锋影院一区二区| 国产人妖av在线观看| 日本中国内射bbxx| 一个人在线观看免费视频www| AV中文码一区二区三区| 熟妇人妻精品一区二区视频免费的| 亚洲国产一区二区三区在线观看| 富婆如狼似虎找黑人老外| 国产目拍亚洲精品区一区| 国产区女主播一区在线| 无码乱人伦一区二区亚洲一| 国产亚洲欧美精品永久| 久久人妻内射无码一区三区| 揄拍成人国产精品视频肥熟女| 国产91在线播放九色快色| 亚洲精品无码专区| 久久精品日韩av无码| 一区二区高清视频在线观看| 亚洲天堂成人av影院| 免费国产a国产片高清网站| 免费无码成人av在线播|