張斌 楊昕霞 袁志輝
摘要: 基于熱脅迫條件下的水稻轉(zhuǎn)錄組數(shù)據(jù),通過HTSeq和DESeq軟件篩選差異表達(dá)基因;對(duì)其進(jìn)行功能富集和構(gòu)建蛋白質(zhì)互作網(wǎng)絡(luò),鑒定最重要模塊中的核心基因。結(jié)果顯示:水稻熱脅迫0 h、1 h、6 h和12 h條件下,共有278個(gè)差異表達(dá)基因,生物學(xué)過程主要富集在刺激反應(yīng)和蛋白質(zhì)折疊上;鑒定出含有12個(gè)基因的重要模塊.基因表達(dá)模式顯示重要模塊中7個(gè)核心基因受熱脅迫誘導(dǎo)上調(diào),推測(cè)這7個(gè)核心基因在水稻響應(yīng)熱脅迫過程中發(fā)揮關(guān)鍵作用。
關(guān)鍵詞: 水稻;高溫脅迫;核心基因;轉(zhuǎn)錄組
中圖分類號(hào): S511.01?? 文獻(xiàn)標(biāo)識(shí)碼: A?? 文章編號(hào): 1000-4440(2021)04-0817-06
Screening and identification of core genes responding to heat stress in rice
ZHANG Bin, YANG Xin-xia, YUAN Zhi-hui
(Hunan University of Science and Engineering, Yongzhou 425199, China)
Abstract: In this study, rice transcriptome data under heat stress were used to screen differentially expressed genes by HTSeq and DESeq software, then functional enrichment analysis was carried out and protein interaction network was constructed to identify the core genes in most important module. The results showed that there were 278 differentially expressed genes under heat stress for 0 h, 1 h, 6 h and 12 h, and the biological process was mainly concentrated in stimulation response and protein folding. The important module containing 12 genes was identified. The gene expression patterns showed that seven core genes in important modules were up-regulated under heat stress, suggesting that these seven core genes played a key role in the response of rice to heat stress.
Key words: rice;high temperature stress;core gene;transcriptome
水稻作為全球重要的糧食作物,其生長(zhǎng)過程中極易受到各種生物脅迫和非生物脅迫的影響,其中高溫脅迫嚴(yán)重影響水稻的產(chǎn)量和稻米的品質(zhì)。因此,研究者在水稻熱脅迫的危害及其應(yīng)答熱脅迫的生理和分子機(jī)制方面做了大量的工作。在成熟期,高溫導(dǎo)致水稻籽粒灌漿提前結(jié)束[1];高溫還可以引起稻米品質(zhì)下降[2]。植物可以啟動(dòng)熱激響應(yīng)基因表達(dá)從而抵御脅迫傷害[3]。擬南芥鈣調(diào)蛋白AtCaM3激活鈣離子/鈣調(diào)蛋白結(jié)合蛋白激酶,鈣離子內(nèi)流激活鈣離子依賴的蛋白激酶,進(jìn)而磷酸化熱脅迫反應(yīng)的關(guān)鍵調(diào)控因子,從而啟動(dòng)下游基因表達(dá)[4]。熱激蛋白在植物響應(yīng)熱脅迫過程中發(fā)揮重要作用[5-7]。隨著研究的深入,人們發(fā)現(xiàn)植物響應(yīng)熱脅迫的分子機(jī)制極其復(fù)雜。Takehara等發(fā)現(xiàn)OsSUS3基因?qū)肴毡厩绾筇岣吡嗽摶虻谋磉_(dá)水平,增強(qiáng)了抗熱性[8]。Moon等報(bào)道異源表達(dá)OsHSP1基因可提高擬南芥的耐熱性[9]。但是,到目前為止,水稻響應(yīng)熱脅迫的生理和分子調(diào)控機(jī)理仍未被闡述清楚。因此,本研究利用轉(zhuǎn)錄組學(xué)手段探究水稻響應(yīng)熱脅迫過程中的關(guān)鍵基因,并進(jìn)一步闡釋其功能途徑。
1 材料與方法
1.1 材料
熱脅迫處理的水稻轉(zhuǎn)錄組原始數(shù)據(jù)從NCBI數(shù)據(jù)庫(kù)(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA530826/)下載。本研究進(jìn)行試驗(yàn)的水稻品種為日本晴 (Nipponbare)。
1.2 差異表達(dá)基因篩選
利用Hisat2軟件建立索引以及比對(duì)到參考基因組,通過Stringtie軟件進(jìn)行轉(zhuǎn)錄本組裝、合并和定量,基因差異分析則通過DESeq2軟件進(jìn)行。以|log2foldChange|>2且P值<0.01為條件分別篩選高溫脅迫1 h、6 h和12 h時(shí)間點(diǎn)的差異表達(dá)基因,再通過Ggplot2繪制所有差異基因的火山圖和韋恩圖。
1.3 蛋白質(zhì)互作網(wǎng)絡(luò)構(gòu)建及重要模塊分析
利用在線數(shù)據(jù)庫(kù)(http://string-db.org),以參數(shù)combined score>0.4,構(gòu)建蛋白質(zhì)互作網(wǎng)絡(luò), 并通過Cytoscape進(jìn)行可視化。參數(shù)設(shè)置:scores>5,degree cut-off=2,node scorecut-off=0.2,Max depth=100和k-score=2。此外,利用MCODE(分子復(fù)合物檢測(cè))軟件篩選最重要模塊。
1.4 核心基因篩選及表達(dá)分析
設(shè)置馬修斯相關(guān)系數(shù)(MCC)算法,利用Cytoscape軟件的cytoHubba插件鑒定相互作用最緊密的10個(gè)基因,與最重要模塊基因取交集,篩選核心基因。取log2TPM值(TPM為每千堿基記錄本),分析水稻在高溫脅迫0 h、1 h、6 h、12 h、24 h和48 h時(shí)間點(diǎn)的基因表達(dá)模式。
1.5 差異表達(dá)基因富集分析
差異表達(dá)基因使用在線軟件(http://systemsbiology.cau.edu.cn/agriGOv2/)進(jìn)行GO富集分析,取FDR(錯(cuò)誤發(fā)現(xiàn)率)值≤0.05的通路,利用Ggplot2插件進(jìn)行繪圖。差異表達(dá)基因使用在線軟件(http://kobas.cbi.pku.edu.cn/kobas3/genelist/)進(jìn)行KEGG富集分析,取P值≤0.05的通路,利用Ggplot2插件繪圖。
1.6 qRT-PCR驗(yàn)證
種子發(fā)芽后培養(yǎng)14 d(28 ℃,14 h白天/10 h黑夜),45 ℃熱激1 h取樣。利用TRIzol法提取幼苗總RNA,添加脫氧核糖核酸酶I(Dnase I)去除DNA污染。使用反轉(zhuǎn)錄試劑盒SuperScript III First-Strand Synthesis SuperMix(Thermo)合成cDNA。利用ABI7500定量PCR儀進(jìn)行qRT-PCR檢測(cè),利用2-△△Ct法計(jì)算基因相對(duì)表達(dá)水平。反應(yīng)程序:94 ℃預(yù)變性32 min;94 ℃變性10 s,60 ℃退火10 s,72 ℃延伸10 s,40個(gè)循環(huán)??傮w系20 μl:10.0 μl SYBR Green Mix(Thermo),8.0 μl RNAase-free水,1.0 μl引物,1.0 μl模板。Os10g0510000基因?yàn)閮?nèi)參,引物序列見表1。
2 結(jié)果與分析
2.1 水稻熱脅迫下差異表達(dá)基因篩選
熱脅迫1 h,檢測(cè)到2 642個(gè)差異表達(dá)基因,1 624個(gè)上調(diào),1 018個(gè)下調(diào)(圖1A);熱脅迫6 h,檢測(cè)到1 704個(gè)差異表達(dá)基因,812個(gè)上調(diào),892個(gè)下調(diào)(圖1B);熱脅迫12 h,檢測(cè)到1 773個(gè)差異表達(dá)基因,899個(gè)上調(diào),874個(gè)下調(diào)(圖1C)。共有278個(gè)重疊基因(圖1D)。
2.2 水稻熱脅迫下差異表達(dá)基因富集分析
278個(gè)基因富集到GO項(xiàng)上,生物學(xué)過程主要富集在刺激反應(yīng)和蛋白質(zhì)折疊;分子功能主要富集在結(jié)合功能;細(xì)胞組分無(wú)顯著富集(圖2A)。KEGG分析結(jié)果顯示278個(gè)差異基因主要富集在內(nèi)質(zhì)網(wǎng)蛋白質(zhì)加工和次生代謝產(chǎn)物合成通路上(圖2B)。
2.3 蛋白質(zhì)互作網(wǎng)絡(luò)構(gòu)建與重要模塊中關(guān)鍵核心基因篩選
通過蛋白質(zhì)互作網(wǎng)絡(luò)(圖3A)獲得了一個(gè)含有12個(gè)基因表達(dá)全部上調(diào)的最重要模塊(圖3B)。進(jìn)一步通過Cytoscape軟件的cytoHubba插件鑒定出作用最緊密的10個(gè)基因(圖3C),其中7個(gè)基因存在最重要模塊上,確定為核心基因(圖3D)。
2.4 水稻響應(yīng)熱脅迫核心基因表達(dá)模式分析
分析核心基因的表達(dá)模式,發(fā)現(xiàn)在熱脅迫條件下不同時(shí)間點(diǎn)(1 h、6 h、12 h、24 h和48 h)基因表達(dá)都表現(xiàn)上調(diào)(圖4)。隨熱脅迫時(shí)間的延長(zhǎng),基因表達(dá)水平有一定波動(dòng)。Os01g0840100、Os07g0641700、Os12g0277500、Os03g0366000和Os02g0612000 5個(gè)基因的表達(dá)在熱脅迫1 h時(shí)達(dá)到最大值,呈現(xiàn)先上升,后下降的趨勢(shì);Os08g0338700和Os09g0491772響應(yīng)熱脅迫時(shí)間比較長(zhǎng),在48 h內(nèi)基因表達(dá)表現(xiàn)出上升的趨勢(shì)。
2.5 qRT-PCR方法驗(yàn)證轉(zhuǎn)錄組測(cè)序結(jié)果
利用qRT-PCR方法對(duì)轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行驗(yàn)證。結(jié)果(圖5)顯示,野生型水稻日本晴幼苗經(jīng)熱脅迫處理1 h后,篩選出的7個(gè)核心基因Os12g0277500、Os08g0338700、Os07g0641700、Os09g0491772、 Os01g0840100、Os02g0612000和Os03g0366000的表達(dá)水平都上調(diào),結(jié)果與轉(zhuǎn)錄組測(cè)序數(shù)據(jù)基本一致,表明轉(zhuǎn)錄組測(cè)序結(jié)果可靠,也進(jìn)一步證明了通過轉(zhuǎn)錄組數(shù)據(jù)篩選鑒定水稻響應(yīng)熱脅迫過程中核心基因的可靠性。
3 討論
生物具有感知溫度變化的系統(tǒng)[10]。植物響應(yīng)熱脅迫涉及受體激活、活性氧產(chǎn)生、熱激蛋白和熱激轉(zhuǎn)錄因子等多種信號(hào)途徑[11],過程復(fù)雜是其分子機(jī)制沒有研究清楚的原因之一。因此,迫切要求判斷植物響應(yīng)熱脅迫的潛在核心基因。轉(zhuǎn)錄組技術(shù)能夠分析熱脅迫中植物基因表達(dá)的改變,是一種確定核心基因有效方法。
本研究分析了水稻熱脅迫下4個(gè)轉(zhuǎn)錄組數(shù)據(jù)集,共鑒定出278個(gè)差異表達(dá)基因,GO分析結(jié)果顯示這些基因主要富集在對(duì)刺激的反應(yīng)和蛋白質(zhì)折疊的生物過程上,KEGG分析結(jié)果顯示這些基因主要富集在內(nèi)質(zhì)網(wǎng)蛋白質(zhì)加工的代謝途徑上。蛋白質(zhì)折疊在生物適應(yīng)高溫脅迫的過程中起著重要的作用[12]。熱激蛋白(HSP)分為HSP100、HSP90、HSP70、HSP60和小HSP家族,具有阻止變性蛋白質(zhì)聚集和協(xié)助變性蛋白質(zhì)重新折疊的功能[13]。HSP101基因功能缺失的擬南芥變得對(duì)熱敏感[14]。因此, HSP家族成員在植物響應(yīng)熱脅迫過程中發(fā)揮重要作用。葉綠體和線粒體HSP70s作為轉(zhuǎn)運(yùn)子的一部分可以幫助蛋白質(zhì)前體轉(zhuǎn)移[15-17]。研究結(jié)果表明擬南芥通過細(xì)胞周期轉(zhuǎn)錄因子介導(dǎo)葉綠體AtHSP70-4基因的表達(dá)適應(yīng)溫度變化[18]。HSP70-4和E3泛素連接酶通過泛素-26S蛋白酶系統(tǒng)介導(dǎo)質(zhì)體靶向蛋白質(zhì)前體的降解,減輕細(xì)胞損傷[19]。線粒體mtHsc70-1基因在擬南芥細(xì)胞色素c氧化酶(COX)依賴性呼吸系統(tǒng)中發(fā)揮作用,基因敲除后表現(xiàn)出嚴(yán)重的生長(zhǎng)缺陷[20]。Os01g0840100和Os09g0491772同屬HSP70家族,在水稻熱脅迫響應(yīng)過程中的具體功能未見報(bào)道,本研究中其受熱脅迫誘導(dǎo),可能發(fā)揮調(diào)控作用。質(zhì)體Cpn60是線粒體Hsp60的同源物,參與核酮糖-1,5-二磷酸羧化酶的組裝,在此過程中需要蛋白質(zhì)GroES/Cpn10進(jìn)行底物封裝[21-23]。Cpn60家族在擬南芥生長(zhǎng)發(fā)育過程中發(fā)揮著非常重要的作用,短日照條件下,擬南芥AtCpn60β1基因缺失導(dǎo)致幼苗死亡,突變體對(duì)熱脅迫敏感[24] 。OsCpn60α1(Os12g0277500)對(duì)核酮糖-1,5-二磷酸羧化酶大亞基的折疊至關(guān)重要,突變體表現(xiàn)出淡綠色和幼苗致死的表型,高溫對(duì)OsCpn60α1的轉(zhuǎn)錄有較強(qiáng)的誘導(dǎo)作用[25]。同源基因OsCpn60β1對(duì)水稻葉綠體發(fā)育至關(guān)重要[26]。這與我們的分析結(jié)果一致,說(shuō)明OsCpn60在熱應(yīng)激過程中發(fā)揮了重要的作用。擬南芥AT Cpn10基因與大腸桿菌groES基因功能互補(bǔ),在不同器官中mRNA都有表達(dá),受熱脅迫誘導(dǎo)[27]。Os07g0641700和Os03g0366000同屬Cpn10基因,表達(dá)水平在0~24 h持續(xù)上調(diào),說(shuō)明在熱脅迫過程中發(fā)揮了一定的作用。DnaK-DnaJ-GrpE系統(tǒng)是蛋白質(zhì)穩(wěn)態(tài)的重要組成部分[28]。擬南芥GrpE表達(dá)受熱脅迫誘導(dǎo),與大腸桿菌grpE基因功能互補(bǔ)[29]。Os08g0338700和Os02g0612000同屬GrpE基因,此基因的功能亦未見報(bào)道,本研究中受熱脅迫的誘導(dǎo),推測(cè)其在熱脅迫響應(yīng)中發(fā)揮調(diào)控作用。水稻響應(yīng)熱脅迫與蛋白質(zhì)折疊息息相關(guān),7個(gè)核心基因同屬HSP家族,蛋白質(zhì)互作網(wǎng)絡(luò)分析結(jié)果表明它們聯(lián)系非常緊密,同源蛋白質(zhì)參與蛋白質(zhì)的運(yùn)輸、組裝和折疊,因此,我們認(rèn)為這些基因在熱脅迫過程中協(xié)同發(fā)揮關(guān)鍵性作用。
總之,本研究旨在確定水稻熱脅迫響應(yīng)過程中的核心基因。共鑒定出278個(gè)差異基因和7個(gè)核心基因,7個(gè)基因可能在水稻響應(yīng)熱脅迫過程中發(fā)揮重要作用。但是,需要進(jìn)一步研究來(lái)闡明這些基因在水稻響應(yīng)熱脅迫過程中的生物學(xué)功能。
參考文獻(xiàn):
[1] KIM J, SHON J, LEE C K, et al. Relation-ship between grain filling duration and leaf senescence of temperate rice under high temperature[J]. Field Crops Research, 2011, 122: 207-213.
[2] ZHONG L J, CHENG F M, WEN X, et al. The deterioration of eating and cooking quality caused by high temperature during grain filling in early-season indica rice cultivars[J]. Journal of Agronomy & Crop Science, 2005, 191: 218-225.
[3] LIM C J, YANG K A, HONG J K, et al. Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells[J]. J Plant Res, 2006, 119: 373-383.
[4] SUZUKI N, SEJIMA H, TAM R, et al. Identification of the MBF1 heat-response regulon of Arabidopsis thaliana[J]. Plant J, 2011, 66(5): 844-851.
[5] GUAN J C, YEH C H, LIN Y P, et al. A 9 bp cis-element in the promoters of class I small heat shock protein genes on chromosome 3 in rice mediates L-azetidine-2-carboxylic acid and heat shock responses[J]. Journal of Experimental Botany, 2010, 61(15): 4249-4261.
[6] JAGADISH S V, MUTHURAJAN R, OANE R, et al. Physiological and proteomic approaches to address heat tolerance during anthesis in rice(Oryza sativa L.)[J]. Journal of Expermental Botany, 2010, 61: 143-156.
[7] JUNG K H, GHO H J, NGUYEN M X, et al. Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress[J]. Functional & Integrative Genomics, 2013, 13(3): 391-402.
[8] TAKEHARA K, MURATA K, YAMAGUCHI T, et al. Thermo-responsive allele of sucrose synthase 3 (Sus3) provides high-temperature tolerance during the ripening stage in rice (Oryza sativa L.)[J]. Breeding Science, 2018, 68(3): 336-342.
[9] MOON J C, HAM D J, HWANG S G, et al. Molecular characterization of a heat inducible rice gene, OsHSP1, and implications for rice thermotolerance[J]. Genes Genom, 2014, 36: 151-161.
[10]MITTLER R, FINKA A, GOLOUBINOFF P. How do plants feel the heat?[J]. Trends Biochem Sci, 2012, 37(3): 118-125.
[11]陳思婷,郭房慶.植物耐熱性及熱激信號(hào)轉(zhuǎn)導(dǎo)機(jī)制研究進(jìn)展[J].中國(guó)科學(xué):生命科學(xué),2013,43(12): 1072-1081.
[12]MORO F, MUGA A. Thermal adaptation of the yeast mitochondrial Hsp70 system is regulated by the reversible unfolding of its nucleotide exchange factor[J]. J Mol Biol,2006, 358(5): 1367-1377.
[13]WANG W, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends Plant Sci, 2004, 9(5): 244-252.
[14]HONG S W, VIERLING E. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress[J]. Proc Natl Acad Sci USA, 2000, 97(8): 4392-4397.
[15]JACKSON C D, KEEGSTRA K. Arabidopsis genes encoding components of the chloroplastic protein import apparatus[J]. Plant Physiol, 2001, 125:1567-1576.
[16]SU P H, LI H M. Stromal Hsp70 is important for protein translocation into pea and Arabidopsis chloroplasts[J].Plant Cell, 2010, 22:1516-1531.
[17]ZHANG X P, GLASER E. Interaction of plant mitochondrial and chloroplast signal peptides with the Hsp70 molecular chaperone[J]. Trends Plant Sci, 2002, 7:14-21.
[18]ZHOU S, SUN H, ZHENG B, et al. Cell cycle transcription factor E2F2 mediates non-stress temperature response of AtHSP70-4 in Arabidopsis[J]. Biochem Biophys Res Commun, 2014, 455(3-4): 139-146.
[19]LEE S, LEE D W, LEE Y, et al. Heat shock protein cognate 70-4 and an E3 ubiquitin ligase, CHIP, mediate plastid-destined precursor degradation through the ubiquitin-26S proteasome system in Arabidopsis[J]. Plant Cell, 2009, 21(12): 3984-4001.
[20]WEI S S, NIU W T, ZHAI X T, et al. Arabidopsis mtHSC70-1 plays important roles in the establishment of COX-dependent respiration and redox homeostasis[J]. J Exp Bot, 2019, 70(20): 5575-5590.
[21]BARRACLOUGH R, ELLIS R J. Protein synthesis in chloroplasts IX assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts[J]. Biochim Biophys Acta, 1980, 608(1):19-31.
[22]HEMMINGSEN S M, ELLIS R J. Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein[J]. Plant Physiology, 1986, 80(1):269-276.
[23]HEMMINGSEN S M, WOOLFORD C, VAN D, et al. Homologous plant and bacterial proteins chaperone oligomeric protein assembly[J]. Nature, 1988, 333(6171):330-334.
[24]ATSUSHI I, HIDEAKI T, MASATO N, et al. Deletion of a chaperonin 60 beta gene leads to cell death in the Arabidopsis lesion initiation 1 mutant.[J]. Plant and Cell Physiology, 2003(3):255-261.
[25]KIM S R, YANG J I, AN G. OsCpn60α1, encoding the plastid chaperonin 60α subunit, is essential for folding of rbcL[J]. Moleculer Cells, 2013, 35(5) :402-409.
[26]WU Q, ZHANG C, CHEN Y, et al. OsCpn60β1 is essential for chloroplast development in rice (Oryza sativa L.)[J]. International Journal of Molecular Sciences, 2020, 21(11) :4023.
[27]KOUMOTO Y, TSUGEKI R, SHIMADA T, et al. Isolation and characterization of a cDNA encoding mitochondrial chaperonin 10 from Arabidopsis thaliana by functional complementation of an Escherichia coli groES mutant[J]. Plant J,1996, 10(6): 1119-1125.
[28]BEN-ZVI A P, GOLOUBINOFF P. Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones[J]. J Struct Biol, 2001, 135(2): 84-93.
[29]HU C, LIN S Y, CHARNG C, et al. Recent gene duplication and subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange factor of the Hsp70 complex, specialized in thermotolerance to chronic heat stress in Arabidopsis[J]. Plant Physiology, 2012, 158(2):747-758.
(責(zé)任編輯:張震林)
收稿日期:2020-01-25
基金項(xiàng)目:湖南省自然科學(xué)基金項(xiàng)目(2020JJ4030);湖南省創(chuàng)新平臺(tái)與人才計(jì)劃項(xiàng)目(2020NK4222)
作者簡(jiǎn)介:張 斌(1981-),男,湖南永州人,博士,講師,主要從事植物發(fā)育生物學(xué)研究,(E-mail)zhangbin27104@163.com
通訊作者:袁志輝,(E-mail)zhh_yuan@126.com