王家琪,郭建國,郭宗易,趙 斌
(西北工業(yè)大學(xué)精確制導(dǎo)與控制研究所,陜西西安 710072)
高馬赫數(shù)飛行器是指在20~100 km 的臨近空間飛行、最大飛行速度大于5Ma的一類飛行器,飛行速度快、突防能力強(qiáng)、隱蔽性能好[1],具有極大的軍事和民用價(jià)值。由于系統(tǒng)內(nèi)部不確定性和外部環(huán)境干擾的存在,高馬赫數(shù)飛行器的飛行軌跡會(huì)受到一定影響[2]。為保證控制系統(tǒng)的控制效果,需要對(duì)這些干擾性因素進(jìn)行充分抑制,使控制系統(tǒng)對(duì)內(nèi)部不確定性和外部環(huán)境干擾具有一定的魯棒性。
在抑制系統(tǒng)內(nèi)部不確定性和外部環(huán)境干擾時(shí),基于干擾觀測(cè)器的方法得到了廣泛應(yīng)用[3-7]。干擾觀測(cè)器通過把對(duì)控制系統(tǒng)有較大影響的復(fù)合干擾估計(jì)出來,并在原有標(biāo)稱系統(tǒng)控制器的基礎(chǔ)上設(shè)計(jì)補(bǔ)償控制器,來抵消復(fù)合干擾的影響,提高系統(tǒng)的控制效果[8]。文獻(xiàn)[9]針對(duì)高馬赫數(shù)飛行器縱向動(dòng)態(tài)模型,設(shè)計(jì)干擾觀測(cè)器來估計(jì)參數(shù)不確定項(xiàng),提高了控制精度。文獻(xiàn)[10]設(shè)計(jì)干擾觀測(cè)器估計(jì)外界未知干擾,改善了系統(tǒng)的魯棒性能。
滑??刂剖遣贿B續(xù)的非線性控制,對(duì)參數(shù)不確定性和外部干擾具有較強(qiáng)的魯棒性[11]。文獻(xiàn)[12]設(shè)計(jì)二階滑模終端控制器實(shí)現(xiàn)對(duì)高馬赫數(shù)飛行器縱向動(dòng)態(tài)模型的速度和高度跟蹤。文獻(xiàn)[13]結(jié)合自學(xué)習(xí)觀測(cè)器設(shè)計(jì)滑模控制器,實(shí)現(xiàn)對(duì)高馬赫數(shù)飛行器巡航段速度和高度的穩(wěn)定跟蹤。但是,滑??刂凭哂幸粋€(gè)明顯缺點(diǎn),在控制過程中會(huì)發(fā)生“抖振”現(xiàn)象[11],這對(duì)控制器的工程實(shí)現(xiàn)產(chǎn)生不利影響。本文采用一個(gè)非線性函數(shù)來替代符號(hào)函數(shù),以此來削弱“抖振”現(xiàn)象。同時(shí),為提高收斂速度并抑制干擾,本文改進(jìn)了傳統(tǒng)的指數(shù)趨近律,結(jié)合干擾觀測(cè)器設(shè)計(jì)新型滑模控制律,以改善系統(tǒng)的動(dòng)態(tài)性能,提高系統(tǒng)的魯棒性。
本文采用的高馬赫數(shù)飛行器縱向模型的數(shù)學(xué)形式為[14]
式中:r為飛行器距地心距離;μ為地球引力常數(shù);v、h、γ、α、q分別為高馬赫數(shù)飛行器的飛行速度、飛行高度、航跡傾角、攻角、俯仰角速度;L、D、T、M分別為升力、阻力、側(cè)向力、俯仰力矩,其具體形式為
發(fā)動(dòng)機(jī)模型數(shù)學(xué)形式為
式中:β表示油門開度;βc表示控制器輸出指令;ωn為自然頻率;ξ0為阻尼系數(shù)。
將高馬赫數(shù)飛行器縱向數(shù)學(xué)模型分解為速度子系統(tǒng)和高度子系統(tǒng)[15],分別設(shè)計(jì)干擾觀測(cè)器和控制器。定義x1=v,x2=h,x3=γ,x4=θp,x5=q,其中θp為俯仰角,滿足θp=α+γ。
1.2.1 速度子系統(tǒng)
速度子系統(tǒng)可以表示為
式中:dv表示速度子系統(tǒng)的外部時(shí)變干擾;u1為速度子系統(tǒng)的控制輸入,表示發(fā)動(dòng)機(jī)的油門開度。
當(dāng)β≥1時(shí),
當(dāng)β<1時(shí),
1.2.2 高度子系統(tǒng)
高度子系統(tǒng)可以表示為
式中:dγ、dq分別表示高度子系統(tǒng)的外部時(shí)變干擾;u2為高度子系統(tǒng)的控制輸入,表示升降舵偏角;
其中,Iyy為轉(zhuǎn)動(dòng)慣量。
由于系統(tǒng)存在不確定性和外干擾,因此引入干擾觀測(cè)器以提高系統(tǒng)的控制精度。干擾觀測(cè)器是通過改進(jìn)狀態(tài)觀測(cè)器而得到的一種估計(jì)器,用來逼近系統(tǒng)中的不確定性或外干擾,以削弱不確定性或外干擾對(duì)系統(tǒng)的影響,提高系統(tǒng)的魯棒性能。文獻(xiàn)[16]針對(duì)飛行器模型中的時(shí)變干擾設(shè)計(jì)了一種非線性干擾觀測(cè)器,用來逼近系統(tǒng)干擾。本文利用該思想,設(shè)計(jì)速度子系統(tǒng)干擾觀測(cè)器和高度子系統(tǒng)干擾觀測(cè)器,分別用來估計(jì)速度子系統(tǒng)和高度子系統(tǒng)中的外部干擾,以便于后文控制律的設(shè)計(jì)。
速度子系統(tǒng)干擾觀測(cè)器數(shù)學(xué)形式為
式中:zv為速度子系統(tǒng)干擾觀測(cè)器的內(nèi)部狀態(tài)變量;表示對(duì)干擾dv的估計(jì)值,是干擾觀測(cè)器的輸出;Pv(x1)是待設(shè)計(jì)的關(guān)于狀態(tài)x1的非線性函數(shù),其中x1=v是速度子系統(tǒng)的狀態(tài)變量。在此處是一個(gè)正值。通過選擇合適的非線性函數(shù)Pv(x1),可以使得干擾估計(jì)誤差收斂至一個(gè)較小范圍內(nèi),保證干擾觀測(cè)器的輸出逼近干擾dv。
高度子系統(tǒng)干擾觀測(cè)器數(shù)學(xué)形式為
式中:zγ、zq為高度子系統(tǒng)干擾觀測(cè)器的內(nèi)部狀態(tài)變量;分別表示對(duì)干擾dγ、dq的估計(jì)值,是干擾觀測(cè)器的輸出;Pγ(x3)、Pq(x5)分別是待設(shè)計(jì)的關(guān)于狀態(tài)x3和x5的非線性函數(shù),其中x3=γ、x5=q均為高度子系統(tǒng)的狀態(tài)變量;在此處均為正值。通過選擇合理的非線性函數(shù)Pγ(x3)、Pq(x5),可以使得干擾估計(jì)誤差eDO_γ=均收斂至一個(gè)較小范圍內(nèi),保證干擾觀測(cè)器估計(jì)干擾的有效性。
通過速度干擾觀測(cè)器和高度干擾觀測(cè)器估計(jì)出系統(tǒng)中的干擾,用估計(jì)值替代實(shí)際值,代入到本文設(shè)計(jì)的控制律中,可以抑制外界未知干擾對(duì)系統(tǒng)造成的影響,提高系統(tǒng)的魯棒性能?;诟蓴_觀測(cè)器的控制系統(tǒng)結(jié)構(gòu)如圖1所示。圖中:xd為輸入指令信號(hào);x為系統(tǒng)狀態(tài);e為狀態(tài)跟蹤誤差;d為系統(tǒng)中的實(shí)際干擾;為觀測(cè)器對(duì)干擾的估計(jì)值。
圖1 含干擾觀測(cè)器的控制系統(tǒng)結(jié)構(gòu)Fig.1 Control system structure with disturbance observer
控制器的控制目標(biāo)是通過設(shè)置控制輸入(升降舵偏轉(zhuǎn)角δe和發(fā)動(dòng)機(jī)油門開度β)來控制飛行器的狀態(tài)輸出(速度v和高度h),實(shí)現(xiàn)對(duì)高馬赫數(shù)飛行器縱向模型的速度和高度的雙重跟蹤控制[17]。下面分別設(shè)計(jì)速度控制器和高度控制器。
3.1.1 速度控制器設(shè)計(jì)
定義滑模面為
對(duì)式(10)求導(dǎo)可得
滑??刂浦型ǔ2捎脗鹘y(tǒng)的指數(shù)趨近律
式中:k、ξ為指數(shù)趨近律的系數(shù),均為常值。
本文設(shè)計(jì)一種經(jīng)過改進(jìn)的趨近律,即
這種經(jīng)過改進(jìn)的趨近律和傳統(tǒng)指數(shù)趨近律相比,冪次更高,收斂速度更快,同時(shí)也能保證系統(tǒng)穩(wěn)定。
將式(13)代入式(11)可得速度子系統(tǒng)控制律為
3.1.2 穩(wěn)定性分析
取Lyapunov函數(shù)為
對(duì)式(15)求導(dǎo)可得
從而有
顯然,速度子系統(tǒng)的閉環(huán)控制器是漸近穩(wěn)定的。
3.2.1 高度控制器設(shè)計(jì)
高度控制器結(jié)合反步法的設(shè)計(jì)思想,采用動(dòng)態(tài)面控制,具體設(shè)計(jì)如下。
定義誤差
對(duì)式(18)求導(dǎo)可得
為提高收斂速度,設(shè)計(jì)經(jīng)過改進(jìn)的趨近律
將式(20)代入到式(19)可得虛擬控制量
采用動(dòng)態(tài)面方法,設(shè)計(jì)低通濾波器得到x3d,即
類似地,定義誤差
可得虛擬控制量
設(shè)計(jì)低通濾波器得到x4d,即
類似地,定義誤差
可得虛擬控制量
設(shè)計(jì)低通濾波器得到x5d,即
同樣地,定義
可得最終控制輸入為
為削弱滑模控制中的“抖振”問題,采用如下非線性函數(shù)替代虛擬控制量和最終控制輸入中的符號(hào)函數(shù)[18]:
式中:μ0是一個(gè)正參數(shù),通過引入該非線性函數(shù)可以有效避免滑??刂浦蟹?hào)函數(shù)驅(qū)動(dòng)引起的“抖振”現(xiàn)象,從而提高控制效果。
3.2.2 穩(wěn)定性分析
取Lyapunov函數(shù)為
對(duì)V2求導(dǎo)可得
式中:ε為任意小的正常數(shù);τi(i=3~5)為各個(gè)濾波器系數(shù)。
整理可得
按如下條件設(shè)計(jì)參數(shù):
式中:r為待設(shè)計(jì)的參數(shù)。
就有
對(duì)不等式(36)求解,可得
那么就有
顯然,高度控制器的閉環(huán)系統(tǒng)是有界穩(wěn)定的,可以收斂至一個(gè)較小范圍內(nèi)。
為驗(yàn)證本文方法的有效性,在MATLAB 環(huán)境下對(duì)高馬赫數(shù)飛行器縱向動(dòng)態(tài)模型仿真驗(yàn)證,本文的高馬赫數(shù)飛行器模型數(shù)據(jù)選自文獻(xiàn)[13]。
考慮系統(tǒng)存在時(shí)變正弦干擾,分別在無干擾觀測(cè)器、采用傳統(tǒng)指數(shù)趨近律并使用干擾觀測(cè)器、采用改進(jìn)趨近律并使用干擾觀測(cè)器3 種情況下進(jìn)行仿真,可以得到如圖2~4所示的仿真結(jié)果。
圖2 無干擾觀測(cè)器時(shí)的系統(tǒng)仿真結(jié)果Fig.2 Simulation results of the system without interference observer
由圖2可知,當(dāng)系統(tǒng)存在時(shí)變干擾時(shí),速度和高度跟蹤曲線有明顯的誤差,控制系統(tǒng)的精度達(dá)不到系統(tǒng)要求。由圖3 和圖4 可知,干擾觀測(cè)器對(duì)外部干擾具有良好的估計(jì)效果,減少了外界不確定性對(duì)高馬赫數(shù)飛行器帶來的影響,提高了系統(tǒng)的魯棒性能。同時(shí),速度和高度能在干擾存在的情況下較好地跟蹤指令信號(hào),保障了飛行器的飛行性能。值得注意的是,在使用經(jīng)改進(jìn)的趨近律時(shí),收斂速度明顯提高,很好地改善了系統(tǒng)的動(dòng)態(tài)性能,這充分說明:與傳統(tǒng)指數(shù)趨近律相比,經(jīng)改進(jìn)的趨近律效果更好。
圖3 有干擾觀測(cè)器并采用傳統(tǒng)趨近律時(shí)系統(tǒng)仿真結(jié)果Fig.3 System simulation results with disturbance observer and traditional approach law
圖4 有干擾觀測(cè)器并采用改進(jìn)趨近律時(shí)系統(tǒng)仿真結(jié)果Fig.4 System simulation results with disturbance observer and improved approach law
本文設(shè)計(jì)干擾觀測(cè)器來估計(jì)高馬赫數(shù)飛行器縱向模型中的外部干擾,結(jié)合滑模動(dòng)態(tài)面控制器實(shí)現(xiàn)了對(duì)巡航段高馬赫數(shù)飛行器速度和高度指令的穩(wěn)定跟蹤。本文提出了一種改進(jìn)滑模趨近律,提高了系統(tǒng)的收斂速度,改善了系統(tǒng)的動(dòng)態(tài)性能;使用一個(gè)連續(xù)的非線性函數(shù)替代符號(hào)函數(shù),削弱了滑??刂浦械摹岸墩瘛眴栴};采用干擾觀測(cè)器估計(jì)和補(bǔ)償干擾,提高了系統(tǒng)的魯棒性。