亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        單味中藥有效成分抗心血管病變的分子機(jī)制

        2021-09-15 12:45:25陳聰夏君彥李冬林謙
        世界中醫(yī)藥 2021年15期
        關(guān)鍵詞:心血管病線粒體氧化應(yīng)激

        陳聰 夏君彥 李冬 林謙

        摘要 單味中藥治療心血管疾病分子機(jī)制涉及抗氧化應(yīng)激、抗纖維化、抑制細(xì)胞凋亡、抗炎癥和改善線粒體功能等方面,現(xiàn)對(duì)單味中藥在心血管疾病中的作用進(jìn)行綜述,旨在為心血管病的防治提供參考。

        關(guān)鍵詞 中藥有效成分;分子機(jī)制;心血管病變;氧化應(yīng)激;纖維化;細(xì)胞凋亡;炎癥;線粒體

        Molecular Mechanism of the Effective Ingredients of Single Chinese Medicinal Against Cardiovascular Diseases

        CHEN Cong1, XIA Junyan2, LI Dong2, LIN Qian1

        (1 Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; 2 Dongfang Hospital,

        Beijing University of Chinese Medicine, Beijing 100078, China)

        Abstract The molecular mechanism of single Chinese medicinal in the treatment of cardiovascular disease involves anti-oxidative stress, anti-fibrosis, inhibition of cell apoptosis, anti-inflammatory and improvement of mitochondrial function etc. This paper reviews the role of single Chinese medicinal in cardiovascular disease, in order to provide reference for the prevention and treatment of cardiovascular disease.

        Keywords Active ingredients of Chinese medicinal; Molecular mechanism; Cardiovascular disease; Oxidative stress; Fibrosis; Apoptosis; Inflammation; Mitochondria

        中圖分類號(hào):R284文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2021.15.026

        近年來,青蒿素在瘧疾治療中的成功范例引起了人們對(duì)豐富的中草藥資源的關(guān)注。心血管疾病領(lǐng)域的臨床前研究已經(jīng)對(duì)單味中藥成分進(jìn)行了廣泛的分析,并顯示了它們的抗氧化應(yīng)激,抗纖維化,抑制細(xì)胞凋亡,抗炎癥和改善線粒體功能的活性,這表明源自單味中藥的成分可能成為拮抗心血管病變的寶貴來源?,F(xiàn)針對(duì)中藥有效成分拮抗心血管病變的作用機(jī)制研究進(jìn)展做一綜述,以期對(duì)臨床合理應(yīng)用中藥治療心血管疾病提供理論依據(jù)。

        1 抗氧化應(yīng)激

        氧化應(yīng)激是心血管病變的主要原因之一,正常細(xì)胞由于存在超氧化物歧化酶(Superoxide Dismutase,SOD),過氧化氫酶(Catalase,CAT),過氧化物酶(Peroxidase,POD)以及谷胱甘肽過氧化物酶(Glutathione Peroxidase,GSH-Px)等抗氧自由基酶系統(tǒng),通過清除過量的活性氧類(Reactive Oxygen Species,ROS)使細(xì)胞免于損傷。病變損傷使得細(xì)胞內(nèi)還原型輔酶Ⅱ(Nicotinamide Adenine Dinucleotidephosphate,NADPH)、一氧化氮合酶(NOS)、黃嘌呤氧化酶(XOD)及線粒體中的電子傳遞(ETC)產(chǎn)生氧化損傷的過程,從而影響血管內(nèi)皮,降低內(nèi)皮細(xì)胞對(duì)一氧化氮(NO)生物利用度,并通過介導(dǎo)內(nèi)皮損傷,引起功能障礙[1]。如心肌缺血再灌注時(shí)由于抗氧能力下降,氧化應(yīng)激誘導(dǎo)白細(xì)胞趨化性和炎癥的產(chǎn)生造成嚴(yán)重的心肌細(xì)胞損傷,影響心功能即心臟收縮功能[2]。鈣超載和氧化應(yīng)激水平升高導(dǎo)致線粒體膜和電子傳遞鏈的損傷,線粒體通透性轉(zhuǎn)換孔的開放和線粒體氧化磷酸化的解偶聯(lián),這些變化隨后引發(fā)線粒體結(jié)構(gòu)和功能的改變,導(dǎo)致細(xì)胞代謝減少[3]。

        研究表明,中藥黃連的提取物小檗堿可以減少心肌超氧化物生成,提高M(jìn)DA含量和SOD活性,并減輕中性粒細(xì)胞浸潤(rùn)和炎癥反應(yīng),從而保護(hù)心肌免受心肌再灌注心肌氧化應(yīng)激損傷[4]。從補(bǔ)骨脂(豆科)種子中分離出來的單萜酚,補(bǔ)骨脂酚(BAK)通過激活SIRT1/PGC-1a通路,可以減弱線粒體氧化損傷,并且增加線粒體琥珀酸脫氫酶,細(xì)胞色素氧化酶和線粒體超氧化物歧化酶的活性,保護(hù)心肌細(xì)胞[5]。其他中藥有效成分抗氧化應(yīng)激的分子機(jī)制見表1。

        2 抗纖維化

        心肌纖維化(Myocardial Fibrosis,MF)是以細(xì)胞外基質(zhì)(Extracellular Matrix,ECM)分泌增加及過量沉淀為特點(diǎn)的,由于細(xì)胞外基質(zhì)的合成與降解失調(diào),各類心肌細(xì)胞膠原排列紊亂,比例失衡,是多種心肌疾病、心力衰竭及心律失常等心臟疾病的主要原因之一[11]。心肌纖維化是高血壓、心肌梗死、病毒性心肌炎、動(dòng)脈粥樣硬化、糖尿病、心力衰竭等多種心血管疾病共同的病理產(chǎn)物。其作用機(jī)制多復(fù)雜,與氧化應(yīng)激、炎癥介質(zhì)、生長(zhǎng)因子等相關(guān)。心肌纖維化的調(diào)控因子中,TGF-β參與成纖維細(xì)胞的分化、增殖、ECM的生成與遷移。TGF-β家族包含5種同型調(diào)節(jié)蛋白,TGF-β1是其主要亞型,Smads蛋白是其信號(hào)轉(zhuǎn)導(dǎo)分子。心肌成纖維細(xì)胞包含5種膠原蛋白,以Ⅰ型和Ⅲ型膠原纖維為主。TGF-β1介導(dǎo)膠原纖維表達(dá)和纖聯(lián)蛋白合成上升及分解下降[11]。Wnt通路包含的主要有Wnt蛋白20種,并參與心肌細(xì)胞分化、增殖、凋亡,并在細(xì)胞極性和細(xì)胞衰老中具有重要作用。Wnt通路又分為經(jīng)典和非經(jīng)典通路,非經(jīng)典通路分為,Wnt/Ca2+信號(hào)通路、平面細(xì)胞極性通路[12]。

        對(duì)于中藥有效成分抗纖維化的研究較多。因此,中藥能夠抵抗心肌纖維化的物質(zhì)基礎(chǔ)是由于其成分較為復(fù)雜性,但也增加了對(duì)具體成分的研究增加了難度。所以,中藥有效成分的研究更有利于說明中藥療效的內(nèi)在機(jī)制。具體中藥有效成分的研究見表2。

        3 抑制細(xì)胞凋亡

        細(xì)胞凋亡(Apoptosis)由多種心血管疾病導(dǎo)致的低氧、氧化應(yīng)激等刺激誘導(dǎo)并發(fā)生,該機(jī)制進(jìn)一步是心血管疾病惡化重要因素之一[21]。心肌細(xì)胞凋亡由凋亡效應(yīng)物Caspase引發(fā)級(jí)聯(lián)反應(yīng),誘導(dǎo)細(xì)胞凋亡。Caspase可由內(nèi)在途徑(線粒體凋亡途徑)激活[22],內(nèi)在途徑中,細(xì)胞色素C(CytC)介導(dǎo),通過Bcl-2蛋白家族調(diào)節(jié)。另一方面,死亡受體Fas與配體結(jié)合,可啟動(dòng)死性信號(hào)轉(zhuǎn)導(dǎo),引起細(xì)胞凋亡。許多中藥有效成分都可通過抑制Bax、cyt-c、Caspase和上調(diào)Bcl-2等線粒體途徑機(jī)制抑或者通過抑制外在途徑方式,抑制細(xì)胞凋亡保護(hù)心肌。如和厚樸酚在STZ誘導(dǎo)的糖尿病1型大鼠模型中通過SIRT1-Nrf2信號(hào)通路,增加Bcl-2/Bax比例,并減少Cleaved Caspase 3和胞質(zhì)細(xì)胞色素C的表達(dá),從而抑制細(xì)胞凋亡。見表3。

        4 抗炎癥

        作為影響心血管事件發(fā)生的關(guān)鍵因素[28],炎癥反應(yīng)在心血管疾病中具有重要的促進(jìn)作用。例如,隨著對(duì)冠心病研究的不斷深入,炎癥貫穿了動(dòng)脈粥樣硬化的各個(gè)階段,從脂質(zhì)條紋的形成,到斑塊破裂??寡字委煴徽J(rèn)為治療心血管疾病最有前途的干預(yù)靶點(diǎn)[29]。參與心血管疾病炎癥過程的包括細(xì)胞成分(單核細(xì)胞、巨噬細(xì)胞及淋巴細(xì)胞等),炎癥介質(zhì)(IL-1、IL-6、TNF、AngⅡ等)。中藥被應(yīng)用于治療心血管疾病過程中,抗炎是其主要機(jī)制之一。

        中藥成分槲皮素是一種AMPK的激動(dòng)劑,在氧化低密度脂蛋白(ox-LDL)誘導(dǎo)的內(nèi)皮細(xì)胞氧化損傷模型中,通過激活A(yù)MPK,并通過抑制NOX2、NOX4減少氧化應(yīng)激損傷,并提高eNOS,改善內(nèi)皮細(xì)胞功能。蘿卜硫素是一種天然存在于廣泛食用的蔬菜中的異硫氰酸酯,特別是西蘭花,在糖尿病的心臟保護(hù)中起著重要作用。在2型糖尿?。═2DM)誘導(dǎo)的心肌病模型中,通過LKB1/AMPK信號(hào)通路下調(diào)PAI-1,TNF-α,CTGF,TGF-β,3-NT等,改善心臟的炎癥反應(yīng),從而預(yù)防T2DM誘導(dǎo)的脂毒性和心肌病[30]。見表4。

        5 改善線粒體功能

        心臟對(duì)線粒體產(chǎn)生的能量代謝具有高度依賴性,心肌細(xì)胞中線粒體占據(jù)心肌體積的30%,每天通過氧化磷酸化并使用脂肪酸作為底物,合成6~7 kg的ATP[31]。使心臟ATP供應(yīng)與需求相匹配,對(duì)于滿足心臟興奮與收縮偶合的需求至關(guān)重要。線粒體除了作為供應(yīng)能源的關(guān)鍵外,還在細(xì)胞內(nèi)充當(dāng)鈣庫(kù),參與細(xì)胞凋亡和壞死途徑,以及充當(dāng)Krebs循環(huán)和脂肪酸β-氧化的代謝樞紐[32]。而受損的線粒體除產(chǎn)生的ATP更少,并產(chǎn)生危險(xiǎn)量的活性氧(ROS),累積的ROS可能會(huì)破壞線粒體DNA,膜脂和呼吸系統(tǒng)復(fù)合蛋白,導(dǎo)致氧化破壞的災(zāi)難性前饋循環(huán),最終導(dǎo)致細(xì)胞死亡,因此,維持健康的線粒體功能對(duì)于心臟穩(wěn)態(tài)至關(guān)重要[33-35]。見表5。

        6 結(jié)論

        我們?nèi)婊仡櫫藛挝吨兴幊煞衷谵卓剐难芗膊》矫嫠龅呐?,并著重指出了其?duì)心血管疾病拮抗作用的證據(jù)和相關(guān)機(jī)制,希望對(duì)進(jìn)一步開發(fā)潛在的治療策略提供新的見解。

        盡管在臨床前研究中中藥成分在拮抗心血管病變?nèi)〉昧撕艽筮M(jìn)展,但尚未將其轉(zhuǎn)化為可用于人類受試者的臨床藥物。以缺乏生物利用度為代表的一系列障礙阻礙了中藥活性成分進(jìn)一步使用以及開發(fā),此外,在研究中藥活性成分拮抗心血管病變中,采用不同的研究模型會(huì)導(dǎo)致差異??傮w而言,基礎(chǔ)、臨床研究人員以及臨床醫(yī)生的協(xié)調(diào)努力對(duì)于增進(jìn)我們對(duì)單味中藥成分潛在健康益處的理解至關(guān)重要。

        參考文獻(xiàn)

        [1]Truong VL,Jun M,Jeong WS.Role of resveratrol in regulation of cellular defense systems against oxidative stress[J].Biofactors,2018,44(1):36-49.

        [2]Petrosillo G,Ruggiero FM,Di Venosa N,et al.Decreased complex Ⅲ activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion:role of reactive oxygen species and cardiolipin[J].FASEB J,2003,17(6):714-716.

        [3]Murphy E,Steenbergen C.Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury[J].Physiol Rev,2008,88(2):581-609.

        [4]Yu L,Li Q,Yu B,et al.Berberine Attenuates Myocardial Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Inflammation Response:Role of Silent Information Regulator 1[J].Oxid Med Cell Longev,2016,2016:1689602.

        [5]Feng J,Yang Y,Zhou Y,et al.Bakuchiol attenuates myocardial ischemia reperfusion injury by maintaining mitochondrial function:the role of silent information regulator 1[J].Apoptosis,2016,21(5):532-545.

        [6]Ungvari Z,Labinskyy N,Mukhopadhyay P,et al.Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells[J].Am J Physiol Heart Circ Physiol,2009,297(5):H1876-81.

        [7]Xia N,Daiber A,Habermeier A,et al.Resveratrol reverses endothelial nitric-oxide synthase uncoupling in apolipoprotein E knockout mice[J].J Pharmacol Exp Ther,2010,335(1):149-54.

        [8]Sun Y,Hu X,Hu G,et al.Curcumin Attenuates Hydrogen Peroxide-Induced Premature Senescence via the Activation of SIRT1 in Human Umbilical Vein Endothelial Cells[J].Biol Pharm Bull,2015,38(8):1134-1141.

        [9]Zhong W,Huan XD,Cao Q,et al.Cardioprotective effect of epigallocatechin-3-gallate against myocardial infarction in hypercholesterolemic rats[J].Exp Ther Med,2015,9(2):405-410.

        [10]Zhang Z,Wang S,Zhou S,et al.Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway[J].J Mol Cell Cardiol,2014,77:42-52.

        [11]Tao H,Yang JJ,Shi KH,et al.DNA methylation in cardiac fibrosis:new advances and perspectives[J].Toxicology,2014,323:125-129.

        [12]Takada S,F(xiàn)ujimori S,Shinozuka T,et al.Differences in the secretion and transport of Wnt proteins[J].J Biochem,2017,161(1):1-7.

        [13]Chen T,Li J,Liu J,et al.Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway[J].Am J Physiol Heart Circ Physiol,2015,308(5):H424-34.

        [14]Lin CH,Lin CC,Ting WJ,et al.Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts[J].Age(Dordr),2014,36(5):9705.

        [15]Sin TK,Yu AP,Yung BY,et al.Modulating effect of SIRT1 activation induced by resveratrol on Foxo1-associated apoptotic signalling in senescent heart[J].J Physiol,2014,592(12):2535-2548.

        [16]Chen R,Xue J,Xie M.Puerarin prevents isoprenaline-induced myocardial fibrosis in mice by reduction of myocardial TGF-β1 expression[J].J Nutr Biochem,2012,23(9):1080-1085.

        [17]Li M,Jiang Y,Jing W,et al.Quercetin provides greater cardioprotective effect than its glycoside derivative rutin on isoproterenol-induced cardiac fibrosis in the rat[J].Can J Physiol Pharmacol,2013,91(11):951-959.

        [18]Soetikno V,Sari FR,Sukumaran V,et al.Curcumin prevents diabetic cardiomyopathy in streptozotocin-induced diabetic rats:possible involvement of PKC-MAPK signaling pathway[J].Eur J Pharm Sci,2012,47(3):604-614.

        [19]Zhang Z,Qu X,Ni Y,et al.Triptolide protects rat heart against pressure overload-induced cardiac fibrosis[J].Int J Cardiol,2013,168(3):2498-2505.

        [20]Samuel SM,Thirunavukkarasu M,Penumathsa SV,et al.Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction:switching gears toward survival and longevity[J].J Agric Food Chem,2008,56(20):9692-968.

        [21]Ibáez B,Heusch G,Ovize M,et al.Evolving therapies for myocardial ischemia/reperfusion injury[J].J Am Coll Cardiol,2015,65(14):1454-1471.

        [22]Sardo VA,Oliveira PJ,Holy J,et al.Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts[J].Cancer Chemother Pharmacol,2009,64(4):811-827.

        [23]Xu ZW,Chen X,Jin XH,et al.SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes[J].J Proteomics,2016,130:211-220.

        [24]Lv X,Yu X,Wang Y,et al.Berberine inhibits doxorubicin-triggered cardiomyocyte apoptosis via attenuating mitochondrial dysfunction and increasing Bcl-2 expression[J].PLoS One,2012,7(10):e47351.

        [25]Zhang C,F(xiàn)eng Y,Qu S,et al.Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53[J].Cardiovasc Res,2011,90(3):538-545.

        [26]Morimoto T,Sunagawa Y,Kawamura T,et al.The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats[J].J Clin Invest,2008,118(3):868-878.

        [27]Zhang B,Zhai M,Li B,et al.Honokiol Ameliorates Myocardial Ischemia/Reperfusion Injury in Type 1 Diabetic Rats by Reducing Oxidative Stress and Apoptosis through Activating the SIRT1-Nrf2 Signaling Pathway[J].Oxid Med Cell Longev,2018,2018:3159801.

        [28]Li JJ,F(xiàn)ang CH.Atheroscleritis is a more rational term for the pathological entity currently known as atherosclerosis[J].Med Hypotheses,2004,63(1):100-102.

        [29]Manickavasagam D,Novak K,Oyewumi MO.Therapeutic Delivery of Simvastatin Loaded in PLA-PEG Polymersomes Resulted in Amplification of Anti-inflammatory Effects in Activated Microglia[J].AAPS J,2017,20(1):18.

        [30]Hung CH,Chan SH,Chu PM,et al.Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation[J].Mol Nutr Food Res,2015,59(10):1905-1917.

        [31]Taegtmeyer H.Energy metabolism of the heart:from basic concepts to clinical applications[J].Curr Probl Cardiol,1994,19(2):59-113.

        [32]Spinelli JB,Haigis MC.The multifaceted contributions of mitochondria to cellular metabolism[J].Nat Cell Biol,2018,20(7):745-754.

        [33]Whelan RS,Kaplinskiy V,Kitsis RN.Cell death in the pathogenesis of heart disease:mechanisms and significance[J].Annu Rev Physiol,2010,72:19-44.

        [34]Li T,Zhang Y,Tian J,et al.Ginkgo biloba Pretreatment Attenuates Myocardial Ischemia-Reperfusion Injury via mitoBKCa[J].Am J Chin Med,2019,47(5):1057-1073.

        [35]Li D,Liu M,Tao TQ,et al.Panax quinquefolium saponin attenuates cardiomyocyte apoptosis and opening of the mitochondrial permeability transition pore in a rat model of ischemia/reperfusion[J].Cell Physiol Biochem,2014,34(4):1413-1426.

        (2020-03-13收稿 責(zé)任編輯:楊覺雄)

        本期責(zé)任編輯:徐穎

        基金項(xiàng)目:國(guó)家自然科學(xué)基金委員會(huì)青年科學(xué)基金項(xiàng)目(81803906);林謙北京市中醫(yī)局科技提升項(xiàng)目(2012C01)

        作者簡(jiǎn)介:陳聰(1991.10—),男,博士研究生在讀,研究方向:氣血相關(guān)理論與心血管疾病的臨床和基礎(chǔ)研究,E-mail:706427081@qq.com

        通信作者:林謙(1962.05—),女,博士,主任醫(yī)師,研究方向:氣血相關(guān)理論與心血管疾病的臨床和基礎(chǔ)研究;心氣虛證的實(shí)質(zhì)研究;中西醫(yī)結(jié)合防治冠狀動(dòng)脈介入治療后再狹窄研究;循證醫(yī)學(xué)與中西醫(yī)結(jié)合心血管病研究,E-mail:linqian62@126.com

        猜你喜歡
        心血管病線粒體氧化應(yīng)激
        《心血管病防治知識(shí)》征稿啟事
        《心血管病防治知識(shí)》征稿啟事
        《心血管病防治知識(shí)》征稿啟事
        棘皮動(dòng)物線粒體基因組研究進(jìn)展
        《心血管病防治知識(shí)》征稿啟事
        線粒體自噬與帕金森病的研究進(jìn)展
        基于炎癥-氧化應(yīng)激角度探討中藥對(duì)新型冠狀病毒肺炎的干預(yù)作用
        氧化應(yīng)激與糖尿病視網(wǎng)膜病變
        氧化應(yīng)激與結(jié)直腸癌的關(guān)系
        NF-κB介導(dǎo)線粒體依賴的神經(jīng)細(xì)胞凋亡途徑
        中文字幕日韩精品有码视频| 成人综合久久精品色婷婷| 国内精品熟女一区二区| 国产视频激情在线观看| 日本做受120秒免费视频| 国产成人www免费人成看片| 国产69精品一区二区三区| 日本人妻高清免费v片| 欧美精品欧美人与动人物牲交| 熟妇的荡欲色综合亚洲| 久久国产成人免费网站| 亚洲精品国产av成人网| 久久精品国产99久久久| 国产精品人成在线观看不卡| 视频在线观看一区二区三区| 国产av丝袜旗袍无码网站 | 亚洲国产精品久久久久秋霞1| 亚洲av中文字字幕乱码| 熟女人妻中文字幕av| 国产国拍精品av在线观看按摩| 99国产精品丝袜久久久久| 伊人久久综合狼伊人久久| 欧美亅性猛交内射| 国产在线观看www污污污| 成在线人视频免费视频| 久久婷婷综合色一区二区| 白丝爆浆18禁一区二区三区| 色欲麻豆国产福利精品| 中国老太老肥熟女视频| 成熟妇女毛茸茸性视频| 边喂奶边中出的人妻| 日日摸日日碰人妻无码老牲| 国产自拍精品在线视频| 久久中文骚妇内射| 国产av无码专区亚洲av手机麻豆| 亚洲女同系列高清在线观看| 91精品国产综合久久久密臀九色 | 免费黄网站久久成人精品| 色视频不卡一区二区三区| 天天摸夜夜摸夜夜狠狠摸| 欧美日韩国产免费一区二区三区欧美日韩 |