郭志雄,孫冷雪,鄭嘉敏,蔡燦軍,王蓓,李開拓,潘騰飛,佘文琴,陳桂信,潘東明
荔枝果皮BPox的分離純化及其在果實(shí)成熟過程中的表達(dá)
郭志雄1,2,孫冷雪2,鄭嘉敏2,蔡燦軍2,王蓓2,李開拓2,潘騰飛1,2,佘文琴1,2,陳桂信1,2,潘東明1,2
1福建農(nóng)林大學(xué)園藝產(chǎn)品貯藏保鮮研究所,福州 350002;2福建農(nóng)林大學(xué)園藝學(xué)院,福州 350002
【】植物第III類過氧化物酶具有廣泛的生理功能。前期研究發(fā)現(xiàn)荔枝果皮具高活性的離子結(jié)合態(tài)過氧化物酶(BPox),與果實(shí)的著色、成熟密切關(guān)聯(lián),但其特性、作用機(jī)制不清楚。明確BPox的生化特性及其基因表達(dá)變化,為進(jìn)一步研究BPox參與荔枝果實(shí)著色和成熟機(jī)制奠定基礎(chǔ)。以‘烏葉’荔枝成熟果果皮為材料,通過提取及Streamline Phenyl、CM-52、Phenyl Sepharose HP和Superdex 200等柱層析,純化獲得BPox。測定BPox的最適反應(yīng)pH、最適反應(yīng)溫度、底物特異性、抑制劑等生化特性。采用雙倒數(shù)法測定其催化愈創(chuàng)木酚、(?)-表兒茶素的Km值及Vmax。應(yīng)用MALDI串聯(lián)質(zhì)譜鑒定BPox的肽段序列,克隆BPox的cDNA。分別測定盛花后58、69、76、80和90 d荔枝果皮BPox的活性變化,應(yīng)用熒光定量PCR分析BPox的基因表達(dá)變化。從荔枝果皮純化得到BPox最主要的2個(gè)組分,分別命名為BPox-2和BPox-3。凝膠過濾層析和SDS-PAGE結(jié)果顯示,BPox-2和BPox-3的表觀分子量分別約為30 kD和34 kD。BPox-2和BPox-3的最適反應(yīng)pH均為6.0,最適反應(yīng)溫度分別為40℃和45℃;二者具有相似的底物特異性;DTT、ASA和L-Cys等能強(qiáng)烈抑制其活性。BPox-2和BPox-3催化愈創(chuàng)木酚的Km值分別為2.97和2.58 mmol?L-1,其Vmax分別為38.72×106和23.06×106U?mg-1;其催化(?)-表兒茶素的Km值分別為3.49和3.24 mmol?L-1,Vmax分別為38.72×106和23.06×106U?mg-1。盡管BPox-2和BPox-3的肽質(zhì)量指紋(PMF)不同,串聯(lián)質(zhì)譜分析顯示,二者均具一個(gè)序列為TASLSAANSDLPSPFADLATLIAR的胰酶水解肽段??寺〉玫降腸DNA,大小為960 bp,共編碼319個(gè)氨基酸。cDNA編碼的多肽鏈N端包含1段26個(gè)氨基酸殘基的信號肽,C端缺乏液泡分選序列,具1個(gè)潛在的N-糖基化修飾位點(diǎn)。幼果期,荔枝果皮BPox的活性表現(xiàn)弱;至盛花后76 d,果皮開始著色變紅,BPox的活性迅速啟動(dòng)升高直至果實(shí)成熟。qPCR的結(jié)果顯示,在盛花后的58和69 d,果皮的轉(zhuǎn)錄水平很低;盛花后76 d,的表達(dá)急劇上升,達(dá)到高峰,為盛花后69 d的60.56倍,而后下降。至盛花后90 d,其表達(dá)水平又顯著上升。荔枝果皮的BPox-2與BPox-3最適反應(yīng)pH、最適反應(yīng)溫度、底物特異性等與荔枝果皮可溶性Pox組分相似,但其對愈創(chuàng)木酚和(?)-表兒茶素的催化效率顯著高于SPox。BPox-2與BPox-3同為所編碼,因翻譯后修飾差異而形成同工酶。參與荔枝果皮的著色和成熟進(jìn)程,其活性受轉(zhuǎn)錄水平調(diào)控。
荔枝;結(jié)合態(tài)過氧化物酶;純化;質(zhì)譜鑒定;基因表達(dá);著色和成熟
【研究意義】過氧化物酶(Pox)主要催化H2O2與各種氫(電子)供體之間的氧化還原反應(yīng),普遍存在于動(dòng)物、植物和微生物。植物Pox超家族可分為I類、II類和III類等3種不同類型。源于高等植物的第III類Pox(EC 1.11.1.7)是細(xì)胞系統(tǒng)的守護(hù)者(caretaker),具有廣泛的生理功能,通過分泌至液泡或者胞外,參與植物諸如脅迫反應(yīng)、生長素代謝、木質(zhì)素合成、細(xì)胞壁代謝、自由基清除等各種反應(yīng)及各個(gè)過程[1-3]。有研究發(fā)現(xiàn),Pox參與果實(shí)的著色、成熟[4-5]。探討Pox參與果實(shí)發(fā)育的作用機(jī)制,對果實(shí)品質(zhì)形成及其調(diào)控研究意義顯著?!厩叭搜芯窟M(jìn)展】植物Pox存在可溶態(tài)、結(jié)合態(tài)以及束縛態(tài)等3種不同的形式,束縛態(tài)以共價(jià)結(jié)合方式存在于細(xì)胞壁[6]。在荔枝中,由于Pox與采后果皮迅速酶促褐變的密切關(guān)聯(lián)性使其頗受關(guān)注[7-13],但前人對荔枝Pox的研究都集中于可溶態(tài)部分,對果皮中的結(jié)合態(tài)Pox(BPox)只有初步的分析[13-14]。筆者前期的研究發(fā)現(xiàn),前人采用去垢劑(Triton X-100)提取荔枝果皮的BPox很不充分,只能獲得其中的個(gè)別組分[15]。前期的研究還發(fā)現(xiàn),果皮BPox表現(xiàn)為堿性,組分豐富;動(dòng)態(tài)觀測顯示,幼果期果皮BPox活性微弱,轉(zhuǎn)色期開始,BPox驟然表現(xiàn)活躍,活性迅速上升直至果實(shí)成熟?!颈狙芯壳腥朦c(diǎn)】目前的研究已初步表明,BPox與荔枝果實(shí)的發(fā)育、成熟關(guān)系密切,但其特性、作用機(jī)制不明?!緮M解決的關(guān)鍵問題】本研究以‘烏葉’荔枝果實(shí)為材料,開展果皮BPox組分的分離純化、生化特性分析、質(zhì)譜鑒定和cDNA克隆研究,分析其在果實(shí)轉(zhuǎn)色和成熟過程中的基因表達(dá)變化,為進(jìn)一步揭示其參與荔枝果實(shí)的發(fā)育、成熟及果實(shí)采后衰老、褐變的機(jī)制奠定基礎(chǔ)。
試驗(yàn)于2016—2017年在福建農(nóng)林大學(xué)進(jìn)行。
試驗(yàn)所使用的‘烏葉’荔枝果實(shí)采自福建省漳州市,分別于盛花后58、69、76、80和90 d采摘不同發(fā)育階段的果實(shí)。果實(shí)于當(dāng)天早晨采摘,立即夾冰運(yùn)回實(shí)驗(yàn)室。每次選取發(fā)育一致的果實(shí),取果皮,液氮速凍3—5 min,置于-80℃冰箱保存?zhèn)溆谩?/p>
荔枝果皮BPox的提取參照王蓓等[15]的方法,做適當(dāng)調(diào)整。取盛花后90 d果實(shí)的果皮100 g,經(jīng)反復(fù)提取、離心去除可溶性蛋白(包括可溶性Pox)。在殘?jiān)屑尤隑Pox提取緩沖液(0.1 mol?L-1Tris- HCl(pH 8.0),20%(v/v)甘油,3.0 mol?L-1NaCl,0.1%(v/v)Triton X-100)500 mL,16℃振蕩提取1 h;4℃下19 000×離心20 min。上清液為BPox粗酶液。
Streamline Phenyl柱(Amersham Phamarcia產(chǎn)品,2.6 cm×15 cm)以BPox提取緩沖液平衡4—5個(gè)柱體積。粗酶液上柱,以2個(gè)柱體積平衡緩沖液洗柱,以10 mmol?L-1Tris-HCl(pH 8.0),20%甘油,0.1% Triton X-100洗脫獲得BPox活性部分并透析除鹽48 h。
CM-52柱(Whatman產(chǎn)品,1.6 cm×15 cm)以10 mmol?L-1Tris-HCl(pH 8.0),20%甘油緩沖液平衡。將透析后的酶液上柱,平衡緩沖液洗柱,以0—0.3 mol?L-1NaCl進(jìn)行線性梯度洗脫。分部收集,檢測活性。分別收集合并兩個(gè)主要活性峰,并命名為BPox-2和BPox-3,用于Phenyl疏水層析純化。
Phenyl Sepharose HP柱(Amersham Phamarcia產(chǎn)品,1.6 cm×15 cm)以40 mmol?L-1Tris-HCl(pH 8.0),25%甘油,1.1 mol?L-1(NH4)2SO4緩沖液平衡4—5個(gè)柱體積。將BPox-2和BPox-3對平衡液按1﹕20稀釋,分別上柱。洗柱,以1.1—0 mol?L-1(NH4)2SO4逆梯度洗脫。分別檢測活性,合并活性峰管。采用Ultra 4(Millipore產(chǎn)品,10K)進(jìn)行離心超濾,濃縮至400—500 μL,用于分子篩色譜。
Superdex 200柱(Amersham Phamarcia產(chǎn)品,1.6 cm×66 cm)以50 mmol?L-1Tris-HCl(pH 8.0),100 mmol?L-1NaCl,10%甘油緩沖液平衡。樣品分別過柱、洗脫。檢測活性,合并活性峰管,超濾濃縮獲得純化的BPox。調(diào)整甘油終濃度至20%,將純化的BPox-2和BPox-3置于-40℃保存?zhèn)溆谩?/p>
采用BCA微量法進(jìn)行蛋白質(zhì)定量測定,BCA試劑盒購于上海生工生物工程有限公司。按試劑盒說明書進(jìn)行定量操作。
非變性陰極凝膠電泳及酶染顯色按照王蓓等[15]的方法。SDS-PAGE按Guo等[16]的方法。分子量標(biāo)準(zhǔn)采用Takara公司的Protein Molecular Weight Marker(High)。按Blum等[17]的方法進(jìn)行銀鹽染色。
pH在3.0—6.0采用磷酸-檸檬酸緩沖液,pH 6.0—8.0采用磷酸緩沖液,分別測定BPox的最適反應(yīng)pH,重復(fù)3次。
以50 mmol?L-1磷酸緩沖液(pH 6.0)為反應(yīng)緩沖系,在15—70℃條件下分別測定BPox的最適催化反應(yīng)溫度;測定BPox對不同酚類底物的特異性;測定不同金屬離子及各抑制劑對BPox相對活性的影響;分別測定BPox催化愈創(chuàng)木酚和(?)-表兒茶素的Km值和Vmax。每個(gè)反應(yīng)均重復(fù)3次,規(guī)定470 nm條件下每min變化0.001為1個(gè)酶活力單位(U)。
將SDS-PAGE后銀鹽染色顯色的BPox條帶用干凈的刀片切出。按李開拓[18]的方法,將凝膠切成小塊,脫色、干燥;Trypsin酶解;肽段經(jīng)提取、干燥和溶解;之后采用AB SCIEX 5800質(zhì)譜儀進(jìn)行MALDI-TOF/ TOF分析。應(yīng)用Mascot工具對荔枝轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行本地化檢索匹配鑒定。
按王蓓[19]的方法提取荔枝果皮總RNA。采用Invitrogen公司的SuperScriptTMFirst-Strand Synthesis System合成第一鏈cDNA。根據(jù)質(zhì)譜的匹配結(jié)果,設(shè)計(jì)開放閱讀框(ORF)擴(kuò)增引物,BPx_F:5′-ATGGCTT CCACTAGTACAATCCAGT-3′,BPx_R:5′-TCAGTTG ACAGCGCTGCAAACGCT-3′;以cDNA為模板,對上述引物進(jìn)行PCR擴(kuò)增,產(chǎn)物與T載體連接,轉(zhuǎn)化、鑒定并進(jìn)行測序。
分別取不同發(fā)育時(shí)期的果皮,按王蓓等[15]的方法進(jìn)行BPox的提取和活性測定,3次重復(fù)。
應(yīng)用熒光定量PCR分析荔枝果實(shí)轉(zhuǎn)色與成熟過程果皮BPox的轉(zhuǎn)錄水平變化。分別提取不同發(fā)育時(shí)期果皮的總RNA,采用TaKaRa公司的PrimeScript? RT reagent Kit with gDNA Eraser進(jìn)行cDNA合成;應(yīng)用Primer Premier 5.0設(shè)計(jì)BPox的qPCR引物,分別為:Bpx_qF:5′-CGAGATGGAGTTGTCTTGCTTGGAG -3′和Bpx_qR:5′-TGGTTTCGTTGTAGATGCGGTTGC -3′,選擇為內(nèi)參基因,設(shè)計(jì)一對引物,分別為:Act_qF:5′-ACTGGTGTGATGGTTGGTATGG-3′和Act_qR:5′-GTTCAATCGGGTATTTCAAGGTAAG-3′,采用Genestar公司的SYBR試劑,運(yùn)用Jena公司的PCR儀QTOWER3進(jìn)行擴(kuò)增和溶解曲線分析。將盛花后58 d的表達(dá)量定為1,按Livak和Schmittgen[20]提出的2-ΔΔCt法計(jì)算相對表達(dá)量并進(jìn)行統(tǒng)計(jì)分析。
運(yùn)用Excel 2010進(jìn)行方差分析,采用法進(jìn)行數(shù)據(jù)的多重比較(<0.01)。
將制得的荔枝果皮BPox粗酶液過Streamline Phenyl柱,采用一步洗脫,得到單一洗脫活性峰,洗脫峰具一定的拖尾特性(數(shù)據(jù)未顯示)。合并活性部分共得酶液約50 mL,使BPox得以高效濃縮。
膜透析濃縮后的酶液過陽離子交換纖維素CM-52柱,以0—0.3 mol?L-1NaCl 進(jìn)行線性梯度洗脫。結(jié)果顯示,荔枝果皮的BPox可進(jìn)一步分辨為3個(gè)主要的活性峰;其中,第1峰活性較低且與第2峰有粘連,第2個(gè)活性峰最大,第3活性部分洗脫出峰稍寬(圖1-A)。將3個(gè)活性峰管分別收集合并。非變性陰極電泳酶染結(jié)果顯示,3個(gè)活性峰均表現(xiàn)為雙譜帶型,第2和第3活性峰分別為荔枝果皮BPox最主要的兩個(gè)組分(圖1-B)。活性弱的第1組分峰BPox-1和筆者之前對荔枝果皮BPox進(jìn)行分離純化的初步研究結(jié)果吻合[21]。將兩個(gè)主要活性組分分別命名為BPox-2和BPox-3,進(jìn)行進(jìn)一步的柱層析純化。
1:BPox粗酶液;2:BPox-1;3:BPox-2;4:BPox-3 1: crude extract of BPox; 2: BPox-1; 3, BPox-2; 4: BPox-3
BPox-2和BPox-3在Phenyl Sepharose柱疏水層析及其之后的Superdex 200分子篩色譜均表現(xiàn)為單一的洗脫活性峰,這表明各自組分內(nèi)的酶譜帶性質(zhì)極為接近而不能相互分離。分子篩色譜的結(jié)果顯示BPox-2和BPox-3的分子量均為30 kD(圖2)。
分子量標(biāo)準(zhǔn)由甲狀腺球蛋白(670 kD)、g-球蛋白(158 kD)、卵清蛋白(44 kD)、肌紅蛋白(17 kD)和維生素B12(1.36 kD)組成
10%—15%的線性梯度SDS凝膠電泳后的銀染結(jié)果顯示,BPox-2和BPox-3獲得了純化,其中未顯示可見的雜蛋白;兩組分均顯示雙蛋白條帶,對應(yīng)于組分內(nèi)的雙酶譜帶。其表觀分子量極其接近,約為34 kD(圖3)。說明荔枝果皮BPox的這兩個(gè)組分均為單體蛋白。
2.2.1 最適反應(yīng)pH 不同pH條件下的活性測定結(jié)果顯示,BPox-2和BPox-3催化愈創(chuàng)木酚反應(yīng)的最適pH均為6.0。兩者在不同pH下的活性變化趨勢十分相似,在pH 5.0—7.0內(nèi),能維持較高的活性;pH<5.5或者pH>7.0,二者的活性下降很快(圖4)。
2.2.2 最適反應(yīng)溫度 不同溫度下的活性測定結(jié)果顯示,兩組分對不同溫度的反應(yīng)趨勢一致,最適溫度為40℃。溫度超過50℃,其活性下降明顯加快(圖5)。
2.2.3 對不同底物的特異性 底物特異性分析結(jié)果表明,荔枝果皮BPox對不同酚類底物表現(xiàn)出不同的活性,但兩組分對不同底物的比活力大小變化趨勢基本一致,愈創(chuàng)木酚和(?)-表兒茶素為其最適底物,反應(yīng)活性最大(表1)。BPox對其余底物的催化反應(yīng)活性各有不同,其中,BPox-2對4-甲基鄰苯二酚、焦性沒食子酸、鄰苯二酚的催化活性僅分別為愈創(chuàng)木酚的14.52%、10.12%和7.21%,而BPox-3分別為愈創(chuàng)木酚的12.53%、11.50%和10.98%;對沒食子酸、綠原酸、4-甲氧基酚和對苯二酚等底物的催化反應(yīng)活性為弱;對間苯二酚、藜蘆醇、苯甲醇等底物未顯示活性。
圖4 不同pH對BPox-2和BPox-3活性的影響
圖5 不同溫度對BPox-2和BPox-3活性的影響
表1 BPox-2/3對不同底物的比活力
2.2.4 金屬離子及抑制劑的影響 以愈創(chuàng)木酚為底物,測定金屬離子及抑制劑對BPox活性的影響。結(jié)果顯示,金屬離子Mn2+、Ca2+、Fe3+對BPox-2、BPox-3的抑制作用較微弱,在Cu2+的作用下,BPox表現(xiàn)的相對活性有所增加;螯合劑EDTA對其活性影響弱;L-半胱氨酸強(qiáng)烈抑制兩組分的活性。終濃度為0.1 mmol?L-1時(shí),其相對活性只殘留約20%;DTT和ASA幾乎完全抑制兩組分的活性(表2)。
2.2.5 催化不同底物反應(yīng)的Km值和Vmax根據(jù)雙倒數(shù)法進(jìn)行米氏常數(shù)的測定,結(jié)果顯示BPox-2和BPox-3對愈創(chuàng)木酚的Km值分別為2.97和2.58 mmol?L-1,二者對愈創(chuàng)木酚的親和性差異不大;但BPox-2催化愈創(chuàng)木酚的最大反應(yīng)初速度Vmax為38.60×106U?mg-1,顯著大于BPox-3的19.85×106U?mg-1(圖6)。同樣,BPox-2和BPox-3對(?)-表兒茶素的Km值分別為3.49和3.24 mmol?L-1,而其Vmax分別為38.72×106和23.06×106U?mg-1(圖7)。表明BPox-2和BPox-3對底物的親和性基本一致,而BPox-2顯示出更強(qiáng)的催化效率(Vmax/Km)。
表2 金屬離子及抑制劑對BPox-2/3活性的影響
將荔枝果皮BPox-2和BPox-3兩個(gè)組分內(nèi)部的雙譜帶依SDS-PAGE分離,按從大至小,分別命名為BPox-2a、BPox-2b和BPox-3a、BPox-3b。分別對其胰酶酶解肽段進(jìn)行質(zhì)譜分析,結(jié)果顯示,組分間的肽質(zhì)量指紋(PMF)差異較大(圖8、9);而組分內(nèi)兩個(gè)譜帶的PMF高度相似,主要肽段一致,只是相對豐度存在一定的差別(數(shù)據(jù)未顯示)。
對4個(gè)蛋白組分的部分肽段進(jìn)行進(jìn)一步的MS/ MS分析,并結(jié)合PMF數(shù)據(jù),對荔枝轉(zhuǎn)錄組數(shù)據(jù)[23]進(jìn)行檢索匹配。結(jié)果顯示,1個(gè)m/z為2 402.2的肽段為BPox-2和BPox-3所共有,其MS/MS的分析結(jié)果表明其為轉(zhuǎn)錄組中Unigene 0021422所編碼(編碼產(chǎn)物GenBank ID:696949335),而MS/MS解析的另外肽段同樣匹配于該轉(zhuǎn)錄本(表3)。上述的質(zhì)譜分析結(jié)果表明,荔枝果皮BPox-2和BPox-3為同一基因(后命名為)的編碼產(chǎn)物因翻譯后加工修飾的顯著不同而形成明顯差異的同工酶組分,而一些翻譯后修飾的細(xì)微區(qū)別,導(dǎo)致組分內(nèi)形成不同的譜帶。
圖6 BPox-2(A)和 BPox-3(B)催化愈創(chuàng)木酚反應(yīng)的雙倒數(shù)曲線
圖8 BPox-2a的MALDI-TOF/MS的肽質(zhì)量指紋圖譜
圖9 BPox-3a的MALDI-TOF/MS的肽質(zhì)量指紋圖譜
BPox-2/3的MS/MS結(jié)果顯示,其匹配的cDNA包含一個(gè)完整的開放閱讀框(ORF)?;诖?,設(shè)計(jì)擴(kuò)增的ORF引物,提取荔枝果皮總RNA,以其逆轉(zhuǎn)錄的cDNA為模板,通過PCR擴(kuò)增獲得1個(gè)大小約1 000 bp的特異產(chǎn)物。
克隆、測序的結(jié)果表明,該ORF大小為960 bp,共編碼319個(gè)氨基酸,與BPox-2/3串聯(lián)質(zhì)譜解析的結(jié)果完全吻合(圖10)。應(yīng)用SignalP-5.0(http://www.cbs. dtu.dk/services/SignalP/)進(jìn)行分析,結(jié)果顯示該cDNA編碼的多肽在N端包含一段26個(gè)氨基酸殘基的信號肽。去除信號肽后,理論分子量為31.35 kD;其理論編碼產(chǎn)物偏堿性,pI為7.71。NetNGlyc 1.0(http://www. cbs.dtu.dk/ser- vices/NetNGlyc/)在線分析顯示,Asn211為一潛在的N型糖基化位點(diǎn)。
劃線部分表示MALDI TOF MS/MS鑒定的BPox組分的共有肽段序列;標(biāo)記為綠色和藍(lán)色的部分分別表示為編碼的信號肽和潛在的糖基化位點(diǎn)
表3 MALDI MS/MS解析BPox-2/3的肽段序列
盛花后58 d,‘烏葉’幼果果皮BPox的活性表現(xiàn)弱,為0.2167×104U?g-1FW。至盛花后76 d,果實(shí)開始轉(zhuǎn)色(圖11-a),其果皮BPox活性顯著上升,達(dá)9.95×104U?g-1FW(<0.01);之后,果皮BPox的活性一直保持快速上升趨勢,直至花后90 d果實(shí)成熟(圖11-b)。而qPCR的結(jié)果顯示,果實(shí)轉(zhuǎn)色前,的轉(zhuǎn)錄水平很低;伴隨果實(shí)著色開始,其表達(dá)水平達(dá)到高峰,為盛花后69 d的60.56倍,之后回落;盛花后80—90 d,果皮的表達(dá)仍呈顯著上升趨勢(圖11-c)。
不同大寫字母表示極顯著差異(P<0.01) Different capital letters indicate significant difference at P<0.01
通過提取和多步驟的柱層析分離,純化獲得荔枝果皮BPox-2和BPox-3。對二者的生化特性分析表明,其最適pH、最適反應(yīng)溫度、底物特異性等總體表現(xiàn)一致,其特性和荔枝可溶性Pox(SPox)組分以及其他來源的Pox表現(xiàn)比較接近[10,19,24]。對比發(fā)現(xiàn),荔枝果皮BPox對愈創(chuàng)木酚和(?)-表兒茶素的催化效率顯著高于SPox組分[19]。(?)-表兒茶素是荔枝果皮重要的多酚類物質(zhì),是采后果皮PPO酶促褐變的直接底物[25-26]。初步研究表明,采后BPox活性變化顯著,與荔枝果皮褐變關(guān)系緊密[21]。BPox與荔枝采后果皮內(nèi)源多酚類物質(zhì)代謝的關(guān)系,有待進(jìn)一步的研究揭示。
一般而言,植物Pox為糖基化蛋白[6]。本研究應(yīng)用MALDI串聯(lián)質(zhì)譜對BPox-2和BPox-3進(jìn)行蛋白鑒定。以此為基礎(chǔ),克隆獲得了荔枝的cDNA。分析顯示,cDNA編碼的多肽僅含1個(gè)潛在的糖基化位點(diǎn),其大小與純化得到的酶蛋白分子很接近。這說明,荔枝BPox肽鏈上的糖基及其他非氨基酸成分所占比重低,側(cè)鏈修飾程度輕。對比筆者之前的研究發(fā)現(xiàn),荔枝SPox cDNA編碼的氨基酸序列(GenBank ID:205326621)則多達(dá)9個(gè)潛在的糖基化位點(diǎn),而理論編碼產(chǎn)物與純化得到的2個(gè)酶組分大小的比值分別為0.802和0.712,顯示其翻譯后的糖基化及其他修飾程度大大高于前者[19]。
此外,根據(jù)C端液泡分選信號(vacuolar sorting signals,VSS)序列的有無,植物分泌型Pox分為液泡型和胞外型[27]。研究顯示,只有液泡型Pox具C端延伸(C-terminal extension,CE)結(jié)構(gòu)[1-2];盡管保守性不高,CE具VSS序列[27-29]。通過與定位于液泡的辣根Pox C1a、大豆Pox等以及與荔枝cDNA編碼的多肽進(jìn)行序列比對,顯示cDNA編碼產(chǎn)物短縮的C端缺乏VSS序列,預(yù)示果皮BPox-2/3定位于胞外。這和荔枝BPox呈離子結(jié)合態(tài),可能結(jié)合于細(xì)胞壁或質(zhì)膜系統(tǒng)相吻合。關(guān)于其結(jié)構(gòu)特點(diǎn)及與其功能的關(guān)聯(lián)性如何有待進(jìn)一步的研究確認(rèn)。
動(dòng)態(tài)觀測的結(jié)果表明,荔枝果實(shí)在轉(zhuǎn)色前,其果皮BPox很不活躍,而伴隨著果皮轉(zhuǎn)色,BPox的活性迅速啟動(dòng)升高直至果實(shí)成熟,這和筆者前期的研究結(jié)果一致[15]。而qPCR的結(jié)果也顯示,在果皮轉(zhuǎn)色期開始,表達(dá)水平大幅上升形成峰值,和BPox的活性變化趨勢一致;但之后,其表達(dá)水平回落;伴隨果實(shí)成熟進(jìn)程,其表達(dá)水平又顯著上升,與活性變化一致。綜上,果皮BPox的變化受轉(zhuǎn)錄水平調(diào)控,其變化與果實(shí)成熟進(jìn)程關(guān)系密切。在草莓中發(fā)現(xiàn)一個(gè)編碼堿性Pox的基因,研究顯示該基因主要參與果實(shí)成熟進(jìn)程中木質(zhì)素的生物合成,的高表達(dá)會競爭多酚類物質(zhì)的代謝前體,改變其代謝流的走向,從而抑制果實(shí)花色苷的生物合成和累積[4]。而其作為果實(shí)木質(zhì)素合成的關(guān)鍵基因,對于提高果實(shí)質(zhì)地具有重要作用[5]。在離體培養(yǎng)的李愈傷組織中也發(fā)現(xiàn)了1個(gè)與花色苷累積特異相關(guān)的結(jié)合態(tài)Pox組分[30]?;ㄉ帐抢笾麑?shí)成熟果皮著色最重要的色素類物質(zhì)[13,31-32],關(guān)于BPox的亞細(xì)胞定位,及其與果皮木質(zhì)素代謝、花色苷積累的關(guān)系等,是進(jìn)一步需要研究的重點(diǎn)問題。
從成熟荔枝果皮分離純化獲得離子結(jié)合態(tài)過氧化物酶最主要的2個(gè)組分BPox-2和BPox-3。對其分析結(jié)果顯示,其最適反應(yīng)pH、最適反應(yīng)溫度、底物特異性等酶學(xué)特性與荔枝果皮可溶性Pox(SPox)組分相似,但BPox對愈創(chuàng)木酚和(?)-表兒茶素的催化效率顯著高于SPox。MALDI串聯(lián)質(zhì)譜分析結(jié)果表明,BPox-2與BPox-3應(yīng)同為所編碼,因翻譯后修飾差異而形成同工酶。cDNA克隆和序列分析發(fā)現(xiàn),其編碼的多肽鏈大小與純化得到的BPox接近,結(jié)果表明,相較于SPox,果皮BPox的翻譯后修飾程度較低。對果皮BPox活性和基因轉(zhuǎn)錄水平的動(dòng)態(tài)變化分析顯示,參與荔枝果皮的著色和成熟進(jìn)程,其活性受轉(zhuǎn)錄水平調(diào)控。
[1] HIRAGA S, SASAKI K, ITO H, OHASHI Y, MATSUI H. A large family of class III plant peroxidases. Plant and Cell Physiology, 2001, 42(5): 462-468.
[2] COSIO C, DUNAND C. Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 2008, 60(2): 391-408.
[3] ZIPOR G, OREN-SHAMIR M. Do vacuolar peroxidases act as plant caretakers? Plant Science, 2013, 199/200: 41-47.
[4] RING L, YEH S Y, HüCHERIG S, HOFFMANN T, BLANCO- PORTALES R, FOUCHE M, VILLATORO C, DENOYES B, MONFORT A, CABALLERO J L, MU?OZ-BLANCO J, GERSHENSON J, SCHWAB W. Metabolic interaction between anthocyanin and lignin biosynthesis is associated with peroxidase FaPRX27 in strawberry fruit. Plant Physiology, 2013, 163(1): 43-60.
[5] YEH S Y, HUANG F C, HOFFMANN T, MAYERSHOFER M, SCHWAB W. FaPOD27 functions in the metabolism of polyphenols in strawberry fruit (sp.). Frontiers in Plant Science, 2014, 5: 518.
[6] 田國忠, 李懷方, 裘維蕃. 植物過氧化物酶研究進(jìn)展. 武漢植物學(xué)研究, 2001, 19(4): 332-344.
TIAN G Z, LI H F, QIU W F. Advances on research of plant peroxidases. Journal of Wuhan Botanical Research, 2001, 19(4): 332-344. (in Chinese)
[7] UNDERHILL S J R, CRITCHLEY C. Cellular localisation of polyphenol oxidase and peroxidase activity inSonn. Pericarp. Australian Journal of Plant Physiology, 1995, 22(4): 627-632.
[8] GONG Q Q, TIAN S P. Partial characterization of soluble peroxidase in pericarp of litchi fruit. Progress in Biochemistry and Biophysics, 2002, 29(6): 891-896.
[9] JIANG Y, DUAN X, JOYCE D, ZHANG Z, Li J. Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chemistry, 2004, 88: 443-446.
[10] 龐學(xué)群, 段學(xué)武, 張昭其, 徐鳳彩, 季作梁. 荔枝果皮過氧化物酶的純化及部分酶學(xué)性質(zhì)研究. 熱帶亞熱帶植物學(xué)報(bào), 2004, 12(5): 449-454.
PANG X Q, DUAN X W, ZHANG Z Q, XU F C, JI Z L. Purification and some properties of peroxidase from pericarp of litchi (Sonn.). Journal of Tropical and Subtropical Botany, 2004, 12(5): 449-454. (in Chinese)
[11] ZHANG Z Q, PANG X Q, DUAN X W, JI Z L, JIANG Y M. Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food Chemistry, 2005, 90: 47-52.
[12] 鄭雯, 張永麗, 王家保, 金志強(qiáng). 荔枝果皮2個(gè)POD同源基因的生物信息學(xué)分析及酶活測定. 熱帶作物學(xué)報(bào), 2011, 32(3): 437-442.
ZHENG W, ZHANG Y L, WANG J B, JIN Z Q. Bioinformatics analysis and function forecast of two POD genes inpericarp. Chinese Journal of Tropical Crops, 2011, 32(3): 437-442. (in Chinese)
[13] REICHEL M, TRIANI R, WELLH?FER J, SRUAMSIRI P, CARLE R, NEIDHART S. Vital characteristics of litchi (Sonn.) pericarp that define postharvest concepts for Thai cultivars. Food and Bioprocess Technology, 2013, 6(5): 1191-1206.
[14] 吳振先, 蘇美霞, 陳維信, 胡桂兵. 貯藏荔枝果皮多酚氧化酶及過氧化物酶與褐變的研究. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào), 1998, 19(1): 12-15.
WU Z X, SU M X, CHEN W X, HU G B. Studies on polyphenol oxidase and peroxidase and litchi pericarp browning during storage. Journal of South China Agricultural University, 1998, 19(1): 12-15. (in Chinese)
[15] 王蓓, 郭志雄, 柯思敏, 潘騰飛, 潘東明. 荔枝果皮的結(jié)合態(tài)POD及其在果實(shí)生長發(fā)育過程中的變化. 果樹學(xué)報(bào), 2014, 31(4): 642-647, 754.
WANG B, GUO Z X, KE S M, PAN T F, PAN D M. Membrane/ wall-bound peroxidases in litchi pericarp and their changes during fruit development. Journal of Fruit Science, 2014, 31(4): 642-647, 754.(in Chinese)
[16] GUO Z X, PAN T F, LI K T, ZHONG F L, LIN L, PAN D M, LU L X. Cloning of NAD-SDH cDNA from plum fruit and its expression and characterization. Plant Physiology and Biochemistry, 2012, 57: 175-180.
[17] BLUM H, BEIER H, GROSS H J. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis, 1987, 8(2): 93-99.
[18] 李開拓. 荔枝果實(shí)成熟過程中的差異蛋白質(zhì)組學(xué)研究[D]. 福州: 福建農(nóng)林大學(xué), 2011.
LI K T. Studies on differential proteomics during fruit ripening in litchi (Sonn.) [D]. Fuzhou: Fujian Agriculture and Forestry University, 2011. (in Chinese)
[19] 王蓓. 荔枝果皮可溶性POD組分的純化、鑒定及其生化特性研究[D]. 福州: 福建農(nóng)林大學(xué), 2014.
WANG B. Purification, identification and characterization of soluble peroxidase isoforms in litchi pericarp [D]. Fuzhou: Fujian Agriculture and Forestry University, 2014. (in Chinese)
[20] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtMethod. Methods, 2001, 25(4): 402-408.
[21] 柯思敏. 荔枝結(jié)合態(tài)過氧化物酶分離純化及其性質(zhì)的初步研究[D]. 福州: 福建農(nóng)林大學(xué), 2015.
KE S M. A preliminary study on the purification and characterization of bound peroxidases in litchi pericarp [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. (in Chinese)
[22] 李開拓, 郭志雄, 潘東明, 鐘鳳林, 潘騰飛. 荔枝果皮總蛋白質(zhì)提取及雙向電泳體系的建立. 熱帶亞熱帶植物學(xué)報(bào), 2011, 19(1): 69-74.
LI K T, GUO Z X, PAN D M, ZHONG F L, PAN T F. Extraction of total protein from litchi pericarp and establishment of two-dimensional electrophoresis. Journal of Tropical and Subtropical Botany, 2011, 19(1): 69-74. (in Chinese)
[23] LAI B, HU B, QIN Y H, ZHAO J T, WANG H C, HU G B. Transcriptomic analysis ofpericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis. BMC Genomics, 2015, 16: 225.
[24] ONSA G H, SAARI N B, SELAMAT J, BAKAR J. Purification and characterization of membrane-bound peroxidases from. Food Chemistry, 2004, 85: 365-376.
[25] SUN J, JIANG Y M, WEI X Y, SHI J, YOU Y L, LIU H, KAKUDA Y, ZHAO M M. Identification of (-)-epicatechin as the direct substrate for polyphenol oxidase isolated from litchi pericarp. Food Research International, 2006, 39: 864-870.
[26] LIU L, CAO S Q, XIE B J, SUN Z D, LI X Y, MIAO W H. Characterization of polyphenol oxidase from litchi pericarp using (-)-epicatechin as substrate. Journal of Agriculture and Food Chemistry, 2007, 55: 7140-7143.
[27] MATSUI T, TABAYASHI A, IWANO M, SHINMYO A, KATO K, NAKAYAMA H. Activity of the C-terminal-dependent vacuolar sorting signal of horseradish peroxidase C1a is enhanced by its secondary structure. Plant and Cell Physiology, 2011, 52(2): 413-420.
[28] MATSUI T, NAKAYAMA H, YOSHIDA K, SHINMYO A. Vesicular transport route of horseradish C1a peroxidase is regulated by N- and C-terminal propeptides in tobacco cells. Applied Microbiology and Biotechnology, 2003, 62(5): 517-522.
[29] SCHNELL J A, HAN S Y, MIKI B L, JOHNSON D A. Soybean peroxidase propeptides are functional signal peptides and increase the yield of a foreign protein. Plant Cell Reports, 2010, 29(9): 987-996.
[30] ZHOU S, SAUVE R, HOWARD E. Identification of a cell wall peroxidase in red calli ofThunb. Plant Cell Reports, 2002, 21(4): 380-384.
[31] REICHEL M, CARLE R, SRUAMSIRI P, NEIDHART S. Changes in flavonoids and nonphenolic pigments during on-tree maturation and postharvest pericarp browning of litchi (Sonn.) as shown by HPLC-MSn. Journal of Agricultural and Food Chemistry, 2011, 59: 3924-3939.
[32] FANG F, ZHANG X L, LUO H H, ZHOU J J, GONG Y H, LI W J, SHI Z W, HE Q A, WU Q, LI L, JIANG L L, CAI Z G, OREN-SHAMIR M, ZHANG Z Q, PANG X Q. An intracellular laccase is responsible for epicatechin-mediated anthocyanin degradation in litchi fruit pericarp. Plant Physiology, 2015, 169(4): 2391-2408.
Purification, Characterization and Expression of Ionically Bound Peroxidase in Litchi Pericarp during Coloration and Maturation of Fruit
1Institute of Postharvest Science and Technology of Horticultural Products, Fujian Agriculture and Forestry University, Fuzhou 350002;2College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002
【】In a previous study, the considerable activity of ionically bound peroxidase (BPox) was found in litchi pericarp. The BPox revealed a close relationship with the fruit maturation, but its role was unclear. This work was aimed to elucidate the biochemical properties and gene expression pattern of BPox for the further investigation of its involvement in the process of litchi coloration and maturation.【】The mature pericarp of litchi (Sonn. cv. Wuye) was used as material, and the BPox was extracted and purified through column chromatography of Streamline Phenyl, CM-52, Phenyl Sepharose and Superdex-200, respectively. The optimal pH and temperature, the substrate specificity and the inhibitors were measured, respectively. The Kmvalues of BPox for guaiacol and (-)-epicatechin and Vmaxvalues were determined by using double reciprocal plots, respectively. The purified Bpox protein was conducted to SDS-PAGE and in-gel digestion by trypsin, and the sequences of the peptide fragments were identified by using MALDI tandem TOF MS. Total RNA was isolated from litchi pericarp, and the cDNA encoding BPox was cloned. The fruits were harvested 58, 69, 76, 80 and 90 days after full blooming (DAFB), the determination of BPox activity changes in the pericarp and the analysis of BPox gene expression using real-time quantitative PCR, were performed, respectively.【】Two most major fractions of ionically bound cationic peroxidase, named BPox-2 and BPox-3, were purified from litchi pericarp, respectively. The apparent molecular weights of the two isoforms were the same, and were estimated to be 30 and 34 kD by gel filtration and SDS-PAGE, respectively. For the BPox-2 and the BPox-3, the optimal pH was 6.0, and the optimal temperature was 40℃ and 45℃, respectively. In the presence of H2O2, similar substrate affinity was revealed, while guaiacol and (-)-epicatechin (EC) were the favorable substrates for the two BPoxs. The metal ions test exhibited poor effect on the activity and the most effective inhibitors for litchi BPoxs were dithiothreitol, ascorbate and L-cysteine. The Kmvalues of BPox-2 and BPox-3 for guaiacol were 2.97 and 2.58 mmol?L-1, and the Vmaxvalues were 38.60×106and 19.85×106U?mg-1, respectively. The Kmvalues of BPox-2 and BPox-3 for EC were 3.49 and 3.24 mmol?L-1, and the Vmaxvalues were 38.72×106and 23.06×106U?mg-1, respectively, illustrating that the catalytic efficiency (Vmax/Km) of BPox-2 was higher than that of BPox-3. The result of MALDI TOF MS demonstrated differences of peptide mass fingerprint (PMF) between the BPox-2 and the BPox-3; however, a common peptide fragment digested from the two peroxidases corresponding to the amino acid sequence of TASLSAANSDLPSPFADLATLIAR was identified by tandem MS and Mascot database search. The ORF of cDNA for litchi, containing 960 bp in length was cloned, encoding a polypeptide of 319 amino acid residue. The results of analysis revealed that, the polypeptide coded by the cDNA contained a putative 26-mer signal peptide and was absent of vacuolar sorting sequence on the C-terminus, and only one potential N-glycosylation site was found in the sequence. The molecular weight and the pI value of the mature polypeptide were predicted to be 31.35 kD and 7.71, respectively. The activity of BPox was very weak in the pericarp of young fruit. From the onset of pericarp coloration at 76 DAFB, the BPox activity increased remarkably, and then, it rose significantly coinciding with the subsequent process of fruit maturation until 90 DAFB.The qPCR results showed that the transcript level ofgene was low in the pericarp of young fruit at 58 DAFB and 69 DAFB. It increased dramatically, reached a peak at 76 DAFB, being 60.56-fold of that at 69 DAFB, and then declined. The transcript level increased significantly with the process of fruit maturation at 90 DAFB.【】Characterization of the BPox illustrated that, its pH optimal, temperature optimal and substrate specificity etc., were similar to those of soluble peroxidases (SPox) in litchi pericarp and other plant peroxidases; however, the catalytic efficiency (Vmax/Km) of BPox for guaiacol and EC was much higher than that of litchi SPox. The results of MALDI MS/MS identification suggested that the BPox-2 and the BPox-3 were the two isoforms coded by thegene and distinct due to different post-translational modification. The molecular weight of the predicted mature polypeptide coded by thecDNA was near to that of the purified protein, suggesting its relative low degree of post-translational modification. Litchiplayed a role in the pericarp maturation and was regulated at the transcriptional level.
litchi; ionically bound peroxidase; purification; MALDI MS/MS identification; gene expression; coloration and maturation
10.3864/j.issn.0578-1752.2021.16.012
2020-09-18;
2020-12-08
福建省科技重大專項(xiàng)(2013NZ0002-1D)、福建農(nóng)林大學(xué)科技創(chuàng)新專項(xiàng)基金(KFA17364A)
郭志雄,Tel:0591-83789241;E-mail:gzhhs@163.com。通信作者郭志雄。通信作者佘文琴,Tel:0591-83789241;E-mail:wenqinshe@163.com
(責(zé)任編輯 趙伶俐)