亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        臨近空間目標(biāo)攔截彈彈道設(shè)計(jì)與驗(yàn)證

        2021-08-05 09:20:25陳文鈺邵雷譚詩(shī)利徐晨洋李世杰
        航空兵器 2021年2期

        陳文鈺 邵雷 譚詩(shī)利 徐晨洋 李世杰

        摘 要:針對(duì)臨近空間高超聲速目標(biāo)攔截彈彈道方案進(jìn)行了設(shè)計(jì)和驗(yàn)證。首先,論述了臨近空間高超聲速目標(biāo)攔截彈彈道設(shè)計(jì)的必要性,以臨近空間飛行器高拋-再入-滑翔方案為參考設(shè)計(jì)彈道,將全彈道分為主動(dòng)段和滑翔段分段建模;然后,根據(jù)主動(dòng)段、滑翔段分別以射程最遠(yuǎn)、末端速度最大為性能指標(biāo),通過(guò)飛行過(guò)程分析約束條件,建立彈道優(yōu)化的最優(yōu)控制模型;最后,基于Gauss偽譜法對(duì)主動(dòng)段和滑翔段彈道優(yōu)化問(wèn)題進(jìn)行求解。仿真結(jié)果表明,所得的彈道軌跡特征與高拋-再入-滑翔彈道方案一致,飛行參數(shù)滿足約束條件。

        關(guān)鍵詞: 臨近空間目標(biāo);攔截彈彈道;Gauss偽譜法;彈道規(guī)劃; 攔截

        中圖分類號(hào): TJ761.7;V412.4 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): ?1673-5048(2021)02-0027-07

        0 引? 言

        臨近空間指距地平面20~100 km的空域,而臨近空間高超聲速飛行器是一種長(zhǎng)時(shí)間在臨近空間飛行的武器,具有作戰(zhàn)空域大、飛行速度快、突防能力強(qiáng)、毀傷范圍廣的特點(diǎn)。針對(duì)臨近空間高超聲速飛行器的攔截問(wèn)題,目前相關(guān)的研究較少,大多針對(duì)臨近空間高超聲速飛行器進(jìn)攻問(wèn)題展開[1]。不過(guò)這些研究為臨近空間攔截問(wèn)題提供了一定參考。經(jīng)過(guò)多年研究,國(guó)內(nèi)的學(xué)者們針對(duì)臨近空間攔截彈的攔截問(wèn)題逐漸形成空基攔截、地基攔截、臨基攔截三類主流思想[1-8],但針對(duì)臨近空間攔截彈的彈道設(shè)計(jì)問(wèn)題,目前研究較少。

        傳統(tǒng)的防空攔截彈不需要專門設(shè)計(jì)彈道,其采用的制導(dǎo)律就可決定彈道。然而,由于臨近空間目標(biāo)飛行高度高、機(jī)動(dòng)能力強(qiáng)、目標(biāo)信息獲取難、預(yù)測(cè)難,且需要遠(yuǎn)程攔截,采用由制導(dǎo)律決定彈道、全程跟蹤目標(biāo)進(jìn)行攔截的傳統(tǒng)方式會(huì)使攔截彈的射程、飛行狀態(tài)等受到很大限制。因此,針對(duì)臨近空間目標(biāo)的攔截問(wèn)題,對(duì)攔截彈單獨(dú)設(shè)計(jì)彈道,使其滿足各個(gè)階段的約束條件、達(dá)到期望的性能指標(biāo),從而在實(shí)際飛行中,通過(guò)調(diào)整控制量對(duì)離線優(yōu)化彈道進(jìn)行跟蹤,完成攔截過(guò)程。針對(duì)臨近空間攔截彈的彈道規(guī)劃問(wèn)題,鮮有學(xué)者對(duì)其專門研究,大多針對(duì)臨近空間飛行器及航天器軌道規(guī)劃著手,實(shí)際上屬于軌跡優(yōu)化的范疇。目前,大多數(shù)學(xué)者主要從直接法和間接法入手解決軌跡優(yōu)化問(wèn)題:文獻(xiàn)[2]對(duì)彈道規(guī)劃需求進(jìn)行了分析,同時(shí)基于粒子群算法對(duì)臨近空間目標(biāo)攔截彈進(jìn)行彈道規(guī)劃,但未針對(duì)主動(dòng)段和滑翔段不同需求分段求解,且易陷入局部最優(yōu);文獻(xiàn)[9-10]通過(guò)間接法針對(duì)臨近空間飛行器和航天器軌跡優(yōu)化進(jìn)行研究,

        不過(guò)需要進(jìn)行協(xié)態(tài)變量初值的猜測(cè);文獻(xiàn)[11]通過(guò)迭代求解方式,以間接法求解固體火箭垂直上升段軌跡優(yōu)化問(wèn)題。以偽譜法為主要內(nèi)容的直接法近年來(lái)在軌跡優(yōu)化問(wèn)題中很受歡迎,文獻(xiàn)[12]通過(guò)Gauss偽譜法對(duì)臨近空間攔截彈中制導(dǎo)段彈道進(jìn)行優(yōu)化;文獻(xiàn)[13]為避免Gauss偽譜法解決復(fù)雜優(yōu)化問(wèn)題時(shí)的局限性,利用hp自適應(yīng)偽譜法研究了多約束多階段的彈道優(yōu)化設(shè)計(jì)問(wèn)題,取得了良好效果。同時(shí),主流觀點(diǎn)認(rèn)為臨近空間飛行器為實(shí)現(xiàn)遠(yuǎn)距離飛行,多采用高拋-再入-滑翔彈道,這是由于在30~60 km的高空“走廊”,空氣稀薄,是高超聲速飛行器長(zhǎng)時(shí)間遠(yuǎn)距離飛行的理想空間,在這個(gè)走廊中調(diào)整控制量,使飛行器爬升、回落、再爬升,周而復(fù)始,這樣在兩小時(shí)內(nèi)可以到達(dá)全球任意地點(diǎn)[14]??紤]到攔截彈在遠(yuǎn)程攔截時(shí)所處空域與臨近空間飛行器相同,同時(shí),導(dǎo)引頭的工作環(huán)境、彈體材料和結(jié)構(gòu)強(qiáng)度限制、 慣性測(cè)量裝置的誤差積累等因素也制約著攔截彈不能在稠密大氣層持續(xù)飛行[2]。為實(shí)現(xiàn)遠(yuǎn)程攔截,節(jié)省末制導(dǎo)機(jī)動(dòng)所需的燃料,

        參考使用高拋-再入-滑翔的彈道設(shè)計(jì)方案十分必要。

        本文為驗(yàn)證高拋-再入-滑翔彈道方案的可行性,以具備慣性段修正能力的二級(jí)助推火箭的攔截彈為背景,除去不需單獨(dú)設(shè)計(jì)彈道的末制導(dǎo)段,對(duì)攔截彈全彈道進(jìn)行設(shè)計(jì)及求解驗(yàn)證。針對(duì)主動(dòng)段與滑翔段不同的模型和性能指標(biāo)進(jìn)行離線優(yōu)化,并利用Gauss偽譜法求解優(yōu)化問(wèn)題。仿真結(jié)果表明,優(yōu)化所得的彈道能夠很好滿足約束條件,符合高拋-再入-滑翔彈道特征,驗(yàn)證了該方案在遠(yuǎn)距離攔截時(shí)的可行性,為臨近空間攔截彈彈道設(shè)計(jì)提供參考。

        1 模型建立

        本文采用具有二級(jí)助推固體火箭發(fā)動(dòng)機(jī)的攔截彈,為增加其射程及修正范圍,兩級(jí)火箭發(fā)動(dòng)機(jī)脫落后攔截器系統(tǒng)仍然具備一定修正能力。攔截彈布局結(jié)構(gòu)如圖1所示。利用高拋-再入-滑翔的方式機(jī)動(dòng),其全彈道示意圖如圖2所示。

        由圖可知,全彈道主要由主動(dòng)段、高拋再入段、滑翔段和末制導(dǎo)段組成。由于在末制導(dǎo)段,導(dǎo)引頭開機(jī)截獲目標(biāo)后根據(jù)目標(biāo)信息實(shí)時(shí)調(diào)整彈道,與傳統(tǒng)攔截方式相似,不再需要單獨(dú)進(jìn)行彈道規(guī)劃,因此本文中的全彈道指從發(fā)射到中末制導(dǎo)交接班之間的彈道,末制導(dǎo)的彈道不在彈道設(shè)計(jì)的范疇。

        1.1 主動(dòng)段運(yùn)動(dòng)方程

        主動(dòng)段指采用垂直發(fā)射的攔截彈冷彈出筒后一級(jí)助推火箭發(fā)動(dòng)機(jī)點(diǎn)火,按照零攻角飛行到一定安全高度后,各級(jí)火箭發(fā)動(dòng)機(jī)分別工作,一直維持到助推火箭發(fā)動(dòng)機(jī)關(guān)機(jī)脫落的階段。在攔截彈的主動(dòng)段建模過(guò)程中,不考慮地球自轉(zhuǎn)、扁率以及攔截彈自身姿態(tài)的滾轉(zhuǎn)這些次要的因素,得到主動(dòng)段運(yùn)動(dòng)方程為[15]

        4 仿真驗(yàn)證

        求解約束條件下的最優(yōu)彈道,并驗(yàn)證高拋-再入-滑翔彈道的可行性。給定如下仿真驗(yàn)證的算例,利用MATLAB軟件GPM程序包進(jìn)行彈道求解和仿真驗(yàn)證。

        主動(dòng)段約束條件如表1所示。

        滑翔段約束條件如表2所示。

        針對(duì)遠(yuǎn)程攔截問(wèn)題,主動(dòng)段性能指標(biāo)為射程最遠(yuǎn):

        J=(X(t0),t0,X(tf),tf)=max(xf) (36)

        為確保足夠動(dòng)能攔截目標(biāo),滑翔段性能指標(biāo)為末端速度最大,即

        J=(X(t0),t0,X(tf),t′f)=max(Vf) (37)

        由圖5可以看出,主動(dòng)段攔截彈軌跡較直,此時(shí)發(fā)動(dòng)機(jī)開機(jī),將攔截彈送至一定高度,完成高拋。而被動(dòng)段呈現(xiàn)出再入和滑翔特征,當(dāng)彈道下沉至5×104 m左右高度時(shí),會(huì)在稠密大氣層上沿反彈跳起,符合跳躍彈道特征。從圖6及圖7可以看出攔截彈速度及彈道傾角變化范圍在優(yōu)化后不是很大。

        圖8~11中黑色虛線部分為過(guò)程約束條件,由此可表明攔截彈飛行過(guò)程均滿足約束條件。由于在跳躍段,攔截彈要進(jìn)行大空域的上下跳躍,所以控制量要求較高,在370 s左右控制量接近約束值。

        由表 3~4可知,所求解的彈道可以很好滿足過(guò)程約束。

        5 結(jié) 束 語(yǔ)

        本文針對(duì)臨近空間高超聲速目標(biāo)的攔截問(wèn)題,對(duì)攔截彈全彈道進(jìn)行了設(shè)計(jì)與驗(yàn)證。針對(duì)主動(dòng)段和滑翔段進(jìn)行了分段優(yōu)化,并利用Gauss偽譜法解決最優(yōu)控制問(wèn)題,驗(yàn)證了所提出高拋-再入-滑翔彈道的可行性。仿真結(jié)果表明,所得控制量、過(guò)載、熱流密度、動(dòng)壓均滿足約束,高拋-再入-滑翔彈道設(shè)計(jì)可有效避免臨近空間目標(biāo)攔截彈在稠密大氣層中飛行帶來(lái)的諸多問(wèn)題,為臨近空間攔截彈彈道規(guī)劃帶來(lái)一定參考。但是,控制量在跳躍段存在偏大情況,有待后續(xù)進(jìn)一步研究。

        參考文獻(xiàn):

        [1] 李寧波,邵雷,王華吉,等. 臨近空間攔截彈中制導(dǎo)彈道設(shè)計(jì)[J]. 固體火箭技術(shù),2018,41(2): 251-257.

        Li Ningbo,Shao Lei,Wang Huaji,et al. Design of Midcourse Guidance Trajectory for Near Space Interceptor[J]. Journal of Solid Rocket Technology,2018,41(2): 251-257. (in Chinese)

        [2] 張大元,雷虎民,邵雷,等. 臨近空間高超聲速目標(biāo)攔截彈彈道規(guī)劃[J]. 國(guó)防科技大學(xué)學(xué)報(bào),2015,37(3): 91-96.

        Zhang Dayuan,Lei Humin,Shao Lei,et al. Interceptor Trajectory Programming for Near Space Hypersonic Target[J]. Journal of National University of Defense Technology,2015,37(3): 91-96. (in Chinese)

        [3] 孫磊,黃可西,常曉飛,等. 臨近空間高超聲速巡航導(dǎo)彈攔截問(wèn)題研究[J]. 西北工業(yè)大學(xué)學(xué)報(bào),2015,33(4): 615-620.

        Sun Lei,Huang Kexi,Chang Xiaofei,et al. Researching Interception of Near-Space Hypersonic Cruise Missile[J]. Journal of Northwestern Polytechnical University,2015,33(4): 615-620. (in Chinese)

        [4] 金欣,梁維泰,王俊,等. 反臨近空間目標(biāo)作戰(zhàn)的若干問(wèn)題思考[J]. 現(xiàn)代防御技術(shù),2013,41(6): 1-7.

        Jin Xin,Liang Weitai,Wang Jun,et al. Discussion on Issues of Anti-Near-Space-Target Operation[J]. Modern Defence Technology,2013,41(6): 1-7. (in Chinese)

        [5] 戴靜,程建,郭銳. 臨近空間高超聲速武器防御及關(guān)鍵技術(shù)研究[J]. 裝備指揮技術(shù)學(xué)院學(xué)報(bào),2010,21(3): 58-61.

        Dai Jing,Cheng Jian,Guo Rui. Research on Near-Space Hypersonic Weapon Defense System and the Key Technology[J]. Journal of the Academy of Equipment Command & Technology,2010,21(3): 58-61. (in Chinese)

        [6] 于志鵬,陳剛,李躍明. 反吸氣式臨近空間飛行器空基攔截彈制導(dǎo)律設(shè)計(jì)[J]. 飛行力學(xué),2017,35(1): 66-69.

        Yu Zhipeng,Chen Gang,Li Yueming. Design of Air- Based Interceptors Guidance Law for Airbreathing Hypersonic Vehicle in Near Space[J]. Flight Dynamics,2017,35(1): 66-69. (in Chinese)

        [7] 張海林,周林,鄭鈮,等. 地基攔截臨近空間高超聲速導(dǎo)彈可行性分析[J]. 裝甲兵工程學(xué)院學(xué)報(bào),2015,29(5): 49-54.

        Zhang Hailin,Zhou Lin,Zheng Ni,et al. Feasibility Analysis on Ground-Based Intercepting of Near Space Hypersonic Missile[J]. Journal of Academy of Armored Force Engineering,2015,29(5): 49-54. (in Chinese)

        [8] Zhou Jin,Shao Lei,Wang Huaji,et al. Optimal Midcourse Trajectory Planning Considering the Capture Region[J]. Journal of Systems Engineering and Electronics,2018,29(3): 587-600.

        [9] Grant M J,Braun R D. Rapid Indirect Trajectory Optimization for Conceptual Design of Hypersonic Missions[J].? Journal of Spacecraft and Rockets,2015,52(1): 177-182.

        [10] Liu H Z,Tongue B H. Indirect Spacecraft Trajectory Optimization Using Modified Equinoctial Elements[J].? Journal of Guidance,Control and Dynamics,2010,33(2): 619-622.

        [11] 吳嘉梁. 基于間接法的上升段軌跡優(yōu)化方法研究[J]. 導(dǎo)航定位與授時(shí),2016,3(2): 14-19.

        Wu Jialiang. Indirect Method-Based Ascent Trajectory Optimization[J]. Navigation Positioning and Timing,2016,3(2): 14-19. (in Chinese)

        [12] 周覲,雷虎民,張濤,等. 臨近空間防御作戰(zhàn)中制導(dǎo)彈道規(guī)劃與修正研究[C]∥第五屆中國(guó)航空兵器大會(huì), 2017.

        Zhou Jin,Lei Humin,Zhang Tao,et al. Research on Guidance Trajectory Planning and Modification in Adjacent Space Defense Operations[C]∥The fifth China Aviation Weapons Conference,2017. (in Chinese)

        [13] 明超,孫瑞勝,白宏陽(yáng),等. 基于hp自適應(yīng)偽譜法的多脈沖導(dǎo)彈彈道優(yōu)化設(shè)計(jì)[J]. 固體火箭技術(shù),2015,38(2): 151-155.

        Ming Chao,Sun Ruisheng,Bai Hongyang,et al. Optimizing Design of Trajectory for Multiple-Pulse Missiles Based on hp-Adaptive Pseudo-Spectral Method[J]. Journal of Solid Rocket Technology,2015,38(2): 151-155. (in Chinese)

        [14] 楊軍. 現(xiàn)代導(dǎo)彈制導(dǎo)控制[M]. 西安: 西北工業(yè)大學(xué)出版社,2015.

        Yang Jun. Guidance and Control of Modern Missile [M]. Xian: Northwestern Polytechnical University Publishing House,2015. (in Chinese)

        [15] 雷虎民. 導(dǎo)彈制導(dǎo)與控制原理[M]. 北京:國(guó)防工業(yè)出版社,2006.

        Lei Humin. Guidance and Control Principle of Missile[M]. Beijing: National Defense Industrial Press,2006. (in Chinese)

        [16] 雷虎民,周覲,翟岱亮,等. 基于二階變分的中制導(dǎo)最優(yōu)彈道修正[J]. 系統(tǒng)工程與電子技術(shù),2016,38(12): 2807-2813.

        Lei Humin,Zhou Jin,Zhai Dailiang,et al. Midcourse Guidance Optimal Trajectory Modification Using the Second Variation[J]. Systems Engineering and Electronics,2016,38(12): 2807-2813. (in Chinese)

        [17] 聶萬(wàn)勝,馮必鳴,李柯. 高速遠(yuǎn)程精確打擊飛行器方案設(shè)計(jì)方法與應(yīng)用[M]. 北京:國(guó)防工業(yè)出版社,2014.

        Nie Wansheng,F(xiàn)eng Biming,Li Ke. Design Method and Application of High Speed,Long Range and Accurate Strike Vehicle[M]. Beijing: National Defense Industrial Press,2014. (in Chinese)

        [18] 李惠峰. 高超聲速飛行器制導(dǎo)與控制技術(shù)[M]. 北京: 中國(guó)宇航出版社,2012.

        Li Huifeng. Guidance and Control Technology of Hypersonic Vehicle[M]. Beijing: China Aerospace Publishing House,2012. (in Chinese)

        [19] Rizvi S,He L S,Xu D J. Optimal Trajectory Analysis of Hypersonic Boost-Glide Waverider with Heat and Load Constraint[J]. Aircraft Engineering and Aerospace Technology,2015,87(1): 67-78.

        [20] 唐國(guó)金,羅亞中,雍恩米. 航天器軌跡優(yōu)化理論、方法及應(yīng)用[M]. 北京: 科學(xué)出版社,2012.

        Tang Guojin,Luo Yazhong,Yong Enmi. Theory,Method and Application of Spacecraft trajectory Optimization[M]. Beijing: Science Press,2012. (in Chinese)

        [21] Tan S L. Optimal Maneuver Trajectory for Hypersonic Missiles in Dive Phase Using Inverted Flight[J]. IEEE Access,2019(7): 63493-63503.

        [22] 雍恩米. 高超聲速滑翔式再入飛行器軌跡優(yōu)化與制導(dǎo)方法研究[D]. 長(zhǎng)沙: 國(guó)防科學(xué)技術(shù)大學(xué),2008.

        Yong Enmi. Trajectory Optimization and Guidance of Hypersonic Reentry Vehicle[D]. Changsha: National University of Defense Technology,2008. (in Chinese)

        [23] 張禮學(xué),王中偉,楊希祥,等. 基于Gauss偽譜法的平流層飛艇上升段航跡規(guī)劃[J]. 上海交通大學(xué)學(xué)報(bào),2013,47(8): 1205-1209.

        Zhang Lixue,Wang Zhongwei,Yang Xixiang,et al. Ascent Trajectory Planning for Stratospheric Airship Based on Gauss Pseudospectral Method[J]. Journal of Shanghai Jiaotong University,2013,47(8): 1205-1209. (in Chinese)

        [24] Gill P E,Murray W,Saunders M A. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization [J]. SIAM Review,2002,47(1): 99-131.

        Design and Verification of Near Space Target Interceptor Trajectory

        Chen Wenyu*,Shao Lei,Tan Shili,Xu Chenyang,Li Shijie

        (Air and Missile Defense College,Air Force Engineering University,Xian 710051,China)

        Abstract: The trajectory of the near space hypersonic target interceptor is designed and verified. Firstly,this paper discusses the necessity of the trajectory design of the near space hypersonic target interceptor.? Taking the high throw-reentry-glide trajectory scheme of the near space hypersonic? as the reference trajectory,the whole trajectory is divided into active phase and glide phase.? Secondly,the active phase takes the longest range as the performance index,and the glide phase takes the maximum terminal velocity as the performance index. According to the constraints of flight process analysis,it establishes the optimal control model of trajectory optimization. Lastly,the Gauss pseudo-spectral method is used to plan the trajectory of the active and gliding phases. The simulation results show that the obtained trajectory characteristics are consistent with the high-throw-reentry-glide trajectory scheme,and the flight parameters satisfy the constraints. This study can provide some reference for the trajectory planning of the near-space interceptor.

        Key words: near space target; interceptor trajectory; Gauss pseudo-spectral method; trajectory planning; interception

        收稿日期:2019-07-18

        基金項(xiàng)目: 國(guó)家自然科學(xué)基金項(xiàng)目(61503408;61703421;61773398;61873278)

        作者簡(jiǎn)介:陳文鈺(1996-),男,甘肅渭源人,碩士研究生,研究方向?yàn)槲淦飨到y(tǒng)總體技術(shù)與作戰(zhàn)應(yīng)用。

        国产精品高清视亚洲一区二区| 99久久夜色精品国产网站| 亚洲两性视频一三区| 中文在线最新版天堂av| 熟女一区二区中文字幕| 人妻插b视频一区二区三区| 亚洲免费观看在线视频| 亚洲av永久青草无码精品| 亚洲国产av一区二区不卡| 中文人妻熟女乱又乱精品| 亚洲国产成人精品无码区99| 亚洲乱码少妇中文字幕| av网址在线一区二区| 三个男吃我奶头一边一个视频| 亚洲av中文无码乱人伦在线r▽| 人妻少妇无码中文幕久久| 亚洲女人天堂成人av在线| 欧洲美女熟乱av| 人妻影音先锋啪啪av资源 | 亚洲精品国产美女久久久| 国产成人影院一区二区| 久久久国产视频久久久| 日本激情网站中文字幕| 少妇饥渴偷公乱a级无码| 国产在线视频国产永久视频| 熟女高潮av一区二区| 亚洲av无码码潮喷在线观看| 国产mv在线天堂mv免费观看| 人妻少妇中文字幕久久69堂| 熟女人妻在线中文字幕| 久久综合九色综合97欧美| 九九免费在线视频| 日本小视频一区二区三区| 激情内射亚洲一区二区三区| 欧美粗大无套gay| 国产亚洲AV片a区二区| 中文字幕色偷偷人妻久久一区| 男女后进式猛烈xx00动态图片| 精品无码AV无码免费专区| 男女性生活视频免费网站| 欲香欲色天天综合和网|