黃金鳳,呂天星,王尋,王穎達(dá),王冬梅,閆忠業(yè),劉志
蘋果LRR-RLK基因家族鑒定和表達(dá)分析
1遼寧省果樹科學(xué)研究所,遼寧營口 115009;2山東農(nóng)業(yè)大學(xué)園藝科學(xué)與工程學(xué)院,山東泰安 271018
【】從蘋果全基因組中鑒定LRR-RLK家族蛋白成員,并進(jìn)行生物信息學(xué)和表達(dá)模式分析,為研究蘋果LRR-RLK的潛在功能提供理論基礎(chǔ)。利用BLASTp基于GDR數(shù)據(jù)庫鑒定蘋果LRR-RLK家族成員,通過ExPASy Proteomics Server、Cell-PLoc、CD-Search Tool、MEGAX、MG2C等軟件分析LRR-RLK蛋白序列基本信息、亞細(xì)胞定位情況、結(jié)構(gòu)域組成、系統(tǒng)進(jìn)化關(guān)系以及染色體定位情況。利用實(shí)時熒光定量PCR技術(shù)檢測蘋果12個的組織表達(dá)和誘導(dǎo)表達(dá)特性。蘋果LRR-RLK基因家族包含378個成員,這些LRR-RLK蛋白包括318—1 827個不等的氨基酸殘基,等電點(diǎn)分布在5.16—9.75。亞細(xì)胞定位結(jié)果顯示LRR-RLK蛋白均定位在細(xì)胞膜。系統(tǒng)進(jìn)化分析可將其分為15類,各亞家族基因數(shù)量分布在1—111。染色體定位結(jié)果顯示,LRR-RLK在蘋果17條染色體上均有分布,其中第7條染色體數(shù)量最多,為40個。LRR-RLK家族基因具有2個特定的保守結(jié)構(gòu)域,分別是LRR結(jié)構(gòu)和蛋白激酶結(jié)構(gòu)。蛋白二級結(jié)構(gòu)以無規(guī)則卷曲為主,其次是-螺旋,-轉(zhuǎn)角所占比例最小。通過定量檢測發(fā)現(xiàn)篩選的12個家族成員在各組織中均有表達(dá)(除MD00G1105400外),且多數(shù)基因在莖中表達(dá)水平相對較高。低溫條件下,7個基因上調(diào)表達(dá),其中MD09G1153800上調(diào)最明顯,最高為對照的6.8倍,而MD06G1170200和MD05G1061600均下調(diào)表達(dá);在干旱條件下,8個基因上調(diào)表達(dá),其中MD00G1105400上調(diào)最明顯,最高為對照的9.6倍;在鹽脅迫條件下,MD04G1150400、MD13G1108000和MD02G1071800始終處于上調(diào)表達(dá)狀態(tài),其中MD02G1071800上調(diào)最明顯,最高為對照的14.9倍。蘋果新梢接種輪紋病菌后,12個LRR-RLK家族基因表達(dá)基本上呈先上升后下降的趨勢。并且在‘望山紅’中,1 d時表達(dá)水平較高,而在‘雞冠’中,3 d時表達(dá)水平較高。MD09G1153800和 MD05G1065800在‘雞冠’響應(yīng)輪紋病菌侵染過程中顯著上調(diào)表達(dá),而在‘望山紅’中無響應(yīng),可作為進(jìn)一步開展抗病研究和功能分析的候選基因。蘋果LRR-RLK基因家族包含378個成員,進(jìn)化上可分為15組,在17條染色體上均有分布,多數(shù)基因具有在莖中高表達(dá)的組織表達(dá)特征,多數(shù)基因受逆境和輪紋病菌調(diào)控。
蘋果;LRR-RLK;基因家族;鑒定;表達(dá)分析
【研究意義】富含亮氨酸重復(fù)的類受體蛋白激酶(leucine-rich repeat receptor like kinase,LRR-RLK)是植物類受體激酶家族中最大的一類,在植物生長發(fā)育、激素信號傳導(dǎo)、非生物脅迫和病原體防御中發(fā)揮至關(guān)重要的作用[1-4]。對蘋果(×Borkh.)富含亮氨酸重復(fù)的受體蛋白家族基因進(jìn)行全面的生物信息學(xué)、組織表達(dá)特征及逆境脅迫的響應(yīng)研究,有利于更深入了解LRR-RLK家族基因的功能,并對蘋果品種的遺傳改良具有重要的參考意義。【前人研究進(jìn)展】富含亮氨酸受體蛋白激酶含有胞外LRR結(jié)構(gòu)域(2—35個)、單次跨膜區(qū)和胞內(nèi)絲氨酸/蘇氨酸激酶結(jié)構(gòu)域[5-6]。LRR-RLK由N-胞外結(jié)構(gòu)域感受胞外信號并將信息經(jīng)跨膜區(qū)傳遞至C-胞內(nèi)激酶結(jié)構(gòu)域,使其發(fā)生磷酸化或去磷酸化等反應(yīng),開啟或關(guān)閉下游靶蛋白,從而調(diào)節(jié)植物的生長發(fā)育和防衛(wèi)反應(yīng)[7]。雖然,植物中存在大量的LRR-RLKs,但大多數(shù)LRR-RLK家族成員的生物學(xué)功能仍不清楚,而且已進(jìn)行功能分析的LRR-RLK也大部分局限于模式植物。這源于LRR-RLKs的配基多數(shù)未知,且參與信號轉(zhuǎn)導(dǎo)途徑復(fù)雜[8-9]。在擬南芥()中,識別病原體的鞭毛蛋白后誘發(fā)一系列防衛(wèi)反應(yīng),如活性氧爆發(fā)、胼胝質(zhì)形成等,這些防衛(wèi)反應(yīng)限制了細(xì)菌的生長,從而起到抗病作用[10]。擬南芥的特異識別細(xì)菌延伸因子中高度保守的18個氨基酸多肽,用以激活防衛(wèi)反應(yīng)[11]。水稻(L.)抗白葉枯病基因,通過識別由細(xì)菌細(xì)胞分泌的硫酸化多肽引發(fā)胞內(nèi)的抗逆反應(yīng)[12]。最近的研究發(fā)現(xiàn),參與水稻對白葉枯病菌的響應(yīng),并且正調(diào)控介導(dǎo)抗病性[13]。在中感白粉病小麥(L.)品種‘揚(yáng)麥158’中過表達(dá)或,能顯著增強(qiáng)對白粉病的抗性[14]。是一種重要的植物類受體胞質(zhì)激酶相關(guān)基因,正向調(diào)控多條免疫防御反應(yīng)。而和是介導(dǎo)防御機(jī)制的負(fù)調(diào)節(jié)因子。在靠近膜結(jié)構(gòu)域中發(fā)現(xiàn)了高密度的-磷酸化位點(diǎn),可被-磷酸化,發(fā)揮負(fù)調(diào)節(jié)作用。競爭性抑制與相互作用,以阻止受體復(fù)合物形成[15-16]。表達(dá)譜分析顯示棉花(L.)的LRR-RLK廣泛參與防衛(wèi)反應(yīng)[17]。以上研究表明LRR-RLK在植物免疫抗病中起重要調(diào)控作用,但是不同LRR-RLK的功能和作用方式可能不同,有的仍需進(jìn)一步研究。LRR-RLK還參與對干旱、鹽等非生物脅迫的響應(yīng):過表達(dá)可提高玉米(L)在干旱脅迫下的水分利用率和凈光合速率,表明在干旱脅迫中起著重要作用[18];水稻的通過調(diào)節(jié)ROS清除系統(tǒng)、Na+/K+比率和MAPK信號通路實(shí)現(xiàn)對鹽脅迫的正調(diào)控作用[19];在低硝酸鹽條件下,通過增加硝酸鹽同化作用并上調(diào)參與硝酸鹽同化的基因,如的過表達(dá)促進(jìn)蘋果愈傷組織和擬南芥的生長[20];在冷熱脅迫和干旱條件下,水稻均上調(diào)表達(dá)其啟動子區(qū)包含與應(yīng)激反應(yīng)有關(guān)的順式作用元件,進(jìn)一步證明參與非生物脅迫耐受性[21]。LRR-RLK還參與生長和發(fā)育的形態(tài)建成過程:擬南芥的參與木質(zhì)部纖維中次生細(xì)胞壁的形成[22];擬南芥過表達(dá)株系比對照株系開花早[23];通過其近膜和激酶結(jié)構(gòu)域與相互作用,在花粉管的極性生長中起關(guān)鍵作用[24];擬南芥中的和既可調(diào)節(jié)側(cè)根原基發(fā)生,也可調(diào)節(jié)局部側(cè)根的形成,同時可通過響應(yīng)芽衍生的蔗糖控制側(cè)根延伸。此外,這兩種受體的突變都會阻止幼苗對蔗糖作出響應(yīng),從而導(dǎo)致側(cè)根較長[25];是一種新型的富含亮氨酸的重復(fù)受體樣激酶,它通過負(fù)調(diào)節(jié)水稻中生長素的極性轉(zhuǎn)運(yùn)來影響根系結(jié)構(gòu)[26]。以上研究表明,LRR-RLK廣泛參與了植物的防御反應(yīng)及多種生長發(fā)育過程。【本研究切入點(diǎn)】在已有研究中,蘋果LRR-RLK基因家族已基于version 1.0版本基因組進(jìn)行過鑒定分析[9,27]。由于早期版本基因組拼接和注釋的質(zhì)量有限,所以基于更通用的GDDH13 v1.1 版本基因組對LRR-RLK家族進(jìn)行分析,將會提供更全面準(zhǔn)確的鑒定結(jié)果[28]。并且蘋果LRR-RLK基因家族成員的組織表達(dá)特性、生物脅迫及非生物脅迫表達(dá)模式未見報道。【擬解決的關(guān)鍵問題】本研究采用生物信息學(xué)分析方法,分析蘋果LRR-RLK基因家族的成員數(shù)量及分類、基因結(jié)構(gòu)、染色體定位及系統(tǒng)進(jìn)化,通過qRT-PCR技術(shù)檢測的組織表達(dá)特異性和脅迫表達(dá)模式,為進(jìn)一步研究蘋果LRR-RLK基因家族的生物學(xué)功能,并應(yīng)用于蘋果品種的遺傳改良提供理論參考。
試驗(yàn)于2019年10月至2020年7月在遼寧省果樹科學(xué)研究所進(jìn)行。
試驗(yàn)材料為種植于遼寧省果樹科學(xué)研究所蘋果育種實(shí)驗(yàn)基地的‘望山紅’和‘雞冠’蘋果(Borkh.),砧木為平邑甜茶(),以及生長于光照培養(yǎng)箱的‘平邑甜茶’幼苗。
取15年生‘望山紅’蘋果樹的莖、葉片、花(初花期)、果實(shí)(花后30 d),液氮速凍后置于-80℃超低溫冰箱貯藏,用于的組織表達(dá)分析。
取‘平邑甜茶’種子,催芽后播種于裝有混合基質(zhì)的紙杯中,置于人工氣候箱培養(yǎng)(溫度25℃,光照16 h/黑暗8 h)。選取生長狀況較為一致的1個月大幼苗。分別用300 mmol?L-1NaCl和10%的PEG澆灌根系,以及用4℃低溫處理‘平邑甜茶’幼苗。以上各處理培養(yǎng)0、6、12、24和48 h時分別全株取樣。每個時間點(diǎn)取實(shí)生苗5株,設(shè)置3個生物學(xué)重復(fù)。液氮速凍,-80℃貯藏備用,用于開展非生物脅迫誘導(dǎo)表達(dá)分析。
在田間選取長勢一致的2年生抗病蘋果品種‘雞冠’和感病品種‘望山紅’新梢,長度約15 cm,用于輪紋病菌接種試驗(yàn)。輪紋病病原菌()由筆者課題組分離純化獲得。配置濃度為1×105個/mL病菌孢子懸液,用10 cm長的濾紙條蘸取孢子懸液,包裹于蘋果新梢上,保濕培養(yǎng)。于0、1、3和5 d分別取新梢接種部位的韌皮部。每個處理取5條新梢,設(shè)置3次生物學(xué)重復(fù)。液氮速凍,-80℃貯藏備用,用于開展的輪紋病誘導(dǎo)表達(dá)分析。
蘋果全基因組數(shù)據(jù)下載于薔薇科基因組數(shù)據(jù)庫GDR(http://www.rosaceae.org/)。擬南芥()LRR-RLK蛋白序列下載自擬南芥在線信息資源TAIR(http://www.arabidopsis.org/)。以擬南芥數(shù)據(jù)庫中225個已知LRR-RLK蛋白為問詢序列,利用BLAST(http://ncbi.nlm.nih.gov/blast/executables/)軟件逐一比對,檢索本地蘋果數(shù)據(jù)庫中LRR-RLK蛋白,并刪除重復(fù)序列[9]。對初步鑒定獲得的候選基因,利用保守域預(yù)測軟件Pfam(https://pfam.xfam.org/)和SMART(http://smart.emblheidelberg.de/)進(jìn)行分析,確保上述候選基因同時含有胞外LRR結(jié)構(gòu)域、跨膜區(qū)和胞內(nèi)絲氨酸/蘇氨酸激酶結(jié)構(gòu)域。利用MEGA X(http://www.megasoftware.net)軟件,以最大釋然法(Maximum Likelihood)構(gòu)建進(jìn)化樹,通過分析,選擇WAG+G+F模型、部分刪除(Partial deletion)和1 000次重復(fù)(Bootstrap replicated 1 000 times)。并利用在線軟件iTOL(https://itol.embl.de/)對系統(tǒng)發(fā)育樹進(jìn)行可視化展示。
采用ExPASyProteomics Server(http://web.expasy. org/protparam/)在線分析蘋果LRR-RLK蛋白氨基酸序列長度、分子量和等電點(diǎn)。利用在線軟件Cell-PLoc(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)進(jìn)行亞細(xì)胞預(yù)測分析。
利用MG2C(http://mg2c.iask.in/mg2c_v2.1/)工具進(jìn)行基因染色體位置可視化分析。采用GSDS 2.0(http://gsds.gao-lab.org/)繪制基因結(jié)構(gòu)圖。
鑒于蘋果LRR-RLK基因家族數(shù)目較多,為了便于展示,選取數(shù)目中等的III亞家族蛋白(50個)進(jìn)行motif與結(jié)構(gòu)域分析。其中motif分析利用在線軟件MEME(http://meme-suite.org/tools/meme)進(jìn)行,基序數(shù)量設(shè)置15個,其余參數(shù)默認(rèn)。利用在線工具Conserved Domains(https://www.ncbi.nlm.nih.gov/ Structure/cdd/wrpsb.cgi)對蘋果LRR-RLK蛋白保守結(jié)構(gòu)域進(jìn)行分析。
因LRR-RLK家族蛋白數(shù)目龐大,每個亞組隨機(jī)選出1個代表,共21個,利用在線分析工具SOPMA(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)對蛋白質(zhì)二級結(jié)構(gòu)進(jìn)行預(yù)測。
采用CTAB法,選取‘望山紅’蘋果樹的根、莖、葉、花、果不同組織,4℃低溫、10% PEG和300 mmol?L-1NaCl處理不同時間點(diǎn)取樣的‘平邑甜茶’蘋果幼苗,以及輪紋病菌侵染的‘望山紅’與‘雞冠’新梢韌皮部組織提取RNA。使用HiFiScript gDNA Removal cDNA Synthesis Kit試劑盒(CW2582,康為世紀(jì)),將RNA反轉(zhuǎn)錄成cDNA供熒光定量使用。利用瓊脂糖凝膠電泳檢測RNA完整性,Thermo Nano Drop 2000儀器檢測濃度和質(zhì)量。選取前期研究的轉(zhuǎn)錄組測序抗(‘望山紅’)/感(‘雞冠’)輪紋病材料差異表達(dá)基因(未發(fā)表)12個,推測這些基因在生長發(fā)育與逆境脅迫中發(fā)揮重要功能,開展熒光定量表達(dá)分析。利用Primer 5.0軟件設(shè)計引物,所有引物特異性均經(jīng)過NCBI的Nucleotide BLAST和Primer-BLAST(https://blast.ncbi.nlm.nih.gov/Blast.cgi)驗(yàn)證。實(shí)時熒光定量PCR引物序列見表1,選用作為內(nèi)參基因[29]。試驗(yàn)儀器為QuantStudio? 6 Flex熒光定量PCR儀(Thermo公司)。反應(yīng)體系:SYBR Green(CW2601,康為世紀(jì))10 μL,10 μmol·L-1的上、下游引物(生工生物工程有限公司)各0.4 μL,ddH2O 7.2 μL,cDNA 2 μL,總體積20 μL。反應(yīng)條件為:95℃預(yù)變性10 min;95℃變性15 s,60℃退火1 min,40個循環(huán)。每個處理3次重復(fù)。試驗(yàn)所得數(shù)據(jù)采用2-ΔΔCT計算,利用SPSS 18.0進(jìn)行差異顯著性分析,顯著性水平為<0.05,并用Excel作圖。
表1 實(shí)時熒光定量引物序列
2.1.1 蘋果LRR-RLK成員進(jìn)化分析 從蘋果基因組序列中鑒定得到378個LRR-RLK家族成員。為分析蛋白間的系統(tǒng)進(jìn)化關(guān)系,采用MEGAX軟件對378個蘋果和225個擬南芥的LRR-RLK蛋白序列進(jìn)行比對分析和系統(tǒng)進(jìn)化樹構(gòu)建。如圖1所示,根據(jù)親緣關(guān)系遠(yuǎn)近將所有LRR-RLK蛋白分成15組(I—XV),進(jìn)一步細(xì)化可分成21個亞組。在蘋果中成員最多的為XII亞家族,包含111個基因;其次為XI-1亞家族,包含74個成員;然后是III亞家族,包含50個成員;而XIIIb亞家族成員最少,只包含1個蛋白。
2.1.2 蘋果LRR-RLK成員基本信息 通過保守域預(yù)測軟件Pfam和SMART分析表明,所有鑒定出的378個LRR-RLK均具有N-末端LRR結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和C-末端Pkinase結(jié)構(gòu)域。各亞家族基因數(shù)目差異較大,從1—111個不等。其序列氨基酸數(shù)目、分子量、等電點(diǎn)和LRR數(shù)分別介于318—1 827、34.95— 199.33、5.16—9.75和1—20(表2)。利用在線軟件CELLO v.2.5對所有基因成員進(jìn)行亞細(xì)胞定位預(yù)測分析,發(fā)現(xiàn)均定位于細(xì)胞質(zhì)膜。
圖1 蘋果LRR-RLK基因家族的系統(tǒng)進(jìn)化樹
表2 蘋果LRR-RLK家族成員信息
如圖2所示,LRR-RLK基因家族的378個成員在蘋果的17條染色體上均有分布。7號染色體(Chr 07)分布的LRR-RLK成員最多,為40個,其次為5號染色體(Chr 05),共29個成員,且基因大多分布在染色體下端;定位在6號染色體(Chr 06)的LRR-RLK最少,僅包含7個成員。
因蘋果LRR-RLK家族數(shù)目較龐大,每個亞家族隨機(jī)選一個基因,共21個,經(jīng)在線軟件GSDS 2.0對其進(jìn)行可視化分析。由圖3可知,該家族基因結(jié)構(gòu)相對復(fù)雜,外顯子數(shù)量從1—27,內(nèi)含子子數(shù)目0—26。氨基酸在外顯子上的分布位置差異較大,序列的長度也各不相同,推測不同亞族之間功能上可能差異較大。
2.3.1 III亞家族motif分析 由于蘋果LRR-RLK基因家族成員數(shù)目較多,選取數(shù)目中等的III亞家族為代表,利用MEME在線工具開展motif分析。經(jīng)分析得到15個保守基序,50個基因的motif分布(圖 4)存在以下規(guī)律:順序?yàn)閙otif 14-motif 11-motif 9-motif 10-motif 12-motif 1-motif 15-motif 7-motif 4-motif 5-motif 8-motif 13-motif 2-motif 6-motif 3。III亞家族成員motif 1—motif 15比例分別為100.0%、92.0%、82.0%、88.0%、96.0%、74.0%、100.0%、94.0%、100.0%、100.0%、100.0%、74.0%、78.0%、72.0%、94.0%。由此可知III亞家族成員結(jié)構(gòu)相似且較為保守,可能在蘋果的生長過程中發(fā)揮相似的功能。對每個motif分析發(fā)現(xiàn),motif 1和motif 13均含有29個保守氨基酸,而motif 15含保守氨基酸較少,只有11個。III亞家族最主要的motif 有5個,分別為motif 1、motif 7、motif 9、motif 10和motif 11。N端均含有3個LRR結(jié)構(gòu)保守核心氨基酸殘基:XXLXLXX(motif 14、motif 9和motif 11)。
圖2 蘋果LRR-RLK基因家族染色體定位分析
圖3 蘋果LRR-RLK家族基因結(jié)構(gòu)
2.3.2 III亞家族保守結(jié)構(gòu)域分析 III亞家族基因主要結(jié)構(gòu)域有3個,包括LRRNT-2、PLN00113超級家族和PKc-like超級家族(圖5)。對比圖5的motif與圖7的結(jié)構(gòu)域可知motif 14-motif 11-motif 9-motif 10-motif 12-motif 1-motif 15-motif 7-motif 4-motif 5- motif 8-motif 13-motif 2-motif 6-motif 3屬于PLN00113超級家族,而其中的motif 1-motif 15-motif 7-motif 4- motif 5-motif 8-motif 13-motif 2-motif 6-motif 3又屬于PKc-like超級家族。
利用在線軟件SOPMA對21個亞家族代表LRR-RLK蛋白進(jìn)行二級結(jié)構(gòu)預(yù)測,結(jié)果見表3。所有蛋白質(zhì)二級結(jié)構(gòu)都以螺旋和無規(guī)則卷曲為主,其中螺旋占26.88%—41.63%,無規(guī)則卷曲占38.59%— 52.26%,此外二級結(jié)構(gòu)中還包含轉(zhuǎn)角(占1.80%— 7.75%)和延長鏈(占11.3%—19.48%),兩者所占比例較小。
2.5.1 組織表達(dá)分析 利用qRT-PCR技術(shù)分析12個在蘋果莖、葉、花和果實(shí)中的表達(dá)情況(圖6),引物見表1。除MD00G1105400外,其余11個基因在各組織中均有表達(dá)。MD03G1138500、MD05G1061600、MD13G1108000、MD05G1261100、MD02G1071800和MD15G1288500主要在莖中表達(dá),MD06G1170200、MD03G1036900和MD05G1065800主要在花中表達(dá),MD04G1150400主要在果實(shí)中表達(dá)。
2.5.2 非生物脅迫下的表達(dá)分析 利用qRT-PCR分析‘平邑甜茶’蘋果LRR-RLK基因家族中12個代表基因分別在4℃、10% PEG以及300 mmol?L-1NaCl處理下的相對表達(dá)量(圖7)。
4℃處理下,MD09G1153800、MD04G1150400、MD03G1138500、MD06G1170200、MD03G1036900、MD05G1061600、MD00G1105400至少在其中一個時間點(diǎn)發(fā)生了差異表達(dá)。在以上差異表達(dá)的中,MD09G1153800上調(diào)表達(dá)最為明顯,在4℃處理6 h后表達(dá)量為對照的6.8倍。而MD06G1170200和MD05G1061600在0—48 h均下調(diào)表達(dá),表達(dá)量不到對照的20%,推測兩者可能在響應(yīng)低溫時起到負(fù)調(diào)控作用。
A:III亞家族motif 分析;B:15個保守位點(diǎn)LOGO圖 A: III subfamily motif analysis; B: Logo of 15 conserved motif
圖5 III亞家族保守結(jié)構(gòu)域
10% PEG處理下,除MD04G1150400、MD02G1071800、MD05G1065800和MD15G1288500對干旱脅迫無響應(yīng)外,其余基因至少在其中一個時間點(diǎn)發(fā)生了差異表達(dá)。其中MD00G1105400上調(diào)表達(dá)最明顯,PEG處理24 h時的表達(dá)量為對照的9.6倍。
NaCl處理下,MD04G1150400、MD13G1108000和MD02G1071800在鹽脅迫條件下始終處于上調(diào)表達(dá)。推測其在響應(yīng)鹽脅時起正調(diào)控作用。其中MD02G1071800在鹽脅迫下處理12 h的表達(dá)量最高為對照的14.9倍。而MD03G1138500、MD06G1170200、MD03G1036900、MD05G1061600和MD15G1288500對鹽脅迫信號均無響應(yīng)。
2.5.3 輪紋病菌誘導(dǎo)表達(dá)分析 分別用1×105個/mL輪紋病菌孢子懸液處理2年生‘望山紅’與‘雞冠’新梢。由圖8可知,接種3 d時,MD09G1153800在‘雞冠’中表達(dá)量顯著上調(diào),為對照的75.6倍,而在‘望山紅’中表達(dá)量為對照的1.9倍,推測MD09G1153800在抗輪紋病過程中可能起到正調(diào)控作用。MD05G1065800在輪紋病侵染‘望山紅’過程中表達(dá)量始終無差異,表明在感病品種中此基因不受誘導(dǎo),而在抗病品種‘雞冠’中,3 d時顯著上調(diào)表達(dá),表達(dá)量為對照的11倍,推測其可能在抗病中起到正調(diào)控作用。MD02G1071800在‘雞冠’中呈現(xiàn)先上升后下降趨勢,接種3 d時,表達(dá)量顯著上調(diào),為對照的16.3倍,而感病品種‘望山紅’與對照差異不顯著。MD00G1105400在‘望山紅’接種輪紋病菌1 d時表達(dá)量是對照的286.9倍,抗病品種‘雞冠’接種3 d時,表達(dá)量是對照的191倍,表明MD00G1105400參與蘋果響應(yīng)輪紋病侵染的過程。從整體上看,12個表達(dá)基本上呈先上升后下降趨勢。
表3 蘋果LRR-RLK蛋白的二級結(jié)構(gòu)
不同小寫字母表示差異顯著(P<0.05)。下同 Different lowercase letters indicate significant difference (P<0.05). The same as below
圖7 不同非生物脅迫下蘋果LRR-RLK的相對表達(dá)量
圖8 蘋果LRR-RLK響應(yīng)輪紋病菌侵染的表達(dá)模式
植物在生長發(fā)育過程中因受到外界環(huán)境及內(nèi)部信號的刺激,引發(fā)一系列的信號傳遞。植物類受體蛋白激酶是植物許多信號轉(zhuǎn)導(dǎo)途徑的關(guān)鍵組分[30-31]。而富含亮氨酸重復(fù)的類受體蛋白激酶是RLKs家族中當(dāng)中最大的一類。目前,LRR-RLK已經(jīng)在許多植物中被鑒定,如擬南芥225個[9]、大豆((L.) Merr.)467個[32]、棉花543個[33]、可可(L.)253個[34]、柑橘(L.)300個[35]。本研究依據(jù)LRR-RLK的蛋白質(zhì)序列構(gòu)建了系統(tǒng)進(jìn)化樹,可將LRR-RLK分為15組,這與擬南芥和棉花中對LRR-RLK的系統(tǒng)進(jìn)化關(guān)系研究具有相似性[9,17]。蘋果LRR-RLK家族的蛋白質(zhì)大小在318— 1 827、分子量在34.95—199.33 kD,PI在5.19—9.14,表明LRR-RLK家族成員間的蛋白質(zhì)大小、PI等特征差異較大,這一結(jié)果與其他物種相似[36]?;蚪Y(jié)構(gòu)分析顯示CDS數(shù)量1—27個,內(nèi)含子數(shù)目0—26個,表明該家族基因結(jié)構(gòu)相對復(fù)雜,推測不同亞族之間功能上可能差異較大。這與Liu等[37]對擬南芥、苜蓿、狐米草和異葉卷柏等4種植物的LRR-RLK研究結(jié)果類似。Motif結(jié)構(gòu)與分析表明,在LRR-RLK基因家族中各亞家族內(nèi)部成員結(jié)構(gòu)類似且相對保守,可能在蘋果的生命過程中發(fā)揮相似的功能。II與III亞家族主要存在2個保守序列,分別是LRR基序、蛋白激酶結(jié)構(gòu)域。該基因家族與擬南芥、大豆LRR-RLK基因家族高度相似[9,32]。
LRR-RLK廣泛參與了根、葉、花、莖和果的生長發(fā)育[4,38-39]。本研究通過定量檢測發(fā)現(xiàn),篩選的12個家族成員在各組織中均有表達(dá)(除MD00G1105400外),且多數(shù)基因在莖中表達(dá)水平相對較高。MD09G1153800、MD00G1105400對低溫、干旱、鹽脅迫均有響應(yīng),與在馬鈴薯和水稻中的研究結(jié)果類似[4,40]。由此推測兩者可能參與了蘋果對逆境的響應(yīng)調(diào)控。而MD15G1288500對上述3種非生物脅迫均無響應(yīng),此現(xiàn)象在其他基因家族中也存在[41]。
輪紋病是蘋果三大真菌病害之一,而抗病基因的鑒定可為綜合防控提供理論參考[42]。目前,LRR-RLK在植物抗病方面已經(jīng)開展了較為廣泛的研究,如通過QTL定位發(fā)現(xiàn)在基因座中編碼LRR-RLK家族蛋白的基因與葡萄霜霉病抗性有關(guān)[43]。是蘋果中第一個被發(fā)現(xiàn)的LRR型受體蛋白激酶相關(guān)基因[44]。和參與對黑星病的抗性[45-46]。和在抗黑星病基因存時對病原菌做出響應(yīng),可能參與病原體信號的識別。而和的表達(dá)譜不依賴于的存在,可能參與了植物的基礎(chǔ)防御[47]。本研究中,接種輪紋病菌后,蘋果LRR-RLK家族多個成員差異表達(dá),但MD00G1105400在抗感蘋果品種響應(yīng)輪紋病誘導(dǎo)過程中均出現(xiàn)較高表達(dá)水平,僅可表明其參與對病原菌入侵的響應(yīng),而非抗病的關(guān)鍵成員。
從蘋果全基因組中獲得378個LRR-RLK基因家族成員,均含有LRR區(qū)、跨膜區(qū)和激酶區(qū)等保守結(jié)構(gòu)域。系統(tǒng)進(jìn)化分析可將LRR-RLK分為15大類和21個亞類。多數(shù)蘋果LRR-RLK在莖中高表達(dá)。低溫條件下,7個基因上調(diào)表達(dá),2個基因下調(diào)表達(dá);在干旱條件下,8個基因上調(diào)表達(dá);在鹽脅迫條件下,MD04G1150400、MD13G1108000和MD02G1071800始終處于上調(diào)表達(dá)狀態(tài);MD09G1153800和MD05G1065800可能參與‘雞冠’對輪紋病菌的抗性形成。
[1] SHIU S H, BLEECKER A B. Receptor-like kinases fromform a monophyletic gene family related to animal receptor kinases. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(19): 10763-10768.
[2] XIANG Y, CAO Y L, XU C G, LI X H, WANG S P., conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as. Theoretical and Applied Genetics, 2006, 113(7): 1347-1355.
[3] De LORENZO L, MERCHAN F, LAPORTE P, THOMPSON R, CLARKE J, SOUSA C, CRESPI M. A novel plant leucine-rich repeat receptor kinase regulates the response ofroots to salt stress. Plant Cell, 2009, 21(2): 668-680.
[4] LI X X, SALMAN A, GUO C, YU J, CAO S X, GAO X M, LI W, LI H, GUO Y F. Identification and characterization offamily genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses. Cells, 2018, 7: 120.
[5] TICHTINSKY G, VANNOOSTHUYSE V, COCK J M, GAUDE T. Making inroads into plant receptor kinase signalling pathways. Trends in Plant Science, 2003, 8(5): 231-237.
[6] NAPIER R. Plant hormone binding sites. Annals of Botany, 2004, 93: 227-233.
[7] LEHTI-SHIU M D, SHIU S H. Diversity, classification and function of the plant protein kinase superfamily. Philosophical Transactions of The Royal Society Biological Sciences, 2012, 367: 2619-2639.
[8] GISH L A, CLARK S E. The RLK/Pelle family of kinases.The Plant Journal, 2011, 66: 117-127.
[9] SUN J M, LI L T, WANG P, ZHANG S L, WU J Y. Genome-wide characterization, evolution, and expression analysis of the leucine-rich repeat receptor-like protein kinase (LRR-RLK) gene family in Rosaceae genomes. BMC Genomics, 2017, 18: 763.
[10] GOMEZ-GOMEZ L, BAUER Z, BOLLER T. Both the extracellular leucine-richrepeat domain and the kinase activity ofare required for flagellin binding and signaling in. Plant Cell, 2001, 13(5): 1155-1163.
[11] KUNZE G, ZIPFEL C, ROBATZEK S, NIEHAUS K, BOLLER T, FELIX G. The N terminus of bacterial elongation factor Tu elicits innate immunity inplants. Plant Cell, 2004, 16: 3496-3507.
[12] SONG W Y, WANG G L, CHEN L L, KIM H S, PI LY, HOLSTEN T, GARDNER J, WANG B, ZHAI W X, ZHU L H, FAUQUET C, RONALD P. A receptor kinase-like protein encoded by the rice disease resistance gene,. Science, 1995, 270(5243): 1804-1806.
[13] HU H, WANG J, SHI C, YUAN C, PENG C F, YIN J J, LI W T, HE M, WANG J C, MA B T, WANG Y P, LI S G, CHEN X W. A receptor like kinase gene with expressional responsiveness onpv.is essential for-mediated disease resistance. Rice, 2015, 8: 1. https://doi.org/10.1186/s12284- 014-0034-1.
[14] CHEN T T, XIAO J, XU J, WAN WT, QIN B,CAO A Z, CHEN W, XING L P, DU C, GAO X Q, ZHANG S Z, ZHANG R Q, SHEN W B, WANG H Y, WANG X E. Two members offamily confer powdery mildew resistance in common wheat. BMC Plant Biology, 2016, 16: 27.
[15] BLAUM B S, MAZZOTTA S, NOLDEKE E R, HALTER T, MADLUNG J, KEMMERLING B, STEHLE T. Structure of the pseudokinase domain of, a regulator of-mediated immune signaling in.Journal of Structural Biology, 2014, 186(1): 112-121.
[16] IMKAMPE J, HALTER T,HUANG S H, SCHULZE S,MAZZOTTA S,SCHMIDT N,MANSTRETTA R,POSTEL S, WIERZBA M,YANG Y, VanDONGEN W M A M, STAHL M,ZIPFEL C,GOSHE M B,CLOUSE S, De VRIES S C, TAX F,WANG X F. KEMMERLING B. Theleucine-rich repeat receptor kinasenegatively regulatesReceptor complex formation and stabilizesPlant Cell, 2017, 29(9): 2285-2303.
[17] SUN R B, WANG S H, MA D, LIU C L. Genome-wide analysis ofgene family in fourspecies and expression analysis during cotton development and stress responses. Genes, 2018, 9: 592.
[18] LI H, HAN X D, LIU X X, ZHOU M Y, REN W, ZHAO B B, JU C L, LIU Y, ZHAO J R. A leucine-rich repeat-receptor-like kinase genefrom sorghum (L.) confers drought tolerance in maize. BMC Genomics, 2019, 20: 737.
[19] LIN F M , LI S, WANG K, TIAN H, GAO J F, ZHAO Q Z, DU C Q. A leucine-rich repeat receptor-like kinase,, modulates salt tolerance in rice. Plant Science, 2020, 296: 110465.
[20] LI R, AN J P, YOU C X, WANG X F, HAO Y J. Molecular cloning and functional characterization of the CEP RECEPTOR1 geneof apple (). Plant Cell, Tissue and Organ Culture, 2020, 140(3): 539-550.
[21] LIAO Y L, HU C Q, ZHANG X W, CAO X F, XU Z J, GAO X L, LI L H, ZHU J Q, CHEN R J. Isolation of a novel leucine-rich repeat receptorlike kinase () gene from rice and analysis of its relation to abiotic stress responses. Biotechnology & Biotechnological Equipment, 2017, 31(1): 51-57.
[22] WANG J H, KUCUKOGLU M, ZHANG L B, CHEN P, DANIEL D, NILSSON O, JONES B, SANDBERG G, ZHENG B. TheLRR-RLK,, is a regulator of secondary wall formation correlated with the TDIF-PXY/TDR-WOX4 signaling pathway. BMC Plant Biology, 2013, 13: 94.
[23] 楊敏, 韓玉珍, 阿依江, 哈拜克, 王翠玲. LRR-RLKs亞家族基因在擬南芥開花過程中的作用. 核農(nóng)學(xué)報, 2017, 31(4): 654-662.
YANG M, HAN Y Z, A Y J, HA B K, WANG C L. Study of, one member of leucine-rich repeat receptor-like kinases () subfamily gene, on process of flowering inJournal of Nuclear Agricultural Sciences, 2017, 31(4): 654-662. (in Chinese)
[24] YU Y X, SONG J L, TIAN X H, ZHANG H W, LI L G, ZHU H F.interacts specifically withand induces depolarized growth of pollen tubes when over expressed. Science China-Life Sciences, 2018, 61: 100-112.
[25] DIMITROVA I, TAX F E. Lateral root growth inis controlled by short and long distance signaling through the LRR RLKsand. Plant Signaling and Behavior, 2018, 13(6): e1489667.
[26] ZOU Y, LIU X Y, WANG Q, CHEN Y, LIU C, QIU Y, ZHANG W., a novel leucine-rich repeat receptor-like kinase, negatively regulates polar auxin transport and root development in rice. Biochimica et Biophysica Acta (BBA)-General Subjects, 2014, 1840(6): 1676-1685.
[27] VELASCO R, ZHARKIKH A, AFFOURTIT J, DHINGRA A, CESTARO A, KALYANARAMAN A, FONTANA P, BHATNAGAR S K, TROGGIO M, PRUSS D, SALVI S, PINDO M, BALDI P, CASTELLETTI S, CAVAIUOLO M, COPPOLA G, COSTA F, COVA V, RI A D, GOREMYKIN V,. The genome of the domesticated apple (Borkh.). Nature Genetics, 2010, 42(10): 833-839.
[28] DACCORD N, CELTON J M, LINSMITH G, BECKER C, CHOISNE N, SCHIJLEN E, Van de GEEST H,BIANCO L, MICHELETTI D, WELASCO R, DiPIERRO E A, GOUZY J, REES D J G, GUERIF P, MURANTY H, DUREL C E, LAURENS F, LESPINASSE Y, GAILLARD S, AUBOURG S, QUESNEVILLE H, WEIGEL D, Van deWEG E, TROGGIO M, BUCHER E. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics, 2017, 49: 1099-1106.
[29] 袁高鵬, 韓曉蕾, 卞書迅, 張利義, 田義, 張彩霞, 叢佩華. 蘋果基因家族生物信息學(xué)及表達(dá)分析. 中國農(nóng)業(yè)科學(xué), 2019, 52(23): 4322-4332.
YUAN G P, HAN X L, BIAN S X, ZHANG L Y, TIAN Y, ZHANG C X, CONG P H. Bioinformatics and expression analysis of thegene family in apple. Scientia Agricultura Sinica, 2019, 52(23): 4322-4332. (in Chinese)
[30] WAI C M, POWELL B, MING R, MIN X J. Genome-wide identification and analysis of genes encoding proteolytic enzymes in pineapple. Tropical Plant Biology, 2016, 9: 161-175.
[31] 張婭, 黃天虹, 張西林, 劉同坤, 侯喜林, 李英. 不結(jié)球白菜基因的克隆及表達(dá)分析. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2019, 42(6) : 1014-1021.
ZHANG Y, HUANG T H, ZHANG X L, LIU T K, HOU X L, LI Y. Cloning and expression analysis offrom non-heading Chinese cabbage. Journal of Nanjing Agricultural University, 2019, 42(6): 1014-1021. (in Chinese)
[32] ZHOU F l, GUO Y, Qiu L J. Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biology, 2016, 16: 58.
[33] YUAN N, RAI K M, BALASUBRAMANIAN V K, UPADHYAY S K, LUO H, MENDU V. Genome-wide identification and characterization of LRR-RLKs reveal functional conservation of thesubfamily in cotton (). BMC Plant Biology, 2018, 18: 185.
[34] ARGOUT X, SALSE J, AURY J m, GUILTINAN M J, DROC G, GOUZY J, ALLEGRE M, CHAPARRO C, LEGAVRE T, MAXIMOVA S N, ABROUK M, MURAT F, FOUET O, POULAIN J, RUIZ M, ROGUET Y, RODIER-GOUD M, BARBOSA-NETO J F, SABOT F, KUDRNA D, AMMIRAJU J S S, SCHUSTER S C, CARLSON J E, SALLET E, SCHIEX T, DIEVART A, KRAMER M, GELLEY L, SHI Z, BERARD A,. The genome of. Nature Genetics, 2011, 43: 101-108.
[35] MAGALHAES D M, SCHOLTE L L S, SILVA N V, OLIVEIRA G C, ZIPFEL C, TAKITA M A, DE SOUZA A A.family from twospecies: Genome-wide identification and evolutionary aspects. BMC Genomics, 2016, 17: 623.
[36] WEI Z R, WANG J H, YANG S H, SONG Y J. Identification and expression analysis of thegene family in tomato () Heinz 1706. Genome, 2015, 58(4): 121-134.
[37] LIU P L, DU L, HUANG Y, GAO S M, YU M. Origin and diversification of leucine-rich repeat receptor-like protein kinase () genes in plants. BMC Evolutionary Biology, 2017, 17: 47.
[38] BETTEMBOURG M, DAL-SOGLIO M, BUREAU C, VERNET A, DARDOUX A, PORTEFAIX M, BES M, MEYNARD D, MIEULET D, CAYROL B, PERIN C, COURTOIS B, MA J F, DIEVART A. Root cone angle is enlarged inLRR-RLK mutants in rice. Rice, 2017, 10: 50.
[39] HOU B Z, CHENG X, SHEN Y Y. A leu-rich repeat receptor-like protein kinase,, interacts with the ABA receptor,, to regulate fruit ripening in strawberry. Journal of Experimental Botany, 2018, 69(7): 1569-1582.
[40] PARK S J, MOON J C, PARK Y C, KIM J, KIM D S, JANG C S. Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase () gene to abiotic stresses.Journal of Plant Physiology, 2014, 171(17): 1645-1653.
[41] XIE R J, LI Y J, HE S L, ZHENG Y Q, YI S L, LV Q, DENG L. Genome-wide analysis of citrusgenes and their spatiotemporal expression under stresses and hormone treatments. PLoS ONE, 2014, 9(12): e113971.
[42] 劉河, 朵虎, 趙丹, 孫娥, 馬富鵬, 馬春玲, 左存武. 梨家族基因及其腐爛病菌侵染響應(yīng)成員的鑒定. 園藝學(xué)報, 2020, 47(4): 963-973.
LIU H, DUO H, ZHAO D, SUN E, MA F P, MA C L, ZUO C W. Identification ofgene family in pear and its members in response to signals of.Acta Horticulturae Sinica, 2020, 47(4): 963-973. (in Chinese)
[43] LIN H, LENG H, GUO Y S, KONDO S,ZHAO Y H, SHI G L, GUO X W. QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (L.?×Rupr.) crossing. Scientia Horticulturae, 2019, 244: 200-207.
[44] FAIZE M, FAIZE M, FAIZE L, ISHII H. Characterization of a leucine-rich repeat receptor-like protein kinase () gene from Japanese pear and its possible involvement in scab resistance. Journal of General Plant Pahtology, 2007, 73(2): 104-112.
[45] KOMJANC M, FESTI S, RIZZOTTI L, CATTIVELLI L, CERVONE F, De LORENZO G. A leucine-rich repeat receptor-like protein kinase() gene is induced inbyinfection and salicylic acid treatment., 1999, 40: 945-957.
[46] PADMARASU S, SARGENT D J, PATOCCHI A, TROGGOI M, BALDI P, LINSMITH G, POLES L, JANSCH M, KELLERHALS M, TATTARINI S, VELASCO R. Identification of a leucine-rich repeat receptor-like serine/threonine-protein kinase as a candidate gene for()-based apple scab resistance. Molecular Breeding, 2018, 38: 73.
[47] COVA V, PARIS R, PASSEROTTI S, ZINI E, GESSLER C, PERTOT I, LOI N, MUSETTI R, KOMJANC M. Mapping and functional analysis of four apple receptor-like protein kinases related to-transgenic and wild-type apple plants. Tree Genetics & Genomes, 2010, 6: 389-403.
Genome-Wide Identification and Expression Pattern Analysis of LRR-RLK Gene Family in Apple
1Liaoning Institute of Pomology, Yingkou 115009, Liaoning;2College of Horticultural Science and Engineering, Shangdong Agricultural University, Tai’an 271018, Shangdong
【】 The study was carried out to explore the whole genome characteristics and expression patterns ofin apple, to reveal the expression specificity of family members in different tissues and their responses to biological and abiotic stress, and further understand its biological function in apple. 【】 The members of LRR-RLK gene family in the whole genome of apple were identified based on the local BLAST database and Pfam database. The LRR-RLK amino acid sequence prediction, subcellular localization prediction, domain analysis, phylogenetic tree and chromosome localization were completed by software of ExPASy Proteomics Server, Cell-PLoc, CD-Search Tool, MEGAX and MG2C. In addition, the expression pattern of 12genes in different tissues and stress were analyzed by real-time fluorescent quantitative PCR (qRT-PCR).【】 A total of 378genes were identified from apple genome. Thesegenes encoded proteins containing 318-1 827 amino acid, and the theoretical isoelectric point ranged from 6.14 to 9.01. The prediction subcellular localization of apple LRR-RLK proteins was all distributed in the cell membrane. The gene family could be divided into 15 subgroups, containing 1-111 genes. The 378 genes in this family were distributed on all 17 chromosomes of the apple, and the chromosome 7 contained 40 genes. The LRR-RLKgene family had two conserved domains, namely the leucine-rich repeat structure and the protein kinase domain. Irregular curl and α-helix was the main secondary structure in the LRR-RLK gene family, and the rotation of β-turn was very small. It was found that the 12 selected family members were expressed in all tissues (except MD00G1105400), and most genes were expressed at relatively high levels in stem. Seven genes were up-regulated under low temperature conditions, and the expression of MD09G1153800 was the most obvious. The expression of MD09G1153800 was raised to 6.8 times of that under the control. While MD06G1170200 and MD05G1061600 were both down-regulated. Eight genes were up-regulated under drought conditions, and MD00G1105400 was the most obvious one. The expression of MD00G1105400 was raised to 9.6 times of that under the control; under salt conditions, MD04G1150400, MD13G1108000 and MD02G1071800 were always up-regulated. Among them, MD02G1071800 had the highest expression after 24 hours of salt stress treatment, which was 14.9 times of that under the control. After inoculatingthe expression of 12genes increased first and then decreased. After inoculating, the expression level of Wangshanhong was higher on the first day, however the expression level of Jiguan was higher on the third day. The expression of MD09G1153800 and MD05G1065800 were up-regulated significantly in Jiguan,in relativeto have no change in Wangshanhong, suggesting that these twocould serve as candidate genes for further functional characterization. 【】 A total of 378members were identified from apple whole genome sequences, which could be divided into 15 groups and distributed on 17 chromosomes, and the most ofgenes were responsive to stress stimulus and.
apple; LRR-RLK; gene family; identification; expression analysis
10.3864/j.issn.0578-1752.2021.14.015
2020-08-30;
2020-12-29
農(nóng)業(yè)農(nóng)村部園藝作物種質(zhì)資源利用重點(diǎn)實(shí)驗(yàn)室開放基金(NYZS201905)、遼寧省科學(xué)事業(yè)公益研究基金(20180022)、遼寧省農(nóng)業(yè)科學(xué)院學(xué)科建設(shè)項(xiàng)目(2020DD165004)
黃金鳳,E-mail:huangfeng1002@163.com。通信作者劉志,Tel:0417-7033412;E-mail:lnliuzhi@163.com
(責(zé)任編輯 趙伶俐)