申靜
摘 要 腸道菌群是個巨大、復(fù)雜的微生物生態(tài)系統(tǒng),其中菌群-腸腦軸是近年研究熱點。大量研究發(fā)現(xiàn)菌群-腸腦軸通過對免疫系統(tǒng)、神經(jīng)傳遞、內(nèi)分泌調(diào)節(jié)及菌群代謝物的調(diào)控,產(chǎn)生對精神疾病及神經(jīng)退行性病變的影響。由此,深度啟發(fā)了更多治療方式和益生菌產(chǎn)品的發(fā)展,以預(yù)防及治療相關(guān)疾病,具有很好的社會效益和經(jīng)濟學(xué)價值。本文綜述了其在治療及健康管理中的作用及商業(yè)開發(fā)價值。
關(guān)鍵詞 菌群-腸腦軸 神經(jīng)退行性疾病 干預(yù)
中圖分類號:R37; R363 文獻標志碼:A 文章編號:1006-1533(2021)09-0076-05
Research progress on the relationship between the microbiota-gut-brain axis and diseases and the prospect of intervention on healthy life
SHEN Jing*
(SPH Sine Pharmaceutical Laboratories Co., Ltd., Shanghai 201206, China)
ABSTRACT Intestinal microflora is a huge and complex microbial ecosystem, in which the microbiota-gut-brain axis has been a research hotspot in recent years. A large number of studies have showed that the microbiota-gut-brain axis has an impact on mental diseases and neurodegenerative diseases by the regulation of immune system, neurotransmission, endocrine regulation and flora metabolites. Therefore, more treatment methods and probiotics products are deeply inspired to prevent and treat the related diseases, which has good social benefits and economic value. The role of probiotics in clinical treatment and health management and its commercial development value are reviewed.
KEy WORDS microbiota-gut-brain axis; neurodegenerative disease; intervention
2000多年前,希波克拉底說“一切疾病始于腸道”,《黃帝內(nèi)經(jīng)》記載“心與小腸相表里”,心主神志,中外先哲不約而同地揭示了腸腦軸的概念。相關(guān)研究[1-4]夯實了這一概念:①肝性腦病常常與腸道營養(yǎng)不良的發(fā)生有關(guān),對此可以采用目標微生物的抗生素治療;②從無菌動物發(fā)現(xiàn),缺乏菌群會影響大腦功能;③即使在免疫未激活的狀態(tài)下,長期的輕度感染也會改變?nèi)撕蛣游锏男袨椋虎芡庠葱匝a充特定菌株能改變?nèi)撕蛣游锏男袨?;⑤生命早期使用抗生素會對神?jīng)系統(tǒng)發(fā)育產(chǎn)生影響?;诖?,本文從菌群-腸腦軸的調(diào)控機制、與疾病的關(guān)系和干預(yù)方式等幾個方面進行闡述。
1 菌群-腸腦軸的調(diào)控機制
人類腸道微生物組約有3.8×1013種微生物[5],其中包括至少1 000種已知細菌[6]。在對腸道微生物組的研究中,腸道菌群的研究進展最快,這歸功于高通量篩選技術(shù)的快速發(fā)展[7]。目前的研究已經(jīng)能明確菌群-腸腦軸的信息傳遞和影響是雙向的,且腸道菌群在人體代謝、免疫、神經(jīng)活動方面均是重要的參與者[8-9]。菌群-腸腦軸調(diào)控機制如圖1所示[10]。
1.1 代謝調(diào)節(jié)
1.1.1 短鏈脂肪酸(short chain fatty acids, SCFAs)
SCFAs是腸道菌群的代謝產(chǎn)物之一,可以刺激腸內(nèi)分泌細胞產(chǎn)生神經(jīng)肽,從而刺激腸神經(jīng)系統(tǒng)[11],此外,Vinolo等[12]發(fā)現(xiàn)SCFAs還能下調(diào)腫瘤壞死因子α(tumor necrosis factor-α,TNF-α),白細胞介素-1β(interleukin-1β,IL-1β),白細胞介素-6(interleukin-6,IL-6),等促炎因子,上調(diào)抗炎因子白細胞介素-10(IL-10),Pérez-Escuredo等[13]則發(fā)現(xiàn)SCFAs通過與中樞神經(jīng)系統(tǒng)中大量表達的三羧酸轉(zhuǎn)運體結(jié)合進入大腦,調(diào)節(jié)神經(jīng)功能傳遞。這些發(fā)現(xiàn)都證明了SCFAs在菌群-腸腦軸中的調(diào)節(jié)作用。
1.1.2 單胺類神經(jīng)遞質(zhì)
腸道菌群中不同的菌株能調(diào)節(jié)多種單胺類神經(jīng)遞質(zhì),包括5 -羥色胺(5-HT)、兒茶酚胺、γ-氨基丁酸[14-16]。Clarke等[17]發(fā)現(xiàn)5-HT 受腸道菌群調(diào)節(jié),而人體95%的5-HT 由腸上皮細胞產(chǎn)生。在腸內(nèi),無病原體小鼠比無菌小鼠有更多的多巴胺和去甲腎上腺素,表明腸菌能提供兒茶酚胺[18]。Barrett等[19]發(fā)現(xiàn)腸道菌群還能產(chǎn)生γ-氨基丁酸,直接透過血腦屏障,調(diào)節(jié)中樞神經(jīng)。
1.1.3 色氨酸-犬尿氨酸代謝
色氨酸只有少部分以5-HT 代謝,95%以犬尿氨酸通路(kynurenine pathway, KP)為主要代謝途徑。近年來發(fā)現(xiàn)KP是神經(jīng)退行性疾病和嚴重大腦損傷中神經(jīng)元受損的重要途徑[20]。還發(fā)現(xiàn),正常小鼠在接受了抑郁癥患者的糞菌移植(fecal microbiota transplantation, FMT)后,其色氨酸-犬尿氨酸代謝發(fā)生紊亂,行為上也有焦慮抑郁性改變[21-22]。
1.2 神經(jīng)調(diào)節(jié)
迷走神經(jīng)是第10顱神經(jīng),作為連接腸道和大腦最快的路徑,由80%傳入神經(jīng)和20%傳出神經(jīng)構(gòu)成,是以收集和傳遞信息為主的神經(jīng)通路。迷走神經(jīng)從十二指腸近端開始,一直到橫結(jié)腸部分,將收集到的信號上達中樞[23]。迷走神經(jīng)還能感知腸道內(nèi)發(fā)生的各種機械、化學(xué)和激素等多模式的信號[24],而且不同亞群的迷走神經(jīng)能感應(yīng)特定的刺激,反映出特異性的潛質(zhì)[25]。
1.3 內(nèi)分泌調(diào)節(jié)
在嗅球切除術(shù)動物模型中,促腎上腺皮質(zhì)激素釋放激素(corticotropin releasing hormone, CRH)的水平上升與慢性抑郁樣行為有明確聯(lián)系,且會增強腸道運動,改變腸道菌群結(jié)構(gòu)[26]。無菌小鼠和無特定病原體(specific pathogen free, SPF)小鼠的動物研究中發(fā)現(xiàn),無菌小鼠的CRH水平比SPF小鼠高[27],而這種應(yīng)激反應(yīng)通過糞便重構(gòu)能夠得到逆轉(zhuǎn)[28]。
1.4 免疫調(diào)節(jié)
腸黏膜淋巴樣組織被認為是人類最大和最重要的免疫器官。研究表明[29-30],腸道菌群對淋巴系統(tǒng)的發(fā)育和適應(yīng)性免疫系統(tǒng)有重要的影響。腸道菌群影響SPF小鼠的大腦代謝產(chǎn)物,其中10個代謝物與腦功能有關(guān)[31]。致病性腸道微生物除了微生物代謝產(chǎn)物外,還可通過胃腸道上皮屏障、巨噬細胞和樹突狀細胞激發(fā)白細胞介素-1(interleukin-1,IL-1),白細胞介素-18(interleukin-18,IL-18)等促炎細胞因子[32],這些細胞因子與多種神經(jīng)精神疾病密切相關(guān),包括焦慮、抑郁和神經(jīng)性疼痛等[33-34]??梢?,腸道菌群、腸黏膜免疫系統(tǒng)和大腦之間存在復(fù)雜的免疫調(diào)節(jié)網(wǎng)絡(luò)。
2 菌群-腸腦軸與疾病
雖然還有很多未知,菌群-腸腦軸已表現(xiàn)出了雙向的生物信息調(diào)控能力。近年來,阿爾茲海默?。ˋlzheimer disease, AD)、帕金森?。≒arkinsons disease, PD)和自閉癥(autistic spectrum disorder, ASD)已被證實與腸道菌群相關(guān)。
2.1 AD
AD是中樞神經(jīng)系統(tǒng)退行性改變的疾病,每年在全球累及約5 000萬患者。淀粉樣蛋白b形成的神經(jīng)斑塊和tau蛋白過度磷酸化導(dǎo)致神經(jīng)纖維纏結(jié)是目前AD診斷的神經(jīng)病理學(xué)標準。而菌群-腸腦軸對AD的促發(fā)作用歸結(jié)于腸道營養(yǎng)不良,導(dǎo)致有益物質(zhì)(如SCFAs)的減少以及有害物質(zhì)(如淀粉樣蛋白和氧化三甲胺)的增加。腸道營養(yǎng)不良的主要特征是厚壁菌與擬桿菌比值的增加,這可能導(dǎo)致AD早期的淀粉樣蛋白前體蛋白的積累[35]。另一方面,腸道菌群的某些代謝物對Ab的積累有促進作用,比如氧化三甲胺已經(jīng)被發(fā)現(xiàn)與AD認知功能減退有關(guān)[36]。另外,異常腸道菌群會促進全身炎癥反應(yīng),進而推動AD發(fā)展,比如神經(jīng)變性的發(fā)作[37-38]。
2.2 PD
PD是常見的神經(jīng)退行性疾病,表現(xiàn)出運動性異常,包括震顫、肌肉僵硬、運動緩慢和步態(tài)異常等[39]。主要病理特征是黑質(zhì)中多巴胺能神經(jīng)元的喪失,伴有α-突觸核蛋白的積累和路易小體的沉積[40]。研究表明[41],早在中樞系統(tǒng)發(fā)生病變以前,α-突觸核蛋白已在腸神經(jīng)系統(tǒng)蓄積,并伴隨消化道(便秘等)癥狀,這在野生型α-突觸核蛋白的小鼠中也得到了證實,該小鼠表現(xiàn)出結(jié)腸運動功能受損[42]。因而PD早期的腸道消化癥狀對疾病進展的認知具有警示作用,且對早期干預(yù)提供了新的可能。此外,PD患者腸道功能受損后,會增加局部炎癥,降低α-突觸核蛋白的清除效率,加重PD神經(jīng)變性[43]。此外還發(fā)現(xiàn),PD癥狀的嚴重程度(包括姿勢不穩(wěn)和步態(tài)異常)與一些菌株的豐度變化有相關(guān)性[44-45]。可見,探索菌群-腸腦軸對研究PD發(fā)病及疾病進展的具體機制,以及預(yù)防和治療PD具有重大臨床意義。
2.3 ASD
ASD兒童的胃腸道癥狀發(fā)病率比正常人群高4倍[46]。通過對ASD患者的糞便測序,發(fā)現(xiàn)后壁菌群豐度低,擬桿菌門高。擬桿菌屬是產(chǎn)生SCFAs的細菌,它們的代謝產(chǎn)物(尤其是丙酸)可能會通過腸腦軸影響中樞神經(jīng),從而改變大腦認知和行為[47]。ASD患兒與健康兒童相比,抗炎能力菌屬及消化能力菌屬均降低[47-50],但脫硫弧菌卻過度生長[51]。目前對于腸菌-腦腸軸與ASD之間的機制探索主要聚焦于腸道炎癥假說和血清素通路異常。對于ASD的治療尚未有很好的方法,通行的家庭認知行為療法對父母的精力消耗和物質(zhì)保障要求很高,且效果有限。因而將菌群干預(yù)作為一種靶向治療手段,是非常有潛力的研究方向,且全球各地都有不錯的研究成果發(fā)表。Wang等[52]發(fā)現(xiàn)益生菌和低聚果糖干預(yù)可通過調(diào)節(jié)微生物-腸腦軸,改善自閉癥譜系,從而減少高血清素能狀態(tài)和多巴胺代謝紊亂。
除了上述3種疾病,全球范圍內(nèi)還有不少菌群-腦腸軸對認知功能障礙、精神分裂、雙向情感障礙等發(fā)生影響的深入研究。
3 干預(yù)
3.1 飲食
最容易實現(xiàn)的腸道菌群干預(yù)是飲食。因此,針對飲食結(jié)構(gòu)和生活習(xí)慣對菌群-腸腦軸的改變是研究的熱點。目前比較常見的方式是外源性補充益生菌產(chǎn)品,具體產(chǎn)品需要有科學(xué)、嚴謹?shù)呐R床觀察研究,才更容易成為值得普及推廣的干預(yù)手段。此外,有些作為藥品文號的益生菌產(chǎn)品也在臨床使用中發(fā)現(xiàn)了較好的干預(yù)能力。
3.2 治療手段
目前,全國已有幾十家醫(yī)院開展FMT治療干預(yù),因起步不同,故積累和探索的成熟度不同,但從成熟的案例和實踐中發(fā)現(xiàn),F(xiàn)MT對于自閉癥、抑郁癥等有不錯的療效。
4 展望
腸道微生物組除了腸菌外,還有病毒、真菌等微生物,同樣對腸腦軸的雙向調(diào)節(jié)起到重要作用,但需要更多的基礎(chǔ)和臨床研究了解其具體分子生物學(xué)機制。以菌群-腸腦軸為目標,尋找可以干預(yù)的腸道靶點必將繼續(xù)成為研究熱點,可以預(yù)見不遠的未來,將不斷產(chǎn)生鼓舞人心的新成果,以造福公眾。
參考文獻
[1] Collins SM. The intestinal nicrobiota in the irritable bowel syndrome[J]. Int Rev Neurobiol, 2016, 131: 247-261.
[2] Gareau MG, Wine E, Rodrigues DM, et al. Bacterial infection causes stress-induced memory dysfunction in mice[J]. Gut, 2011, 60(3): 307-317.
[3] Lyte M, Varcoe JJ, Bailey MT. Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation[J]. Physiol Behav, 1998, 65(1): 63-68.
[4] Cryan JF, ORiordan KJ, Cowan CSM, et al. The microbiotagut-brain xis[J]. Physiol Rev, 2019, 99(4): 1877-2013.
[5] Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol, 2016, 14(8): e1002533.
[6] Rankin A, ODonavon C, Madigan SM, et al. ‘Microbes in sport - the potential role of the gut microbiota in athlete health and performance[J]. Br J Sports Med, 2017, 51(9): 698-699.
[7] Zhuang L, Chen H, Zhang S, et al. Intestinal microbiota in early life and its implications on childhood health[J]. Genomics Proteomics Bioinformatics, 2019, 17(1): 13-25.
[8] Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7268): 1282-1286.
[9] Sun J, Wang FY, Hong GL, et al. Antidepressant-like effects of sodium butyrate and its possible mechanisms of action in mice exposed to chronic unpredictable mild stress[J]. Neurosci Lett, 2016, 618: 159-166.
[10] Naveed M, Zhou QG, Xu C, et al. Gut-brain axis: a matter of concern in neuropsychiatric disorders…! [J]. Prog Neuropsychopharmacol Biol Psychiatry, 20021, 104: 110051.
[11] Bliss ES, Whiteside E. The gut-brain axis, the human gut microbiota and their integration in the development of obesity[J]. Front Physiol, 2018, 9: 900.
[12] Vinolo MAR, Rodrigues HG, Nachbar RT, et al. Regulation of inflammation by short chain fatty acids[J]. Nutrients, 2011, 3(10): 858-876.
[13] Pérez-Escuredo J, Van Hée VF, Sboarina M, et al. Monocarboxylate transporters in the brain and in cancer[J]. Biochim Biophys Acta, 2016, 1863(10): 2481-2497.
[14] Marques TM, Patterson E, Wall R, et al. Influence of GABA and GABA-producing Lactobacillus brevis DPC 6108 on the development of diabetes in a streptozotocin rat model[J]. Benefic Microbes, 2016, 7(3): 409-420.
[15] Roshchina VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells[J]. Adv Exp Med Biol, 2016, 874: 25-77.
[16] Strandwitz P. Neurotransmitter modulation by the gut microbiota[J]. Brain Res, 2018, 1693(Pt B): 128-133.
[17] Clarke G, Grenham S, Scully P, et al. The microbiomegut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner[J]. Mol Psychiatry, 2013, 18(6): 666-673.
[18] Asano Y, Hiramoto T, Nishino R, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 303(11): G1288-G1295.
[19] Barrett E, Ross RP, OToole PW, et al. γ-Aminobutyric acid production by culturable bacteria from the human intestine[J]. J Appl Microbiol, 2012, 113(2): 411-417.
[20] Schwarcz R, Bruno JP, Muchowski PJ, et al. Kynurenines in the mammalian brain: when physiology meets pathology[J]. Nat Rev Neurosci, 2012, 13(7): 465-477.
[21] Kennedy PJ, Cryan JF, Dinan TG, et al. Kynurenine pathway metabolism and the microbiota-gut-brain axis[J]. Neuropharmacology, 2017, 112(Pt B): 399-412.
[22] Zhu F, Guo RJ, Wang W, et al. Transplantation of microbiota from drug-free patients with schizophrenia causes schizophrenia-like abnormal behaviors and dysregulated kynurenine metabolism in mice[J]. Mol Psychiatry, 2020, 25(11): 2905-2918.
[23] Wang FB, Powley TL. Vagal innervation of intestines: afferent pathways mapped with new en bloc horseradish peroxidase adaptation[J]. Cell Tissue Res, 2007, 329(2): 221-230.
[24] Berthoud HR, Blackshaw LA, Brookes SJH, et al. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract[J]. Neurogastroenterol Motil, 2004, 16 (Suppl 1): 28-33.
[25] Egerod KL, Petersen N, Timshel PN, et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gutto-brain sensing mechanisms[J]. Mol Metab, 2018, 12: 62-75.
[26] Park AJ, Collins J, Blennerhassett PA, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression[J]. Neurogastroenterol Motil, 2013, 25(9): 733-740; e574-e575.
[27] Crumeyrolle-Arias M, Jaglin M, Bruneau A, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats[J]. Psychoneuroendocrinology, 2014, 42: 207-217.
[28] Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice[J]. J Physiol, 2004, 558(Pt 1): 263-275.
[29] Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system[J]. Science, 2012, 336(6086): 1268-1273.
[30] Olszak T, An D, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function[J]. Science, 2012, 336(6080): 489-493.
[31] Matsumoto M, Kibe, R, Ooga T, et al. Cerebral low-molecular metabolites influenced by intestinal microbiota: a pilot study[J]. Front Syst Neurosci, 2013, 7: 9.
[32] Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489(7415): 231-241.
[33] Liu S, Mi WL, Li Q, et al. Spinal IL-33/ST2 signaling contributes to neuropathic pain via neuronal CaMKII–CREB and astroglial JAK2-STAT3 cascades in mice[J]. Anesthesiology, 2015, 123(5): 1154-1169.
[34] Petra AI, Panagiotidou S, Hatziagelaki E, et al. Gutmicrobiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation[J]. Clin Ther, 2015, 37(5): 984-995.
[35] Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimers mouse model[J]. J Alzheimers Dis, 2017, 56(2): 775-788.
[36] Gao Q, Wang Y, Wang X, et al. Decreased levels of circulating trimethylamine N-oxide alleviate cognitive and pathological deterioration in transgenic mice: a potential therapeutic approach for Alzheimers disease[J]. Aging (Albany NY), 2019, 11(19): 8642-8663.
[37] Holmes C, Cunningham C, Zotova E, et al. Proinflammatory cytokines, sickness behavior, and Alzheimer disease[J]. Neurology, 2011, 77(3): 212-218.
[38] Holmes C, Cunningham C, Zotova E, et al. Systemic inflammation and disease progression in Alzheimer disease[J]. Neurology, 2000, 73(10): 768-774.
[39] Zlomuzica A, Dere D, Binder S, et al. Neuronal histamine and cognitive symptoms in Alzheimers disease[J]. Neuropharmacology, 2016, 106: 135-145.
[40] Suez J, Zmora N, Segal E, et al. The pros, cons, and many unknowns of probiotics[J]. Nat Med, 2019, 25(5): 716-729.
[41] Abraham D, Feher J, Scuderi GL, et al. Exercise and probiotics attenuate the development of Alzheimers disease in transgenic mice: role of microbiome[J]. Exp Gerontol, 2019, 115: 122-131.
[42] Rezaei Asl Z, Sepehri G, Salami M. Probiotic treatment improves the impaired spatial cognitive performance and restores synaptic plasticity in an animal model of Alzheimers disease[J]. Behav Brain Res, 2019, 376: 112183.
[43] McNulty NP, Yatsunenko T, Hsiao A, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins[J]. Sci Transl Med, 2011, 3(106): 106ra106.
[44] Míguez B, Gómez B, Parajó JC, et al. Potential of Fructooligosaccharides and xylooligosaccharides as substrates to counteract the undesirable effects of several antibiotics on elder fecal microbiota: a first in vitro approach[J]. J Agric Food Chem, 2018, 66(36): 9426-9437.
[45] Schokker D, Fledderus J, Jansen R, et al. Supplementation of fructooligosaccharides to suckling piglets affects intestinal microbiota colonization and immune development[J]. J Anim Sci, 2018, 96(6): 2139-2153.
[46] Marler S, Ferguson BJ, Lee EB, et al. Association of rigidcompulsive behavior with functional constipation in autism spectrum disorder[J]. J Autism Dev Disord, 2017, 47(6): 1673-1681.
[47] Alam R, Abdolmaleky HM, Zhou JR. Microbiome, inflammation, epigenetic alterations, and mental diseases[J]. Am J Med Genet B Neuropsychiatr Genet, 2017, 174(6): 651-660.
[48] Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration[J]. J Physiol, 2017, 595(2): 489-503.
[49] Wakefield AJ, Puleston JM, Montgomery SM, et al. Review article: the concept of entero-colonic encephalopathy, autism and opioid receptor ligands[J]. Aliment Pharmacol Ther, 2002, 16(4): 663-674.
[50] Wang Y, Kasper LH. The role of microbiome in central nervous system disorders[J]. Brain Behav Immun, 2014, 38: 1-12.
[51] Kaelberer MM, Buchanan KL, Klein ME, et al. A gut-brain neural circuit for nutrient sensory transduction[J]. Science, 2018, 361(6408): eaat5236.
[52] Wang Y, Li N, Yang JJ, et al. Probiotics and fructooligosaccharide intervention modulate the microbiotagut brain axis to improve autism spectrum reducing also the hyper-serotonergic state and the dopamine metabolism disorder[J]. Pharmacol Res, 2020, 157: 104784.