邱 威,孫 浩,孫玉慧,廖洋洋,周良富,聞楨杰
低矮果園環(huán)流式循環(huán)風送噴霧機設計與試驗
邱 威1,孫 浩1,孫玉慧1,廖洋洋1,周良富2,聞楨杰1
(1. 南京農業(yè)大學工學院,南京 210095;2. 南京工業(yè)職業(yè)技術大學工程技術實訓中心,南京 210023)
傳統(tǒng)果園風送施藥氣流輸送模式為出風口到冠層的一維流動,氣流經過冠層時會衰減、停滯,存在穿透難、內膛與葉片背面沉積難等問題。該研究采用頂置風機方式,利用風機負壓吸風引導氣流在冠層內改變運動方向,實現(xiàn)霧滴由外及內、再由下而上運動。在分析環(huán)流作用下霧滴運動的基礎上,設計一種適應于低矮果園的環(huán)流循環(huán)風送噴霧機,并開展氣流場的分布規(guī)律分析與田間試驗。試驗結果表明:在冠層內膛(高度0.8~1.8 m)、樹干中心線兩側0.25 m的中心區(qū)域氣流角度變化較大,氣流環(huán)繞對內膛平均風速有顯著性影響(<0.05)。相較于無氣流環(huán)繞模式,氣流環(huán)繞風送施藥的冠層總體葉片背面霧滴平均覆蓋率提高了33.7%;冠層內膛葉片正面霧滴平均覆蓋率提高了42.9%,葉片背面霧滴平均覆蓋率提高了40.4%。研究結果可為果園風送式施藥提供新的思路。
噴霧;設計;環(huán)流式;輔助氣流;氣流運動;果樹冠層
病蟲害防治作為果園中重要的管理作業(yè),每年噴施農藥次數多達8~15次。頻繁的化學防治有效控制病蟲害發(fā)生的同時,也造成施藥量過大、污染嚴重與農藥殘留等諸多問題[1-3]。風送式噴霧技術借助高速氣流將霧化藥液輸送到冠層,顯著提升了霧滴在果樹冠層的沉積效果,是現(xiàn)階段果園農藥“增效減施”的最重要技術措施之一[4-5]。Zhu等[6]設計了一種五指風送噴霧裝置,可以使幼苗期作物的上中下部都能達到很好的霧滴沉積。董祥等[7]綜合超聲波靶標探測、多柔性出風管風送施藥等技術,成功研制了3WPZ-4型葡萄噴霧機,相比較無風送模式其藥液平均沉積率提高了17.2%,平均地面流失率降低了16.56%,平均飄移率降低了28.87%。曲峰等[8]對傳統(tǒng)的果園風送噴霧進行了改進設計,實現(xiàn)了靶標邊界氣流速度仿形化分布。姜紅花等[9]設計了一種單風機多風管旁路調風系統(tǒng),實現(xiàn)了基于果樹冠層特征的風量實時調整,相比較自動對靶風送噴霧模式,冠層表面沉積量提高了17.3%。Qiu等[10]開發(fā)了一種適應于丘陵果園的履帶式多通道風送噴霧機,實現(xiàn)了機具在丘陵果園作業(yè)的高穩(wěn)定性與氣霧流多通道單元化控制及流場仿形化分布。相比于傳統(tǒng)漫射型風送式噴霧機,霧滴覆蓋均勻度提高了19.4%,地面沉積量和空中飄移量降低了26.8%。
但目前果樹風送施藥依然存在“冠層外側霧滴沉積過量,而病蟲害多發(fā)區(qū)域的內膛與葉片背面霧滴沉積不夠”等問題[11-14]。究其原因,可以歸納為:1)受冠層幅寬和生物量密度影響,氣流在冠層內膛的末速度較弱、擾動不夠,霧滴在冠層內膛與葉片背面沉積不夠[15-16];2)現(xiàn)階段冠層需風標準仍然沿用多年前提出的末速度原則,只考慮到達冠外的氣流速度[17-19]。氣流經過冠層時,其能量必會發(fā)生變化,也勢必影響霧滴在冠層沉積分布。所以,提高冠層內膛風速,引導氣流在冠內的多維流動與擾動,使冠內各區(qū)域氣流速度與內膛、葉片背面霧滴沉積滿足噴霧要求,對進一步改善施藥效果和減少藥液噴施量有重要意義。
基于此,本文采用頂置風機方式,利用風機進風口負壓實現(xiàn)霧滴由外及內、再由下而上運動,設計一種低矮果園環(huán)流式循環(huán)風送噴霧機并進行性能測試,旨在探索果樹氣流環(huán)繞風送施藥技術方法,解決冠層內膛與葉片背面霧滴沉積難的困境,推進果園植保作業(yè)的減量增效。
為了實現(xiàn)霧滴由外及內、再由下而上運動與脫靶霧滴的回收,本文設計的低矮果園環(huán)流式循環(huán)風送噴霧機主要由氣流環(huán)繞型風送系統(tǒng)、藥液噴施及回收系統(tǒng)、液壓驅動系統(tǒng)、履帶式底盤組成,機具整體呈“門”型結構,如圖1所示。
噴霧機跨行自走作業(yè),由柴油發(fā)動機提供動力,通過多聯(lián)齒輪泵將動力傳輸給各系統(tǒng),使風機、液泵、行走裝置、尺寸調節(jié)裝置等按設計的功率與速度協(xié)調工作。液壓油缸實現(xiàn)支撐門架的尺寸調節(jié),以適應于不同的果園種植模式。風機進風口面向冠層頂部,出風口連接風道,將氣流輸送至8個出風口;同時通過風機進風口產生負壓,促使氣流在冠層內由下而上運動。擋罩下方布置承液槽,承接部分飄失的藥液,藥液回收泵將回收的藥液輸送到副藥箱中,以減小霧滴飄失帶來的環(huán)境污染。噴霧機主要技術參數如表1所示。
為保證噴霧機門型工作空間存在氣流環(huán)繞效果,要求軸流風機進風區(qū)囊括整個門型工作空間。軸流風機工作時,門型工作空間內的氣體按一定收縮角被吸入風機,如圖2所示,氣流收縮直徑沿射程變化規(guī)律如下:
置換原則是普遍采用的一種計算果園風送噴霧機風量的方法[20-21],其原理為:噴霧機以一定速度工作時,噴出的帶有藥滴的氣流能完全驅除并置換作業(yè)區(qū)內包含的全部空氣,如圖2。根據下式進行噴霧機風量的計算。
式中為軸流風機風量,m3/h;為氣體損失系數,=1.2~1.6[21]。
注:h為兩側出風口之間距離的一半,m;為進風口到最底端出風口的垂直距離,m;R為風機進風口半徑,m;F為作業(yè)速度,m·s-1;α為射流極角,(°)。 Note: h is the half the distance between the two sides relative to the air outlet, m; is the vertical distance between the inlet and the lowest outlet, m; R is the inlet radius of the fan, m; F is the operation speed, m·s-1; α is the jet cone angle,(°).
出口風速是果園風送式施藥的重要參數,決定施藥作業(yè)質量。目前風送式噴霧機出口風速多采用“到達冠層表面的氣流速度”作為評價依據。通過前期試驗發(fā)現(xiàn),霧滴群到達冠層內膛的水平氣流速度2=1.0~2.0 m/s,氣流具備一定能量擾動枝葉,使霧滴有效沉積于葉片上。由于本文中噴霧機出風口到冠層邊緣距離較短,冠層外氣流能量衰減可忽略不計。將冠層等效為多孔介質[22],通過動量附加源項S修正的動量方程,用來表征氣流沿水平軸經過冠層后的動量損失,如式(3)所示。
化簡式(5)~(6)可得:
環(huán)流風送施藥既要求出口氣流具備一定動能,以到達冠層內膛,也要求進風口具備一定負壓,引導氣流由下而上運動。圖3為環(huán)流風送系統(tǒng)氣流阻力分布示意圖,氣體在門型工作空間內的環(huán)繞流動依靠風機提供壓力實現(xiàn),風機壓力一部分用來克服沿程摩擦壓力損失,另一部分提供風機進風口的動壓。
聯(lián)立式(8)~(9)可得,為使氣體在門型工作空間內呈環(huán)繞流動效果,軸流風機所提供的壓力應不小于857.8 Pa。
門型機架整體尺寸為2.3 m×1.0 m×2.0 m。頂部轉角處用鋼管支撐形成“四面體”結構,兩側鋼管之間焊接橫向鋼管,以增強門型機架的抗彎和抗扭能力,門型機架頂部使用錳鋼方管,長度2.3 m,規(guī)格8 cm×8 cm,許用應力160 MPa。
藥液噴施與回收系統(tǒng)由主藥箱、柱塞泵、分配閥、噴頭組、承液槽、回流導管、副藥箱、回收液泵等組成。施藥作業(yè)時,未噴施到果樹冠層的藥液經兩側門型擋罩的阻隔被收集到承液槽,通過回收液泵將承液槽內的藥液回收到副藥箱中。藥液噴施及回收流程如圖4所示。
為了防止機具運行觸碰果樹,根據機具整體尺寸確定承液槽長度為1.2 m,寬度為0.45 m,深度3 cm;門型擋罩與承液槽焊接一起,長度為1.2 m,高度為1.4 m,如圖5所示。
1.主藥箱 2.噴頭 3.承液槽 4.回收液泵 5.壓力表 6.分配閥 7.柱塞泵 8.副藥箱
為了明晰氣流流向與速度分布規(guī)律,在南京農業(yè)大學植保機械工程技術實驗室(2020年9月22-24日)與南京市六合區(qū)祝玉三和家庭農場(2021年3月20-21日)利用TSI 9565風速儀(TSI Inc.,Minnesota,USA,量程:1.27~78.7 m/s,精度:讀數的± 2%,分辨率:0.01 m/s)開展氣流場分布試驗。
根據機具最下側出風口離地高度,在離地0.8 m高度上設置一平行于地面的水平采樣層,沿高度方向向上每隔0.4 m布置一個水平采樣層,共設置4個水平采樣層。在每個水平采樣層上,選取軸流風機進風口正下方投影點為中心采樣點,并沿著兩側出風口的連線方向,在中心采樣點左右兩側每間隔0.14 m設置一個采樣點,每側設置5個,每層11個,共計44個。如圖6所示。
1.風道 2.軸流風機 3.擋罩 4.噴頭 5.五孔測針 6.可移動支架
由圖7可知,氣流從噴嘴射出后,受到門型工作空間外部大氣壓的影響,出風口風向非水平吹出,出風口風向與樹干方向的夾角的平均絕對值為74°。從出風口至中心區(qū)域氣流夾角的平均絕對值總體逐漸減小,氣流風向與豎直方向的夾角在不斷縮小,呈現(xiàn)豎直變化的趨勢,說明進風口負壓區(qū)產生的軸向吸力使氣流方向趨于豎直狀態(tài)。在冠層內膛即高度(0.8~1.8 m)、樹干中心線兩側0.25 m的中心區(qū)域氣流角度變化較大,變化范圍為7~12°。綜合氣流的運動軌跡可知,在進風口的負壓吸力作用下,氣流實現(xiàn)了由外及內、再由下而上的運動。
采用絲帶法(即在各布樣區(qū)域布置絲帶,通過高速攝像方式記錄絲帶初始位置角度與風送作業(yè)狀態(tài)下的最大角度)對有無氣流環(huán)繞的氣流流向進行對比試驗,將絲帶豎直放置在冠層的不同區(qū)域,通過翻轉頂部軸流風機設置有無環(huán)繞氣流,比較有無氣流環(huán)繞的氣流下絲帶的角度改變量,結果如圖8所示。
試驗結果表明,有、無氣流環(huán)繞的2種模式下,頂端3個點(1,2,3)的平均角度變化量分別為107°與1.67°,中部3個點(4,5,6)的平均角度變化量為27.33°與15.67°,底部3個點(7,8,9)的平均角度變化量為54°與24.33°。對比2種氣流模式下的角度變化可以看出,相比于無氣流環(huán)繞模式,氣流環(huán)繞可以使各區(qū)域絲帶產生更大擾動,尤其頂部區(qū)域絲帶產生垂直向上的運動,說明氣流在冠層內由下向上運動。
為了進一步驗證有無氣流環(huán)繞對冠層內氣流速度分布的影響,將冠層劃分為8個區(qū)域(圖9),其中內膛包括4個測量區(qū)域(1、4、5、8)。冠層下端采樣點區(qū)域的中心距離地面高度為1.0 m,沿著高度方向每隔0.4 m布置一個采樣區(qū)域。
設置風機轉速為800、1 000和1 200 r/min,利用TSI 9565風速儀(TSI Inc.,Minnesota,USA)測量氣流環(huán)繞狀態(tài)下3個風機轉速下冠層內各采樣點風速。同時,記錄冠層內各樣點位置信息,繼續(xù)測量無氣流環(huán)繞狀態(tài)下的各采樣點風速。每個采樣點測3次取平均值。
利用Matlab對冠層內氣流速度進行方差分析,結果如表2。可以看出,提高風機轉速能顯著提升冠層內平均風速,<0.05,氣流環(huán)繞對風速有顯著影響。
表2 冠層內氣流速度方差分析
2019年8月在南京逸夫農業(yè)發(fā)展有限公司的山楂園進行田間試驗,如圖10。該果園種植行距5 m、株距3 m、果樹冠形為紡錘形,平均冠幅1.6 m、平均樹高2.0 m。噴霧機橫跨果樹,通過調節(jié)支撐門架,使出風口到冠層的距離1 m,且進風口面向冠層頂部。同時設置無氣流環(huán)繞組(風機進風口朝向天空)為對照組。
霧滴覆蓋率試驗采樣點布置同氣流速度分布試驗(圖9),每個采樣點選取一片葉子,在正、反面放置紙卡(76 mm×76 mm,M&G Stationery Inc.,Shanghai,China)。
試驗時機具參數為行駛速度1 m/s左右,噴霧壓力0.5 MPa,噴霧流量1.5 L/min,噴施質量分數為0.5%的麗春紅2R水溶液(SSS Reagent Co.,Ltd.,Shanghai,China)。試驗發(fā)現(xiàn)風機轉速為800 r/min,氣流對葉片的擾動較小,風機轉速為1 200 r/min時,冠層頂部的葉片翻轉幅度較大,不利于1、2、3分區(qū)藥液的沉積,故將風機轉速調至1 000 r/min進行霧滴覆蓋率試驗,每組試驗測試3棵山楂樹。噴霧試驗結束后用高拍儀(Microtek Technology Co.,Ltd.,Shanghai,China)采集紙卡上的圖像信息,結合Matlab處理得到冠層內各采樣點的霧滴覆蓋率,結果如圖11。
由圖11可知,風機轉速為1 000 r/min時,冠層葉片的霧滴覆蓋率在有、無氣流環(huán)繞的影響下差異較大,其中冠層內膛(1、4、5、8分區(qū))霧滴覆蓋率提升效果較為明顯,葉片正面霧滴覆蓋率平均提高了42.9%,葉片背面霧滴覆蓋率平均提高了40.4%;冠層總體葉片背面霧滴覆蓋率,平均提高了33.7%。氣流環(huán)繞能夠有效提高果樹冠層各區(qū)域的霧滴覆蓋率。
無氣流環(huán)繞時,4、5、8分區(qū)的葉片正面覆蓋率較低,分別為36.1%、36.5%、24.1%,主要由于4、5、8分區(qū)處于冠層內膛,霧滴難以穿透沉積,而其他分區(qū)處于冠層外側,霧滴容易沉積。對于葉片背面,6、7、8分區(qū)處于冠層最底部,位于氣流場邊緣位置,路面高度不平等因素會影響出風口氣流的噴施角度,導致底部區(qū)域的個別采樣點霧滴沉積較少,造成葉片背面霧滴沉積率較低??梢钥闯鲈跓o氣流環(huán)繞時霧滴在各區(qū)域的沉積不均勻。有環(huán)繞氣流時,8個分區(qū)的葉片正背面的霧滴沉積均得到了不同程度的提高。尤其8分區(qū)正面覆蓋率提升最為明顯,提高了95.4%。
結合氣流流向與速度分布試驗可以看出,在風機進風口負壓吸力的作用下,氣流運動在冠內發(fā)生了改變,冠層內氣流速度也得到了明顯增強,氣流產生了由下而上的運動,冠層各區(qū)域葉片正、反面的霧滴沉積率明顯提高。
果園風送式施藥氣流運動包含冠層外與冠層內2部分,目前大多研究多聚焦冠層外氣流運動[7,20,23,25],以到達果樹冠層表面的氣流速度為依據來評價氣流輔助效果,雖然總體霧滴沉積覆蓋滿足作業(yè)要求,但冠層外側霧滴沉積過量、而內膛與葉片背面明顯不足。冠層內氣流運動的調控可以促進霧滴與冠層深度融合,進而提高冠層內膛和葉片的背面霧滴沉積率。本文以低矮果樹為研究目標,設計了一種果園環(huán)流式循環(huán)風送噴霧機,通過頂置風機負壓吸風調控冠層內氣流運動,并實現(xiàn)脫靶藥液的回收,取得了較好的試驗效果。該研究驗證了氣流環(huán)繞風送施藥技術方案的可行性與有效性,但環(huán)繞氣流與冠層間定量作用關系及噴霧機結構設計還存在一些要完善的地方,團隊也將在后續(xù)的研究中還應重點關注以下問題:
1)氣流環(huán)繞風送施藥時,冠層特征會顯著影響氣流在冠層內阻力與衰減。風機進口負壓能否有效克服冠層阻力實現(xiàn)氣霧流環(huán)繞運動受果樹冠層密度、葉柄力學特性及冠層大小等諸多因素影響。所以,需進一步探明氣流環(huán)繞風送施藥技術的限制因素與適應場景,明確氣流在冠層內衰減規(guī)律與進出口氣流配比策略。
2)由于該機具采用門型結構與跨置式作業(yè)模式,難以滿足大型果樹的施藥要求,機具體積增大也帶來結構抗扭強度的挑戰(zhàn),所以還需進一步完成門型框架結構的輕量化設計,實現(xiàn)風送霧化裝置與拖拉機配套的懸掛式作業(yè)。
3)需要進一步研究適于近距離施藥的風送霧化系統(tǒng),保證霧滴到達靶標前有良好的分散度,例如調整出風口形狀與進、出風口之間相對位置等。
綜上所述,氣流環(huán)繞風送施藥本質上是改變傳統(tǒng)氣流由出風口到靶標的運動模式,引導氣流在冠層內部的運動,對改善冠層內膛與葉片背面霧滴沉積效果有顯著優(yōu)勢,但是環(huán)繞氣流形成的制約因素及多場景適應性還需進一步被探明與驗證。在本研究基礎上,還可以進一步研究氣流在冠層內衰減規(guī)律、氣流環(huán)繞風送霧化技術、多角度風送施藥[26]與仿形風送技術[17,27]等,以完善果樹風送施藥基礎理論與技術體系,為果園風送噴霧技術提供新的思路,提升果園植保作業(yè)裝備水平。
1)設計了一種低矮果園環(huán)流式循環(huán)風送噴霧機,機具作業(yè)空間尺寸在一定范圍內可調節(jié),適應于不同種植模式的果園。同時,藥液回收裝置可回收脫靶藥液。
2)通過頂置風機負壓吸風,實現(xiàn)了果樹施藥氣流由外及內、再由下而上的運動,在冠層內膛即高度(0.8~1.8 m)、樹干中心線兩側0.25 m的中心區(qū)域氣流角度變化顯著,氣流環(huán)繞對內膛平均風速有顯著影響。
3)相較于無氣流環(huán)繞模式,氣流環(huán)繞風送施藥的冠層葉片背面霧滴平均覆蓋率提高了33.7%,冠層內膛葉片正面霧滴平均覆蓋率提高了42.9%,葉片背面平均覆蓋率提高了40.4%,氣流環(huán)繞能夠有效提高果樹冠層內膛、葉片背面等病蟲害多發(fā)區(qū)域的霧滴覆蓋率。
[1]董晶. 果樹病蟲害防治現(xiàn)狀與對策[J]. 農業(yè)開發(fā)與裝備,2019(3):75.
[2]韓景紅. 我國植保機械和施藥技術的現(xiàn)狀問題及對策[J]. 農業(yè)與技術,2018,38(12):91.
[3]Se-Woon Hong, Lingying Zhao, Heping Zhu. CFD simulation of airflow inside tree canopies discharged from air-assisted sprayers[J]. Computers and Electronics in Agriculture, 2018, 149: 121-132.
[4]Marchesini E, Montepaone G, Schiatti P, et al. Habitat management of organic vineyard in Northern Italy: The role of cover plants management on arthropod functional biodiversity[J]. Bulletin of Entomological Research, 2016, 106(6):1-10.
[5]周良富,丁為民,周晴晴,等. 3WQ-400型雙氣流輔助靜電果園噴霧機設計與試驗[J]. 農業(yè)工程學報,2016,32(16):45-53. Zhou Liangfu, Ding Weimin, Zhou Qingqing, et al. Design and experiment of 3WQ-400 double air-assisted electrostatic orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(16): 45-53. (in Chinese with English abstract)
[6]Zhu H, Brazee R D, Derksen R C, et al. A Specially designed air-assisted sprayer to improve spray penetration and air jet velocity distribution inside dense nursery crops[J]. Transactions of the ASAE, 2006, 49(5): 1285?1294
[7]董祥,張鐵,燕明德,等. 3WPZ-4型風送式葡萄噴霧機設計與試驗[J]. 農業(yè)機械學報,2018,49(S1):205-213. Dong Xiang, Zhang Tie, Yan Mingde, et al. Design and experiment of 3WPZ-4 type air-assisted grape sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 205-213. (in Chinese with English abstract)
[8]曲峰,盛希宇,李熙,等. 3WZF-400A型果園風送噴霧機改進設計[J]. 農業(yè)機械學報,2017,48(S1):15-21. Qu Feng, Sheng Xiyu, Li Xi, et al. Improved design of 3WZF-400A orchard air-assisted sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(S1): 15-21. (in Chinese with English abstract)
[9]姜紅花,牛成強,劉理民,等. 果園多風管風送噴霧機風量調控系統(tǒng)設計與試驗[J]. 農業(yè)機械學報,2020,51(S2):298-307. Jiang Honghua, Niu Chengqiang, Liu Limin, et al. Design and experiment of air volume control system of orchard multi-pipe air sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 298-307. (in Chinese with English abstract)
[10]Qiu W, Li X L, Li C, et al. Design and test of a novel crawler-type multi-channel air-assisted orchard sprayer[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(6): 60–67.
[11]顧家冰,丁為民,邱威,等. 果園變量施藥機械及施藥技術研究現(xiàn)狀與趨勢[J]. 果樹學報,2014,31(6):1154-1157. Gu Jiabing, Ding Weimin, Qiu Wei, et al. Current research situation and development trend of equipment and technology for orchard spraying[J]. Journal of Fruit Science, 2014, 31(6): 1154-1157. (in Chinese with English abstract)
[12]苑進,趙新學,李明,等. 高地隙噴桿式與隧道式一體噴霧機的設計與試驗[J]. 農業(yè)工程學報,2015,31(增刊2):60-68. Yuan Jin, Zhao Xinxue, Li Ming, et al. Design and test of high clearance boom-tunnel type sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 60-68. (in Chinese with English abstract)
[13]魏新華,邵菁,解祿觀,等. 棉花分行冠內冠上組合風送式噴桿噴霧機設計與試驗[J]. 農業(yè)機械學報,2016,47(1): 101-107,90. Wei Xinhua, Shao Jing, Xie Luguan, et al. Design and experiment of air-assisted cotton boom sprayer with separating row and spraying in inside an upper canopy[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 101-107, 90. (in Chinese with English abstract)
[14]劉冬梅,楊杭旭,周宏平,等. 密植矮化茶園地面低容量仿形噴霧液滴沉積性能研究[J]. 農業(yè)機械學報,2019,50(10):96-105. Liu Dongmei, Yang Hangxu, Zhou Hongping, et al. Droplet deposition performance of low-capacity profiling spray in densely planted dwarf tea plantation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 96-105. (in Chinese with English abstract)
[15]賈衛(wèi)東,胡化超,陳龍,等. 風幕式靜電嘖桿噴霧噴頭霧化與霧滴沉積性能試驗[J]. 農業(yè)工程學報,2015,31(4):53-59. Jia Weidong, Hu Huachao, Chen Long, et al. Performance experiment on spray atomization and droplets deposition of wind-curtain electrostatic boom spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 53-59. (in Chinese with English abstract)
[16]翟長遠,趙春江,Ning Wang,等. 果園風送噴霧精準控制方法研究進展[J]. 農業(yè)工程學報,2018,34(10):1-15. Zhai Changyuan, Zhao Chunjiang, Ning Wang, et al. Research progress on precision control methods of air-assisted spraying in orchards[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 1-15. (in Chinese with English abstract)
[17]邱威,何家敏,孫玉慧,等. 多通道農藥噴施角度對果樹靶標仿形氣、霧流場的影響[J]. 南京農業(yè)大學學報,2020,43(2):379-386. Qiu Wei, He Jiamin, Sun Yuhui, et al. Effect of spray angles on profiling-flow field distribution from a multi-channel air-assistant sprayer in fruit tree applications[J]. Journal of Nanjing Agricultural University, 2020, 43(2): 379-386. (in Chinese with English abstract)
[18]Ashenafi T, Ruysen K, Dekeyser D, et al. Spray deposition profiles in pome fruit trees: effects of sprayerdesign, training system and tree canopy characteristics[J]. Crop Protection, 2015, 67: 200-213.
[19]龍?zhí)煊?,流體力學[M]. 北京: 中國建筑工業(yè)出版社,2004.
[20]丁素明,傅錫敏,薛新宇,等. 低矮果園自走式風送噴霧機研制與試驗[J]. 農業(yè)工程學報,2013,29(15):18-25. Ding Suming, Fu Ximin, Xue Xinyu, et al. Design and experiment of self-propelled air-assisted sprayer in orchard with dwarf culture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(15): 18-25. (in Chinese with English abstract)
[21]戴奮奮. 風送噴霧機風量的選擇與計算[J]. 植物保護,2008,34(6):124-127. Dai Fenfen. Selection and calculation of the air volume of the air blower sprayer[J]. Plant Protection, 2008, 34(6): 124-127. (in Chinese with English abstract)
[22]李波,楊慶山,徐志,等. 樹木對低矮房屋風荷載的遮擋作用[J]. 建筑結構學報,2016,37(S1):33-38. Li Bo, Yang Qingshan, Xu Zhi, et al. Windbreak performance of tree on wind load on low-rise building[J]. Journal of Building Structures, 2016, 37(S1): 33-38. (in Chinese with English abstract)
[23]Maruyama T. Large eddy simulation of turbulent flow around a windbreak[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96 (10/11 ) : 1998-2006.
[24]陳德敏,李柏均,吳益曉. 氣體管道波紋型阻火器多孔隙阻力研究[J]. 煤礦機械,2018,39(8):13-15.
[25]丁天航,曹曙明,薛新宇,等. 果園噴霧機單雙風機風道氣流場仿真與試驗[J]. 農業(yè)工程學報,2016,32(14):62-68. Ding Tianhang, Cao Shuming, Xue Xinyu, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 62-68. (in Chinese with English abstract)
[26]Svensson S A, Brazee R D, Fox R D, et al. Air jet velocities in and beyond apple trees from a two-fan cross-flow sprayer[J]. Transactions of the ASAE, 2003, 46(3): 611-621.
[27]呂曉蘭,張美娜,常有宏,等. 果園風送噴霧機導流板角度對氣流場三維分布的影響[J]. 農業(yè)工程學報,2017,33(15):81-87. Lyu Xiaolan, Zhang Meina, Chang Youhong, et al. Influence of deflector angles for orchard air-assisted sprayer on 3D airflow distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 81-87. (in Chinese with English abstract)
Design and test of circulating air-assisted sprayer for dwarfed orchard
Qiu Wei1, Sun Hao1, Sun Yuhui1, Liao Yangyang1, Zhou Liangfu2, Wen Zhenjie1
(1.,,210095,; 2.,,210023,)
Conventional air-assisted spraying declines rapidly to stagnate in general, particularly when the droplets reach the canopy in an orchard. Unfavorable spray effects thus often occur, such as "difficult to penetrate" and "difficult to deposit inside the canopy and the back of leaves". In this study, a new idea was proposed to form multi-source wind disturbance for the direction change of airflow inside the canopy, namely, "from outside to inside, and then from bottom to top". Firstly, the movement tracking of droplet flow under the surrounding airflow was analyzed to determine the structure of a sprayer and the key parameters. The sprayer with a "door" type structure was composed of a surrounding air-assisted system, a spraying and recovery system, a hydraulic drive system, and a crawler chassis. An axial flow fan was placed at the top of the canopy. Specifically, the air inlet of the fan was facing the top of the canopy, whereas, the air outlet of the fan was connected with an air duct to transport the air into eight subsequent outlets. Meanwhile, the negative-pressure suction was generated through the air inlet of the fan, thereby moving the air flow "from bottom to top" in the canopy. Four flumes were arranged below the shields to receive the lost droplets. Two pumps were utilized to transfer the recovered droplets into the auxiliary tank for environmental protection. The size of the gate-type opening was adjusted in a certain range for various planting patterns in an orchard. The key parameters of the surrounding air-assisted system were also optimized using the displacement theory of air volume and jets. The air velocity of the outlet was determined to be 10-20 m/s, while, the wind pressure provided by the axial flow fan cannot be less than 857.8 Pa. Secondly, the stress of the gantry frame was analyzed under the service condition to meet the user needs, where the bending and torsion resistance were verified in the theoretical evaluation. Thirdly, the five-hole probes and ribbon method were selected to field test the distribution of flow direction in a prototype of the sprayer. Meanwhile, the velocity distribution of the airflow field was also measured to verify whether the sprayer can produce the droplets flow from the outside to the inside and from the bottom to the top. It was found that the airflow angle changed significantly inside the canopy, especially in the height of 0.8-1.8 m and the center area of 0.25 m on both sides of the center line of a trunk. There was an obvious increase in airflow velocity under the surrounding air-assisted spraying. Finally, the spraying effects with and without surrounding air-assisted were compared at the fan speed of 1 000 r·min-1, where the coverage rate of the droplet was selected as an evaluation index. The coverage rate of the droplet on the leaf face increased by 42.9%, while that of the leaf back increased by 40.4%, where the overall leaf back increased by 33.7%, compared with traditional air-assisted spraying. It infered that the surrounding airflow significantly improved the droplets deposition coverage in the center of a canopy and leaf back. The findings can provide an insightful design idea for the surrounding air-assisted sprayer to produce the airflow suitable for plant protection in an orchard with dwarfed fruit trees. Follow-up experiments can be performed on the canopies of different sizes and thicknesses to clarify the influence of boundary conditions on the surrounding air-assisted spraying.
spray; design; circulating type; air-assisted; airflow movement; fruit tree canopy
邱威,孫浩,孫玉慧,等. 低矮果園環(huán)流式循環(huán)風送噴霧機設計與試驗[J]. 農業(yè)工程學報,2021,37(6):18-25. doi:10.11975/j.issn.1002-6819.2021.06.003 http://www.tcsae.org
Qiu Wei, Sun Hao, Sun Yuhui, et al. Design and test of circulating air-assisted sprayer for dwarfed orchard[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 18-25. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.003 http://www.tcsae.org
2020-10-22
2021-02-10
國家自然科學基金項目(51805271);江蘇省農業(yè)自主創(chuàng)新基金項目(CX181007);南京農業(yè)大學SRT專項計劃(S20190037)
邱威,副教授,博士,主要研究方向為植保機械與施藥技術。Email:qiuwei@njau.edu.cnz
10.11975/j.issn.1002-6819.2021.06.003
S147.2
A
1002-6819(2021)-06-0018-08