亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        砂姜黑土鈣質結核剖面分布特征及其對土壤持水性的影響

        2021-06-01 14:29:10陳雪嬌魏翠蘭周明華李保國
        農業(yè)工程學報 2021年6期
        關鍵詞:特征

        谷 豐,陳雪嬌,魏翠蘭,周明華,李保國

        ·農業(yè)水土工程·

        砂姜黑土鈣質結核剖面分布特征及其對土壤持水性的影響

        谷 豐1,2,陳雪嬌3,魏翠蘭2,4,周明華1,李保國2※

        (1. 中國科學院水利部成都山地災害與環(huán)境研究所,中國科學院山地表生過程與生態(tài)調控重點實驗室,成都 610041;2. 中國農業(yè)大學土地科學與技術學院,農業(yè)農村部華北耕地保育重點實驗室,自然資源部農用地質量與監(jiān)控重點實驗,北京 100193;3. 四川大學建筑與環(huán)境學院,成都 610065;4. 江蘇開放大學環(huán)境生態(tài)學院,南京 210036)

        鈣質結核是砂姜黑土重要的成土特征,直接影響土壤結構和水分運移,但目前關于鈣質結核對土壤持水性作用機制的研究主要集中在實驗室尺度,而且報道較少?;诖耍撗芯吭谔镩g尺度上研究了鈣質結核剖面垂直分布特征及其對土壤持水性的影響。結果表明:鈣質結核主要分布在20 cm以下的土層,其含量和粒徑均隨土層深度的增加呈現增大趨勢,>80~100 cm土層鈣質結核質量分數可達11.42%。2~5、>5~8、>8~30 mm的鈣質結核飽和含水率分別為0.25、0.22和0.20 cm3/cm3,均遠低于土壤飽和含水率。土壤飽和含水率、田間持水量和萎蔫點均隨鈣質結核含量的提高而逐漸降低。但是含鈣質結核土層土壤有效持水量與鈣質結核含量呈現顯著正相關關系,鈣質結核有利于改善砂姜黑土黏重的土壤質地。研究結果可為深入了解砂姜黑土水分運動規(guī)律及中低產田改良提供理論依據。

        土壤;含水率;顆粒;砂姜黑土;鈣質結核;空間分布;持水性;水分特征曲線

        0 引 言

        砂姜黑土是中國主要的中低產田類型之一,總面積約為400萬hm2,主要分布于山東、河南、江蘇、安徽和湖南等地[1]。土壤剖面中明顯的姜狀鈣質結核,以及暗色黑土層是砂姜黑土的主要特征[2]。鈣質結核又稱石灰結核或砂姜,它由分散的碳酸鹽與土壤顆粒在硅酸、二氧化物、三氧化物、鐵和錳等吸附性物質的表面膠結而成[3]。鈣質結核主要分布于砂姜黑土20 cm以下土層[1],其含量隨土層深度的增加逐漸升高,同時具有強烈的空間變異性,變異系數甚至可以超過100%[4-6]。作為粒徑較大的粗粒介質(粒徑大于2 mm),鈣質結核不僅能導致土壤的非均質性,而且會嚴重影響土壤結構發(fā)育[7-9]。

        土壤持水性質是計算土壤水分和養(yǎng)分運移的關鍵,也是制定精準灌溉措施的基礎。粗粒介質自身孔隙及其對土壤結構的影響必然會引起土壤持水性質的變化。研究表明[10-11],土壤有效持水量隨土壤粗粒介質含量的增加而降低。粗粒介質內部孔隙也可持有一定水分,但其含水率可能低于土壤[10,12],也可能高于土壤[13],這與粗粒介質的類型、尺寸、孔隙度以及風化程度等密切相關。

        因此,鈣質結核的存在不僅直接影響砂姜黑土的持水、蓄水能力,而且可能降低土壤耕性,甚至限制作物根系的生長和發(fā)育[14]。Gu等[15]在實驗室條件下研究了鈣質結核對土壤持水性的影響,結果表明,土壤田間持水量、萎蔫含水率和有效持水量均隨鈣質結核含量的增加而顯著降低。目前,關于田間尺度下鈣質結核對土壤持水性影響的報道尚少?;诖?,本研究選擇典型砂姜黑土農田為試驗區(qū),通過田間調查,研究田間尺度下鈣質結核在土壤剖面中的垂直分布,結合室內分析探究鈣質結核對砂姜黑土土壤持水性質的影響,以期為砂姜黑土的改良利用提供理論依據。

        1 材料與方法

        1.1 試驗區(qū)概況

        試驗區(qū)位于安徽省阜陽市臨泉縣(115°16'30''E,32°59'05''N)(圖1)。臨泉縣地處淮北平原西部,地勢平坦,海拔31~40 m;屬暖溫帶半濕潤季風性氣候,多年(1955—2004年)平均氣溫約為15 ℃,平均降雨量為913 mm。試驗區(qū)土壤類型為砂姜黑土,土壤質地類型為黏壤土。當地傳統(tǒng)的耕作方式為冬小麥-夏玉米輪作,熟制為一年兩熟。

        1.2 土壤樣品采集

        試驗田長150 m,寬50 m,面積為0.75 hm2。根據前期調查結果(圖2),鈣質結核廣泛分布于試驗田中,且空間變異性較強[5]。隨機挖取3個1 m深的土壤剖面,按照每20 cm一層,0~100 cm土層共分為5層。用鐵鏟在各層采集土壤樣品,風干后測定土壤顆粒組成、有機質、鈣質結核質量含量及不同粒徑鈣質結核的持水性。與此同時,用環(huán)刀(100 cm3)在每個土層分別采集3個原狀樣品,用于測定土壤容重和水分特征曲線。

        1.3 指標測定和計算方法

        1.3.1 土壤基本理化性質

        風干土樣過2 mm篩后,采用沉降法[16]測定土壤顆粒組成;采用外加熱法[17]測定土壤有機質含量。

        1.3.2 鈣質結核粒徑分級、含量及密度

        稱取一定量風干土壤樣品(0,g),篩分出粒徑大于2 mm的鈣質結核,再分別通過5、8 mm篩,將鈣質結核進一步分為粒徑為2~5、>5~8 、>8~30 mm的樣品。用自來水將鈣質結核表面殘留土粒沖洗干凈,置于105 ℃下烘干至恒質量,采用式(1)計算鈣質結核含量。

        式中CW(=1,2,3)分別表示粒徑為2~5、>5~8、>8~30 mm鈣質結核含量(%,質量分數)和烘干質量(g);為土壤樣品的風干含水率,g/g。鈣質結核總含量total為以上3個粒級鈣質結核含量之和(1+2+3),%。

        將各粒級鈣質結核(質量為,g)放入去離子水中,浸泡24 h,待充分飽和后取出。利用排水法測定鈣質結核體積(,g),計算鈣質結核密度(ρ=/,g/cm3)。

        1.3.3 土壤水分特征曲線測定方法

        將土壤原狀樣品飽和后,采用離心機法[18]測定土壤水分特征曲線。

        不同轉速(300、500、700、1 000、2 000、3 000、5 000、7 000和8 700 r/s)下土壤基質勢(cm)[18-20]為

        式中為重力加速度,本文取值981 cm/s2;為離心機轉子角速度,r/s;為水的密度,g/cm3;1和2分別代表自由水面和土壤樣品重心與離心機轉子中心的距離,cm。

        測定完成后,土壤樣品在105 ℃下烘干至質量恒定,計算土壤容重和各轉速下的土壤含水率。

        1.3.4 鈣質結核水分特征曲線測定方法

        采用沙箱法和壓力板法測定2~5、>5~8、>8~30 mm鈣質結核的水分特征曲線[12]。首先,將鈣質結核埋入細砂(粒徑小于1 mm)并裝填入100 cm3環(huán)刀中,以保證鈣質結核與沙箱或壓力板之間的水力連通性;然后將裝填好的樣品用去離子水飽和24 h以上;最后,將樣品放入沙箱或壓力板中測定不同基質勢下的鈣質結核含水率。共設定13個基質勢梯度,分別為-5、-10、-20、-40、-60、-80、-100、-300、-500、-1 000、-3 000、-5 000和-15 000 cm。

        1.3.5 水分特征曲線擬合方法

        在Excel 2016軟件中應用規(guī)劃求解功能對水分特征曲線測定值進行擬合,得到最優(yōu)擬合參數。本研究采用的水分特征曲線模型為van Genuchten模型[21],公式如下

        式中是含水率,cm3/cm3;θθ分別為飽和含水率和殘余含水率,cm3/cm3;為測定樣品的基質勢,cm;為土壤進氣值的倒數,1/cm;為模型曲線形狀參數,無量綱。

        土壤重力水含量(Gravitational-water Content,GC)、田間持水量(Field Capacity,FC)、萎蔫含水量(Wilting Point,WP)和有效持水量(Available Water Holding Capacity,AWHC)的計算方法:將土壤水分特征曲線中-330 cm和-15 000 cm基質勢下的土壤含水率作為土壤FC和WP[22]。GC為土壤飽和含水率與田間持水量的差值,AWHC為FC和WP的差值。

        1.4 統(tǒng)計分析

        在Excel 2016軟件中進行數據整理,通過SPSS25.0軟件進行單因素方差分析(Analysis of Variance,ANOVA),由最小顯著性差異法(Least-Significant Difference,LSD)表示指標間差異的顯著性,并采用Pearson相關性檢驗分析鈣質結核含量與土壤性質之間的相關性。

        2 結果與分析

        2.1 土壤基本理化性質

        試驗區(qū)土壤剖面中0~20 cm為耕作層,土壤顏色較深,結構較為松散,以團粒和塊狀為主(圖3)。20 cm以下土壤緊實度明顯增加,其中>20~40 cm為犁底層,>40~80 cm為過渡層,土壤呈現黃白并夾雜黑色,主要土壤結構呈現棱柱狀。當土壤深度大于80 cm時,土壤顏色以黃白色為主,這些變化與土壤容重、有機質以及鈣質結核的含量分布密切相關。表層以下土壤(>20~100 cm)容重為1.57~1.61 g/cm3,顯著高于表面耕作層容重(1.23 g/cm3)(表1),因此土壤緊實度增加。試驗區(qū)土壤有機質含量總體偏低(表1),在全國第二次土壤普查養(yǎng)分分級標準中屬于第4~6級,與其他研究中砂姜黑土有機質含量類似[23]。其中,0~20 cm土層有機質含量約為11.40 g/kg,比其他土層高86%~136%,這可能是導致其土壤顏色深于底層土壤的原因之一[23]。

        注:同一列不同小寫字母表示差異性顯著(<0.05),下同。

        Note: Different lowercase letters in the same column indicate significant differences (<0.05), the same below.

        土壤中黏粒、粉粒和砂粒質量分數分別約為30.56%~39.75%、39.88%~45.34%和18.67%~24.45%(表1),在美國制土壤質地分類標準中屬于粉質黏土。從剖面看,不同粒徑的土壤顆粒在不同深度土壤中的分布不盡一致(表1)。例如,黏粒(粒徑小于0.002 mm)含量隨著土壤深度的增加而顯著減少,耕層(0~20 cm)和犁底層(>20~40 cm)的黏粒含量分別是底層(>80~100 cm)土壤的1.30倍和1.27倍。0~40 cm土層中粉粒(0.002~0.05 mm)質量分數介于39.88%到42.64%之間,顯著低于深度為>40~100 cm的土壤(44.70%~45.34%)。對于砂粒(0.05~2 mm)而言,其含量也隨著土壤深度的增加而呈上升趨勢。各土層中,底層(>80~100 cm)土壤砂粒質量分數(24.45%)最大,與>60~80cm差異不顯著,但比其他各層(0~60 cm)土壤高20%~31%??傮w而言,試驗區(qū)0~100 cm土壤主要以黏粒和粉粒為主,砂粒質量含量較低。研究表明,砂姜黑土黏粒質量分數較高(>30%),土壤水分有效庫容較小,且因黏土礦物以2∶1型的蒙脫石為主,這是導致砂姜黑土脹縮性強、宜耕性差的原因之一[24-25]。

        2.2 鈣質結核垂直分布特征

        試驗田表層(0~20 cm)土壤中鈣質結核含量極低,僅有少量2~5 mm鈣質結核散落分布(表2),質量分數僅占土壤的0.02%。但是隨著土層深度的增加,鈣質結核含量呈現上升趨勢,其在>60~80 cm土層中的質量分數約為3.73%,而在>80~100 cm土層中的質量分數高達11.42%??梢?,砂姜黑土鈣質結核主要分布于60 cm以下土壤。相比于0~40 cm土層,>60~100 cm土壤中各粒徑鈣質結核的含量均最高,尤其是在>80~100 cm時,大顆粒(>8~30 mm)鈣質結核的質量分數可以達到8.04%,這與鈣質結核的發(fā)育過程有關。研究表明,鈣質結核主要形成于干濕交替作用下地下水中的碳酸鹽和成土母質中的碳酸鈣(CaCO3)的淋溶及凝結作用[26]。大粒徑鈣質結核的形成對土壤環(huán)境條件要求苛刻,且需長時間的積累[6,27]。底層土壤受地下水的影響較多,可能有利于大粒徑鈣質結核的形成。0~20 cm土壤中各粒徑鈣質結核含量均較低,一方面是由于與深層土壤相比,表層土壤受地下水影響較小,另一方面,也可能與當地農民在長期耕作過程中對鈣質結核的清理有關[6]。

        2.3 土壤水分特征曲線及持水特征

        土壤含水率隨土壤基質勢的增加而逐漸降低,各層土壤的水分特征曲線差異明顯(圖4)。表層(0~20 cm)土壤的飽和含水率(θ)顯著高于>20~100 cm土壤(表 3),這主要是由于表層土壤受耕作影響較大,土壤容重較低(表1)。由于>20~100 cm土壤長期受到機械壓實作用,且存在一定量的鈣質結核,其容重顯著高于表層土壤,飽和含水率低。對于>20~100 cm間的各層土壤而言,其θ值差異并不顯著(>0.05)。此外,van Genutchen模型的擬合參數(、、θ)在表層(0~20 cm)土壤與20 cm以下土層之間也表現出顯著的差異性(表 3)。例如,值在0~20 cm時最高,表明表層土壤大孔隙數量較多[28];相比于其他土層,表層土壤的值最大,這說明當土壤基質勢降低時,土壤更容易失水[29],因此水分特征曲線的斜率也更大。

        表2 不同深度土壤剖面鈣質結核含量

        表層土壤(0~20 cm)重力水遠遠大于>20~100 cm,這與表層土壤大孔隙數量較多有關。表層以下(>20~100 cm)土壤重力水隨土層深度的增加呈現升高趨勢。有研究指出,粗顆粒(粒徑>2 mm)的加入會使土壤細土與粗顆粒之間形成大孔隙,從而增加混合樣品的大孔隙數量[7,29-30]。Gargiulo等[9]也發(fā)現向變性土中添加粗顆粒,不僅引起大孔隙數量的增多,而且導致了土壤裂隙的形成。

        注:采用 van Genutchen模型擬合,下同。

        與重力水的變化趨勢不同,土壤田間持水量和萎蔫點均隨著土層深度的增加呈現先升高后降低的趨勢,并且在>20~40 cm層達到最大值(表3)。隨著土層深度的增加,土壤有效持水量逐漸升高。相比于0~60 cm土層,>60~100 cm土壤的有效持水量值提高了43%~120%,這可能與土壤黏粒含量的降低有關(表1)。

        表3 不同深度砂姜黑土水力學特性參數

        2.4 鈣質結核水分特征曲線及持水特征

        在以往的研究中,鈣質結核的含水率和水力學特征通常被忽略。本研究結果顯示,高基質勢情況下(基質勢為-10~0 cm),小粒徑鈣質結核的含水率要高于大粒徑鈣質結核(圖5)。2~5、>5~8、>8~30 mm的鈣質結核飽和含水率分別為0.25、0.22和0.20 cm3/cm3。這主要是因為小粒徑鈣質結核的容重較低(表4),孔隙度較大,能夠保持更多的水分。當基質勢低于-20 cm時,不同粒級鈣質結核的含水率差別不大。由表4可知,基于van Genutchen 模型的鈣質結核水分特征曲線擬合的決定系數(2)不小于0.95,具有較好的擬合效果。不同粒徑鈣質結核水分特征曲線值由大到小為2~5、>5~8、>8~30 mm。隨著鈣質結核粒徑的增大,其飽和含水率和殘余含水率值均顯著降低,這主要與小粒徑鈣質結核密度較低、孔隙度較高有關。在小粒徑鈣質結核的形成過程中,較低的土壤溶液結晶度是造成其低密度的主要原因[26]。

        2.5 鈣質結核對砂姜黑土持水能力的影響

        因表層土壤極易受耕作的影響,且鈣質結核含量極低,本研究僅選取>20~100 cm土壤,對其鈣質結核含量及其他土壤性質進行相關性分析(表5)。結果表明,隨著鈣質結核含量的增多,土壤持水性能,如飽和含水量、FC、WP以及殘余含水率等均呈現下降趨勢。其中,鈣質結核總含量total與FC、WP之間分別具有極顯著(<0.01)和顯著(<0.05)的負相關關系,這可能是由于鈣質結核密度顯著高于常規(guī)土壤容重,導致土壤持水性降低。此外,在所有基質勢范圍內(-15 000~0 cm),鈣質結核含水率均低于原狀土壤(圖 4~圖5),這也是造成砂姜黑土具有較低持水性的重要原因之一。Gu等[15]的研究結果表明,土壤含水率隨著鈣質結核含量的增多而逐漸降低。Tetegan等[11]、Ceacero等[8]和付同剛等[31]在其他含粗粒介質土壤如礫石土壤的研究中也得到了類似的結果。

        表4 不同粒徑鈣質結核水力學特性參數

        除>8~30 mm外,其他粒徑(2~5和>5~8 mm)鈣質結核含量以及鈣質結核總量均與土壤AWHC呈現顯著的正相關關系(<0.05,表5)。這與之前人工裝填土壤的研究結果表現不一致[15],是因為鈣質結核引起的FC的減少量低于WP的減少量,二者的差值,即AWHC隨著鈣質結核含量的增加而增多。可見,相比于FC,鈣質結核對土壤WP的負作用更強。除自身持水特性之外,鈣質結核還可能通過影響土壤質地來改變土壤的持水性能。各粒級鈣質結核及其總量均與土壤砂粒含量呈顯著正相關,而與黏粒含量間具有顯著的負相關關系(<0.05,表5),這可能是由于砂姜黑土砂粒中含有少量粒徑小于2 mm的鈣質結核。鈣質結核凝結的同時可能將土壤顆粒結合在一起,提高了土壤砂粒含量。一般而言,壤質土壤AWHC要高于砂質和黏質土壤[32]。因此,小顆粒鈣質結核的增多可能有助于改善砂姜黑土黏重的土壤質地。由于鈣質結核主要分布在耕層以下土壤中,深耕可能是改良砂姜黑土耕層結構、提高土壤AWHC并促進作物根系生長的有效措施之一。

        表5 20~100 cm土壤鈣質結核含量與其他土壤性質間相關系數

        注:**表示在0.01水平下相關性顯著;*表示在0.05水平下相關性顯著。

        Note: ** indicates significant correlations at the 0.01 level, * indicates significant correlations at the 0.05 level.

        從土壤水分特征曲線van Genutchen模型擬合參數及持水參數上看,和以及GC均與鈣質結核含量之間的相關系數大于0(=0.12~0.64)。這表明鈣質結核具有增加土壤大孔隙的潛力,其原因可能有以下幾個方面:1)鈣質結核與土壤細土之間容易形成大孔隙[29];2)鈣質結核等粗顆粒在變性土開裂過程中起到開裂點的作用[9],使土壤裂隙或大孔隙數量增多;3)鈣質結核在土壤中可充當骨架,減少壓實作用[18];4)鈣質結核含量高的土層其砂粒含量也較高,從而增加了土壤大孔隙的數量。

        總體上看,較高的黏粒含量是造成砂姜黑土耕層土壤(0~20 cm)持水能力較差,土壤AWHC較低的主要原因。而對于耕層以下土壤(>20 cm)而言,機械壓實作用和大量鈣質結核導致土壤容重較高,土壤持水量偏低。鈣質結核對砂姜黑土持水性的影響主要集中在耕層以下土壤。隨著鈣質結核含量的增加,土壤飽和含水率、FC和WP均降低,但AWHC顯著提高。這可能是由于小粒徑鈣質結核本身持水量較高,同時其性質與砂粒類似。可見,鈣質結核對砂姜黑土持水性的影響并非完全負面,鈣質結核,特別是小粒徑鈣質結核可通過改善土壤質地等性質來提高土壤有效持水量。

        為便于土壤持水性質的評估,前人研究往往研發(fā)土壤轉換函數,通過土壤質地、有機質、容重等基礎理化性質便捷地獲取土壤持水參數[33-34],而未考慮鈣質結核?;诒疚难芯拷Y果,鈣質結核對土壤持水性具有不可忽視的影響,以后需綜合考慮鈣質結核含量和粒徑參數研發(fā)土壤轉換函數模型,為砂姜黑土土壤持水性的準確評估提供技術理論依據,從而為中低產田改良提供科學支撐。

        3 結 論

        本研究以典型砂姜黑土區(qū)土壤剖面為研究對象,探討了土壤持水性及其對鈣質結核空間分布的響應特征,主要結論有:

        1)土壤飽和含水率在0~20 cm土層達到最高,而>20~100 cm各土層之間差異不顯著;土壤重力水含量隨著土層深度呈現先下降后升高的趨勢;土壤田間持水量和萎蔫點的趨勢與之相反;土壤有效持水量隨土層深度呈現逐漸升高趨勢。

        2)鈣質結核含量隨深度增加而增加,0~20 cm土壤中鈣質結核質量分數僅為0.02%,而>80~100 cm鈣質結核質量分數高達11.42%。

        3)鈣質結核降低了砂姜黑土土壤持水性。雖然鈣質結核本身可持有少量水分,但其含水率遠低于土壤,大粒徑鈣質結核含水率低于小粒徑鈣質結核。

        4)小粒徑鈣質結核可有效改善砂姜黑土黏重的土壤質地,提高土壤砂粒含量,提高土壤有效持水量。

        本研究對于評估砂姜黑土的持水性質、制定精確的灌溉措施、提高農業(yè)生產力具有重要意義。

        [1]熊鵬,郭自春,李瑋,等. 淮北平原砂姜黑土玉米產量與土壤性質的區(qū)域分析[J]. 土壤,2021,53(2):391-397. Xiong Peng, Guo Zichun, Li Wei, et al. Regional analysis of maize yield and physiochemical properties of Shajiang black soil (vertisol) in Huaibei Plain[J]. Soils, 2021, 53(2): 391-397. (in Chinese with English abstract)

        [2]曹亞娟. 安徽淮北平原鈣質結核土的分布及成因研究[D]. 合肥:合肥工業(yè)大學,2009. Cao Yajuan. Study on Distributing and Formatioin of the Calcareous Concretions Soil in Huaibei Plain, Anhui Province[D]. Hefei: Hefei University of Technology, 2009. (in Chinese with English abstract)

        [3]吳道祥,曹亞娟,鐘軒民,等. 安徽淮北平原鈣質結核土分布及成因年代研究[J]. 巖土力學,2009,30(增刊2):434-439. Wu Daoxiang, Cao Yajuan, Zhong Xuanmin, et al. Distribution, age and genesis of cohesive soil containing calcareous nodules in Huaibei Plain of Anhui Province[J]. 2009, 30(Suppl2): 434-439. (in Chinese with English abstract)

        [4]魏翠蘭. 砂姜黑土收縮開裂特征及生物質炭改良效應[D]. 北京:中國農業(yè)大學,2017. Wei Cuilan. Shirinkage-Cracking Characteristics of Lime Concretion Black Soil and Improvement with Biochar[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract)

        [5]谷豐. 典型砂姜黑土區(qū)農田土壤水分養(yǎng)分動態(tài)變化特征及模擬[D]. 北京:中國農業(yè)大學,2018. Gu Feng. Characteristics and Modeling of Soil Water and Nutrition Dynamics in a Typical Calcic Vertisol[D]. Beijing: China Agricultural University, 2018. (in Chinese with English abstract)

        [6]陳月明,高磊,張中彬,等. 淮北平原砂姜黑土區(qū)砂姜的空間分布及其驅動因素[J/OL]. 土壤學報,2020:1-14. [2020-09-02]. http: //kns. cnki. net/kcms/detail/32. 1119. P. 20200902. 1359. 004. html Chen Yueming, Gao Lei, Zhang Zhongbin, et al. Spatial distribution of shajiang content in shajiang black soil of huaibei plain and its influencing factors[J/OL]. Acta Pedologica Sinica, 2020: 1-14. [2020-09-02]. https: //kns. cnki. net/kcms/detail/32. 1119. P. 20200902. 1359. 004. html (in Chinese with English abstract)

        [7]Ravina I, Magier J. Hydraulic conductivity and water retention of clay soils containing coarse fragments[J]. Soil Science Society of America Journal, 1984, 48: 736-740.

        [8]Ceacero C J, Díaz-Hernández J L, Campo A D, et al. Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations[J]. Soil and Tillage Research, 2020, 197: 104495.

        [9]Gargiulo L, Mele G, Terribile F. The role of rock fragments in crack and soil structure development: A laboratory experiment with a vertisol[J]. European Journal of Soil Science, 2015, 66: 757-766.

        [10]Lai X, Zhu Q, Zhou Z, et al. Rock Fragment and spatial variation of soil hydraulic parameters are necessary on soil water simulation on the stony-soil hillslope[J]. Journal of Hydrology, 2018, 565: 354-364.

        [11]Tetegan M, Richer-de-Forges A C, Verbeque B, et al. The effect of soil stoniness on the estimation of water retention properties of soils: A case study from central France[J]. Catena, 2015, 129: 95-102.

        [12]Novák V, ?urda P. The water retention of a granite rock fragments in High Tatras stony soils[J]. Journal of Hydrology and Hydromechanics, 2010, 58(3): 181-187.

        [13]Poesen J, Lavee H. Rock fragments in top soils: Significance and processes[J]. Catena, 1994, 23: 1-28.

        [14]詹其厚. 砂姜黑土耕地土壤性狀特點與農業(yè)綜合利用技術研究[D]. 南京:南京農業(yè)大學,2011. Zhan Qihou. Study on Genetic Features of Vertisol Arable Land and Its Agricultural Utilization Technology[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract)

        [15]Gu F, Ren T, Li B, et al. Accounting for calcareous concretions in calcic vertisols improves the accuracy of soil hydraulic property estimations[J]. Soil Science Society of America Journal, 2017, 81: 1296-1302.

        [16]Gee G W, Or D. 2.4 Particle-size analysis[M]// Dane J H, Topp G C. Methods of Soil Analysis. Part. 4. Physical Methods. Madison, WI: SSSA, 2002: 255-293.

        [17]鮑士旦. 土壤農化分析:第三版[M]. 北京:中國農業(yè)出版社,2010:25-151.

        [18]Xing X, Liu Y, Garg A, et al. An improved genetic algorithm for determining modified water-retention model for biochar-amended soil[J]. Catena, 2021, 200: 105143.

        [19]Gardner R. A method of measuring the capillary tension of soil moisture over a wide moisture range[J]. Soil Science, 1937, 43(4): 277-284.

        [20]Saha A, Sekharan S. Importance of volumetric shrinkage curve (VSC) for determination of soil-water retention curve (SWRC) for Low Plastic Natural Soils[J]. Journal of Hydrology, 2021, 596: 126113.

        [21]van Genuchten M T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44: 892-898.

        [22]Reynolds W D, Topp G C. Soil Water Analyses: Principles and Parameters[M]//Carter M R, Gregorich E G. Soil Sampling and Methods of Analysis. 2nd ed. Boca Raton, FL: CRC Press, 2008: 919-920.

        [23]郭成士,馬東豪,張叢志,等. 砂姜黑土有機無機復合體結構特征及其對土壤顏色的影響機制[J]. 光譜學與光譜分析,2020,40(8):2434-2439. Guo Chengshi, Ma Donghao, Zhang Congzhi, et al. Structural characteristics of organic-inorganic complexes and the mechanism of its influences on soil color in the calci-aquic vertisols[J]. Spectroscopy and Spectral Analysis, 2020, 40(8): 2434-2439. (in Chinese with English abstract)

        [24]宗玉統(tǒng). 砂姜黑土的物理障礙因子及其改良[D]. 杭州:浙江大學,2013. Zong Yutong. Physical Obstacle Factors of Shajiang Black Soils and Its Improvement[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)

        [25]王擎運,何詠霞,陳景,等. 秸稈或粉煤灰添加對砂姜黑土持水性及小麥抗干旱脅迫的影響[J]. 農業(yè)工程學報,2020,36(2):95-102. Wang Qingyun, He Yongxia, Chen Jing, et al. Effects of straw or fly ash addition on water holding capacity of typical Shajiang black soil and drought stress tolerance in wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 95-102. (in Chinese with English abstract)

        [26]Khokhlova O S, Kuznetsova A M, Khokhlov A A, et al. Genesis of soft and hard calcareous nodules by the example of chernozem mesocatena in the southern cis-urals[J]. Eurasian Soil Science, 2004, 37(7): 669-675.

        [27]施國軍,吳道祥,徐冬生,等. 淮北平原鈣質結核土的結構類型和成因分析[J]. 合肥工業(yè)大學學報:自然科學版,2010,33(11):1681-1685,1693. Shi Guojun, Wu Daoxiang, Xu Dongshegn, et al. Study of structure category and formatioin reason of calcareous concretion soil in Huaibei Plain[J]. Journal of Hefei University of Technology, 2010, 33(11): 1681-1685, 1693. (in Chinese with English abstract)

        [28]Ma D, Shao M. Simulating infiltration into stony soils with a dual-porosity model[J]. European Journal of Soil Science, 2008, 59: 950-959.

        [29]Ma D, Shao M, Zhang J, et al. Validation of an analytical method for determining soil hydraulic properties of stony soils using experimental data[J]. Geoderma, 2010, 159: 262-269.

        [30]王小燕,蔡崇法,李鴻,等. 三峽庫區(qū)碎石含量對紫色土容重和孔隙特征的影響[J]. 土壤學報,2017,54(2):379-386. Wang Xiaoyan, Cai Chongfa, Li Hong, et al. Influence of rock fragments on bulk density and pore characteristics of purple soil in Three-Gorge Reservoir Area[J]. Acta Pedologica Sinica, 2017, 54(2): 379-386.

        [31]付同剛,陳洪松,張偉,等. 喀斯特小流域土壤含水率空間異質性及其影響因素[J]. 農業(yè)工程學報,2014,30(14):124-131. Fu Tonggang, Chen Hongsong, Zhang Wei, et al. Spatial variability of soil moisture content and its influencing factors in small Karst catchment during dry period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 124-131. (in Chinese with English abstract)

        [32]王忠江,劉卓,曹振,等. 生物炭對東北黑土持水特性的影響[J]. 農業(yè)工程學報,2019,35(17):147-153. Wang Zhongjiang, Liu Zhuo, Cao Zhen, et al. Effect of biochars on water retention properties of northeast region black soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 147-153. (in Chinese with English abstract)

        [33]安樂生,趙寬,李明. 表征全吸力范圍的土壤水分特征曲線模型評估及其轉換函數構建[J]. 自然資源學報,2019,34(12):2732-2742. An Lesheng, Zhao Kuan, Li Ming. Evaluation of soil water retention curve model from saturation to oven-dryness and development of pedotransfer functions for predicting model parameters[J]. Journal of Natural Resources, 2019, 34(12): 2732-2742. (in Chinese with English abstract)

        [34]王子龍,常廣義,姜秋香,等. 灰色關聯(lián)及非線性規(guī)劃法構建傳遞函數估算黑土水力參數[J]. 農業(yè)工程學報,2019,35(10):60-68. Wang Zilong, Chang Guangyi, Jiang Qiuxiang, et al. Constructing pedo-transfer functions based on grey relational and nonlinear programming to estimate hydraulic parameters in black soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 60-68.

        Distribution of calcareous concretion in soil profile and their effects on soil water retention in calcic vertisol

        Gu Feng1,2, Chen Xuejiao3, Wei Cuilan2,4, Zhou Minghua1, Li Baoguo2※

        (1.,,,610041,; 2.,,,,,,100193,; 3.,,610065,; 4.,,210036,)

        Calcic vertisol is a typical kind of low-yield field with a total area of about 4 million hm2in China. Calcareous concretion with particle size larger than 2 mm has been one of the representative characteristics of calcic vertisol. The limitation of soil available water is an important reason for crop failure in this region. Therefore, the curve of soil water retention dominates the estimation of available water content. However, most studies focused on the effects of calcareous concretion on soil water retention of calcic vertisol mainly under laboratory conditions. It is lacking that under field conditions. In this study, both field surveys and laboratory experiments were conducted to explore the effect of calcareous concretion distribution in 0-1 m soil profile on soil water retention. Firstly, the spatial distribution of calcareous concretion was investigated in the study plot with 150 m length, 50 m width, and 1 m depth. After then, soil profiles (0-1 m soil depth) were chosen to divide into 5 layers with a 20 cm interval. Disturbed and undisturbed soil samples were collected in each layer. Physicochemical properties were evaluated to measure the distribution of soil particle size, size and content of calcareous concretion, bulk densities of soil, and calcareous concretions. Meanwhile, the curves of soil water retention were determined usinghigh speed centrifuge. A pressure plate method was conducted to measure water retention curves in calcareous concretion. The results showed that the mass contents of clay, silt, and sand were 30.56%-39.75%, 39.88%-45.34%, and 18.67%-24.45%, respectively, which belonged to silty clay soil in the classification standard of the United States Department of Agriculture (USDA). Clayey particles decreased, but sandy particles increased significantly with the increase of soil depth. Calcareous concretion was mainly distributed in the soil depth of >20-100 cm, where the content and size increased as soil depth increased. Calcareous concretions content in the surface soil (0-20 cm) was very low (with mass content 0.02%), where only a few calcareous concretions of 2-5 mm were discovered. The maximum content of calcareous concretion was detected at > 80-100 cm (up to 11.42%), where the calcareous concretion content was 8.04% in the size of >8-30 mm. Soil bulk density ranged from 1.23-1.61 g·cm-3. The densities of calcareous concretions were 2.01, 2.21, and 2.23 g/cm3with the size of 2-5 mm, >5-8 mm, and >8-30 mm, respectively. Soil bulk density increased along with the calcareous concretion content increasing. Water retention curves of soil and calcareous concretion were well fitted by the van Genuchten model, with the determination coefficient larger than 0.95. The saturated water content of surface soil (0-20 cm) was significantly higher than that of 20-100 cm soil. Nevertheless, the Gravitational-water content in the surface soil (0-20 cm) was much larger than that in the soil of > 20-100 cm, which was related to macropores formed during tillage. In the subsurface (>20-100 cm), soil gravitational-water content and available water-holding capacity increased with the increase of soil depth, but the field capacity and wilting point decreased. Calcareous concretion maintained a non-negligible amount of water, 0.25, 0.22, and 0.20 cm3/cm3in the particles with the size of 2-5 mm, >5-8 mm, and >8-30 mm, respectively. But the water-holding capacities of calcareous concretion were significantly lower than that of soil. The effects of calcareous concretion on water-holding capacity mainly occurred in the subsurface soil. Soil saturated water content, field capacity, and wilting point decreased with increasing calcareous concretion. Interestingly, calcareous concretion content was positively correlated with the soil sand content, but negatively correlated with the soil clay content. Calcareous concretion can bind soil particles together to prevent sand weathering, and thereby effectively improve soil texture. More calcareous concretion led to higher sand contents, and thus increased the available water-holding capacity in soil. This finding can provide a theoretical basis to accurately assess the soil water-holding capacity in calcic vertisol for precision irrigation and high crop productivity.

        soils; soil moisture; particles; calcic vertisol; calcareous concretion; spatial distribution; water retention; water characteristic curve

        谷豐,陳雪嬌,魏翠蘭,等. 砂姜黑土鈣質結核剖面分布特征及其對土壤持水性的影響[J]. 農業(yè)工程學報,2021,37(6):73-80.doi:10.11975/j.issn.1002-6819.2021.06.010 http://www.tcsae.org

        Gu Feng, Chen Xuejiao, Wei Cuilan, et al. Distribution of calcareous concretion in soil profile and their effects on soil water retention in calcic vertisol[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(6): 73-80. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.06.010 http://www.tcsae.org

        2020-11-24

        2021-01-19

        國家重點研發(fā)計劃項目(2016YFD0300801);國家水體污染控制與治理科技重大專項(2017ZX07101001)

        谷豐,博士,研究方向為土壤結構與水分運動。Email:guf@imde.ac.cn

        李保國,教授,博士生導師,研究方向為土壤過程定量化。Email:Libg@cau.edu.cn

        10.11975/j.issn.1002-6819.2021.06.010

        S152.7+1

        A

        1002-6819(2021)-06-0073-08

        猜你喜歡
        特征
        抓住特征巧觀察
        離散型隨機變量的分布列與數字特征
        具有兩個P’維非線性不可約特征標的非可解群
        月震特征及與地震的對比
        如何表達“特征”
        被k(2≤k≤16)整除的正整數的特征
        中等數學(2019年8期)2019-11-25 01:38:14
        不忠誠的四個特征
        當代陜西(2019年10期)2019-06-03 10:12:04
        詈語的文化蘊含與現代特征
        新聞傳播(2018年11期)2018-08-29 08:15:24
        抓住特征巧觀察
        基于特征篩選的模型選擇
        精品人妻av中文字幕乱| A午夜精品福利在线| 亚洲阿v天堂2018在线观看| 狼人狠狠干首页综合网| 在线免费观看黄色国产强暴av| 未满十八勿入av网免费| 麻豆av传媒蜜桃天美传媒| 99精品国产自产在线观看| 乳乱中文字幕熟女熟妇| 乱人伦中文视频在线| 国产无套护士在线观看| 日韩欧美精品有码在线观看| 久久久精品国产av麻豆樱花| 国产成人精品亚洲日本在线观看 | 免费看黄在线永久观看| 中文字日产幕码三区的做法大全| 国产真人性做爰久久网站| 国产丝袜一区二区三区在线不卡| 综合久久加勒比天然素人| 日本一本免费一二区| 色欲av亚洲一区无码少妇| 成人综合久久精品色婷婷| 日韩av一区二区三区高清| 亚洲av无码成人网站在线观看| 色丁香色婷婷| 久久久精品国产亚洲av网不卡| 亚洲中文字幕国产视频| 久久久久久伊人高潮影院| 国产乱人视频在线观看播放器| 免费视频亚洲一区二区三区| 精品国产麻豆免费人成网站| 亚洲精品你懂的在线观看| 日本精品人妻一区二区三区| 中文字幕人成人乱码亚洲av| 午夜三级a三级三点| 国产精品98福利小视频| 中文字幕乱码亚洲在线| 97无码免费人妻超级碰碰夜夜 | a级大胆欧美人体大胆666| 亚洲一区二区久久青草| 国产精品成人一区二区在线不卡|