亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Uniformly Normal Structure and Uniform Non-Squareness of Orlicz-Lorentz Sequence Spaces Endowed with the Orlicz Norm

        2021-04-16 08:20:36CHENBowen陳博文GONGWanzhong鞏萬中
        應(yīng)用數(shù)學(xué) 2021年2期
        關(guān)鍵詞:博文

        CHEN Bowen(陳博文),GONG Wanzhong(鞏萬中)

        (Department of Mathematics,Anhui Normal University,Wuhu 241000,China)

        Abstract: As a generalization of classical Orlicz space,Orlicz-Lorentz space provides a reasonable space framework for harmonic analysis and differential equations.While uniformly normal structure and uniform non-squareness play important roles in fixed point theory.In this paper the necessary and sufficient conditions were given for Orlicz-Lorentz sequence space endowed with the Orlicz norm having uniformly normal structure and uniform non-squareness.

        Key words: Uniformly normal structure;Uniform non-squareness;Orlicz-Lorentz sequence spaces;Orlicz norm

        1.Introduction

        LetAbe a bounded subset of a Banach spaceX,forx ∈Awe set

        and set

        Xis said to have normal structure if eitherR(A)= 0 orR(A)

        For anyx,y ∈S(X),if there existsδ ∈(0,1)such that

        we say that Banach spaceXis uniformly non-square[13].Uniform non-squareness of Banach spaces has been defined by James as the geometric property which implies super-reflexivity[14].Recently García-Falset,Llorens-Fuster et al.[9]have shown that uniformly non-square Banach spaces have the fixed point property.Recently Foralewski et al.[7?8]got the criterion for Orlicz-Lorentz function space and Orlicz-Lorentz sequence space with the Luxemburg norm being uniformly non-square.

        A functionφ:R→R+is said to be an Orlicz function[16]ifφis convex,even,φ(0)=0,φ(u)>0 for allu >0,Its complementary functionψis defined by

        for allv ∈R.Ifφis an Orlicz function,then its complementary functionψis an Orlicz function.Recall that an Orlicz functionφsatisfies the conditionδ2(φ ∈δ2for short)if there exists a constantK >0 and a constantu0>0 such thatφ(2u)≤Kφ(u)wheneveru ∈[0,u0].From[21]we know that ifφ,ψ ∈δ2,then for anyα>0 andthere exists 00 such that whenλ0≤λ ≤1?λ0,max{|s|,|t|}≤α,for eitherorst ≤0,it holds

        For more properties of Orlicz function,we may refer to [6,11,16].

        Letl0be the space of all sequencesx:N→(?∞,∞).Give anyx ∈l0,the distribution function and decreasing rearrangement ofxare defined as follows

        whereμdenotes the counting measure on N.A weight sequenceω= (ω(t))is nonincreasing sequence of positive real numbers such thatA weight sequence is said to be regular if there existsK >1 such that

        for anyn ∈N,where

        The Orlicz-Lorentz sequence spaceλφ,ωis defined as the set of the sequencesx=(x(t))such that

        for someλ >0.It is known that the Orlicz-Lorentz sequence space endowed with the Luxemburg norm

        is a Banach space[20].Ifφ(t)=t,thenλφ,ωis the Lorentz sequence spaceλω.The norm ofx ∈λωis defined by

        Obviously,

        We say that a Banach latticeXis uniformly monotone if for anyε >0 there isδ=δ(ε)>0 such that∥u ?v∥≤1?δwheneveru,v ∈Xwith∥v∥>ε,∥u∥=1 and 0≤v ≤u.From [12] we see thatλωis uniformly monotone if and only ifωis regular.

        Forx ∈λφ,ω,define

        It is easy to see that∥·∥?φ,ωis a norm inλφ,ω,we call it Orlicz norm.From [20],we know that endowed with the Orlicz norm,λφ,ωis a Banach space(denoted byλ?φ,ω),and obtain the following properties ofλ?φ,ω.

        wherek?=inf{h>0:ρψ,ω(p(h|x|))≥1},k??=sup{h>0:ρψ,ω(p(h|x|))≤1}.

        In this paper we will firstly give the criterion forλ?φ,ωhaving uniformly normal structure,then give the necessary and sufficient conditions forλ?φ,ωbeing uniformly non-square.In the proof uniformly monotonicity plays an important role.For more reference about uniformly normal structure and uniform non-squareness,we may refer to [18].

        2.Some Lemmas

        Lemma 2.1[20](i)inf{k:k ∈K(x),∥x∥?φ,ω=1}>1 if and only ifφ ∈δ2.

        (ii)The setQ=∪{K(x):a ≤∥x∥?φ,ω ≤b}is bounded for eachb ≥a>0 if and only ifψ ∈δ2.

        Lemma 2.2[20]

        Lemma 2.3Ifφ /∈δ2,thenλ?φ,ωcontains an almost isometric copy of?∞.

        ProofSinceφ /∈δ2,for anyε>0,we can find decreasing sequence of positive numbers{un}such that

        for anyn ∈N.Then there exists a sequence{k(n)}of natural numbers such that

        for anyn ∈N.Denotel(0)=0,and

        Obviously there holds

        For anyc={cn}∈?∞,we have

        For anyr >1,we can get onemsuch thatand get oneslarge enough satisfyingandε2s >2m+1.Therefore

        Consequently,we can get

        Lemma 2.4Ifψ /∈δ2,thenλ?φ,ωcontains?1.

        ProofFor anyε>0,byψ /∈δ2there is a sequence{ui}of positive numbers such that

        and

        for alli ∈N.In view ofwe can get a sequenceof natural numbers satisfying

        Definel(0)=0 andfori ∈N.We have

        fori=2,3,···.It is easy to see thatk(i)>2i+3k(i ?1)andk(i)>l(i ?1).

        Define

        Then by the same method as the proof of Theorem 2.5 in[8],we know that the sequence{xi}satisfies

        In view of the properties of the Orlicz norm,we obtain

        Consequently,

        Lemma 2.5Ifωis not regular,thenλ?φ,ωcontains?n∞uniformly.

        ProofSinceωis not regular,we see that for anynand anyε ∈(0,1),there exists a nature numberα>1 such that

        Fora={ak}nk=1∈?n∞with max{|ak|:k= 1,···n}= 1,we may assume|a1|= 1.By the inequality above and the relations between the Luxemburg norm and the Orlicz norm,

        It follows thatλ?φ,ωcontaining?n∞uniformly.

        Lemma 2.6[1,17]LetXbe a Banach space.IfXhas uniformly normal structure,thenXis reflexive and it does not contain?n∞uniformly.

        Owing to the definition of uniformly normal structure,we have

        Lemma 2.7[6]LetXbe a Banach space.IfXdoes not have uniformly normal structure,then for anyn ∈N andε>0,there exists{xi:1≤i ≤n+1}inXsuch that

        3.Uniformly Normal Structure of λ?φ,ω

        Theorem 3.1Orlicz-Lorentz sequence spaceλ?φ,ωhas uniformly normal structure if and only if

        (a)ωis regular,

        (b)φ,ψ ∈δ2.

        Proof(Necessity)It follows from Lemmas 2.3-2.6,Lemma 2.4,Lemma 2.5 and Lemma 2.6.

        (Sufficiency)By Lemma 2.1 andφ,ψ ∈δ2,we see that there existξ1,ξ2∈(1,+∞)withξ1<ξ2such thatkx ∈(ξ1,ξ2)for anyx ∈λ?φ,ωwith

        For anyx ∈λ?φ,ωwith∥x∥?φ,ω ≤1,we know thatCertainlyandx?(1)=max{|x(t)|,t ∈N}.Fix

        Byφ,ψ ∈δ2,forandα >0 above,there existc ∈(0,1)andγ >0 such that,whenλ ∈(λ0,1?λ0)and max{|s|,|t|}≤α,

        In view ofωbeing regular,we know thatλωis uniformly monotone.Thus for anyM >0 and anyε1>0,there existsη(ε1)>0 such that

        for anyu,v ∈λω,∥u∥w ≤M,|v|≤|u|and∥v∥ω ≥ε1.

        Consideringφ ∈δ2,there existandK0>1 such that

        whenever∥u∥φ,ω ≥1?ε2andφ(2r)≤K0φ(r)whenever

        Suppose thatλ?φ,ωdoes not have uniformly normal structure,then fornabove and anyε ∈(0,ε2)there exists a subset{x1,··· ,xn}?λ?φ,ωsatisfying

        Without loss of generality,we may assume thatx1= 0 andx2≥0.In fact,ifx10,then we will replacexibyxi ?x1fori=1,2,...n.And we will replacexi(t)by?xi(t)fort ∈N withx2(t)<0,wherei=2,3,...n.Certainlyfori=2,3,··· ,n.There is a mappingσ:N→N such that

        From∥x2∥?φ,ω ≥1?ε,we can see∥2x2∥φ,ω ≥1?ε.Therefore

        whereA:={t ∈N:x2(t)≥α0}.For 2

        Let

        Bi={t ∈A:Inequality (3.2)is true for anyk

        Using the same method as Theorem 6 of[15],we can see that there exists ai0∈{2,··· ,n}such that

        Let

        wherehk ∈K(xi0?xk)andk ∈{1,2,··· ,i0?1}.By∥xi0?xk∥?φ,ω ≤1,we can find that

        and

        Ifhi0?1≥hk,we can see

        Clearly we can get the same result ifhi0?1≤hk.Consequently,byφ,ψ ∈δ2we know that fort ∈Bi0,

        For 3≤j ≤i0,let

        Hence,by the convexity ofφ,we can get

        But by (3.3),

        Therefore,

        for someη(ε1)>0.It can be obtained

        By (3.1)and(3.4),we have

        which leads to a contradiction by the arbitrariness ofε.Soλ?φ,ωhave uniformly normal structure.

        4.Uniform Non-Squareness Properties of λ?φ,ω

        Theorem 4.1Orlicz-Lorentz sequence spaceλ?φ,ωis uniformly non-square if and only if

        (a)ωis regular,

        (b)φ,ψ ∈δ2.

        Proof(Necessity)By Lemmas 2.3-2.4,we can seeφ ∈δ2andψ ∈δ2.Supposeωis not regular,then we can find an infinite sequence{tn}?N such that

        Let

        By Lemma 2.2 andtn ≤2tn,we know

        While byx?n=y?n,there hold

        and

        A contradiction with the uniform non-squareness yields the regularity ofω.

        (Sufficiency)By Lemma 2.1 andφ,ψ ∈δ2,we see that there existξ1,ξ2∈(1,+∞)withξ1<ξ2such thatku ∈(ξ1,ξ2)for anyu ∈S(λ?φ,ω).

        Letx,y ∈S(λ?φ,ω).Obviously,soBy condition (b),forandthere existc ∈(0,1)andη >0 such that whenλ0≤λ ≤1?λ0and max{|s|,|t|} ≤α,for eitherorst ≤0,it holds

        In view ofφ ∈δ2,there existsK0>1 such that

        for|u|≤2(ξ2)2α.

        Fixk1∈K(x),k2∈K(y),then

        fort=1,2,···and

        Therefore,ifx(?y)≤0,we have

        By the definition of the Orlicz norm and∥x∥?φ,ω=∥y∥?φ,ω=1,one can see

        Setε=ξ1?1 andBy the range ofk1andk2,we find

        Denote

        Since

        we have

        On the other hand,

        Hence by the uniform monotonicity of Lorentz sequence spaceλω,there exists a0 satisfying

        By the definition of∥·∥ωand the Orlicz norm,we have

        Consequently,

        In summary,λ?φ,ωis uniformly non-square.

        猜你喜歡
        博文
        中國兩會
        華人時刊(2022年4期)2022-04-14 09:27:56
        五色為功——孫博文的藝術(shù)探索與價值
        國畫家(2022年1期)2022-03-29 01:19:54
        第一次掙錢
        應(yīng)用比較法 培養(yǎng)物理知識遷移能力
        魏博文 全詩菡 蔡乙彪
        躲貓貓
        互動體驗(yàn)營“博文星”吳勇瑞
        誰和誰好
        Review on Tang Wenzhi’s The Gist of Chinese Writing Gamut
        打電話2
        久久久国产打桩机| 亚洲国产一区中文字幕| 亚洲中文字幕乱码一二三 | 欧美成人看片一区二区三区尤物 | 深夜爽爽动态图无遮无挡| 中文无码乱人伦中文视频在线v| 在线观看网址你懂的| 久久本道久久综合一人| 一级r片内射视频播放免费| 精品国产一区二区三区av片| 亚洲毛片网| 久久网站在线免费观看| 国产精品久久久天天影视| 亚洲伊人成综合网| 国产资源在线视频| 蜜桃av在线播放视频| 少妇久久久久久被弄高潮| 日日噜噜噜夜夜爽爽狠狠| 久久夜色精品国产噜噜噜亚洲av | 欧美综合区| 免费人成黄页在线观看国产| 琪琪色原网站在线观看 | bbbbbxxxxx欧美性| 一区二区三区免费观看日本| 婷婷五月婷婷五月| 99久久久久国产| 日韩精品高清不卡一区二区三区| 麻豆资源在线观看视频| 国产大陆亚洲精品国产| 国产精品色内内在线播放| 国产精品亚洲一二三区| 九九久久自然熟的香蕉图片| 日韩AV不卡一区二区三区无码| 日本av在线精品视频| 精品日韩一级免费视频| 性一交一乱一伧国产女士spa| 日本女优中文字幕看片| 综合激情五月三开心五月| 国产精品一卡二卡三卡| 日本一本久道| 日韩激情av不卡在线|